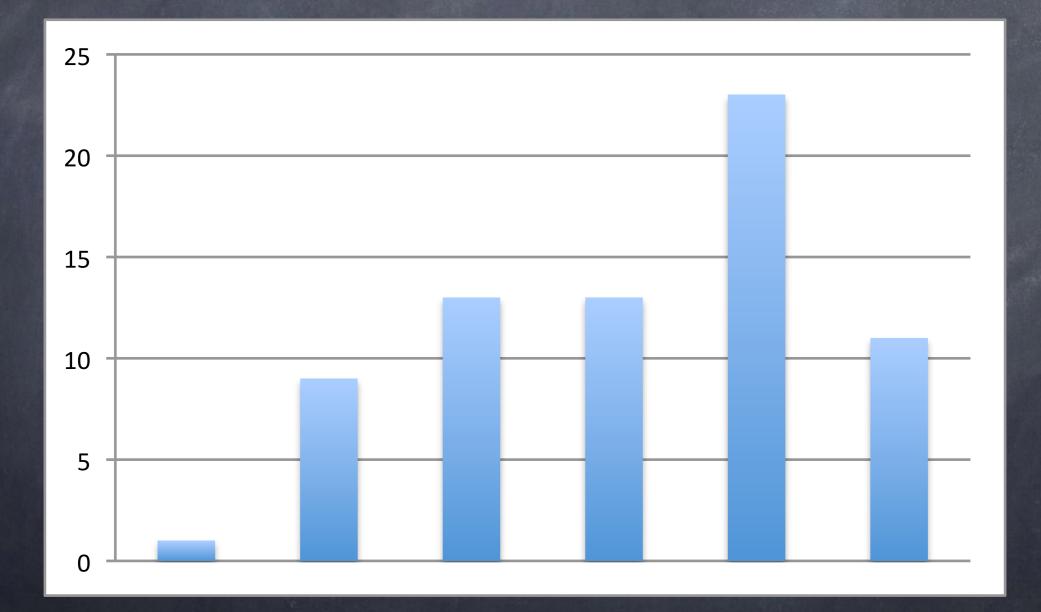
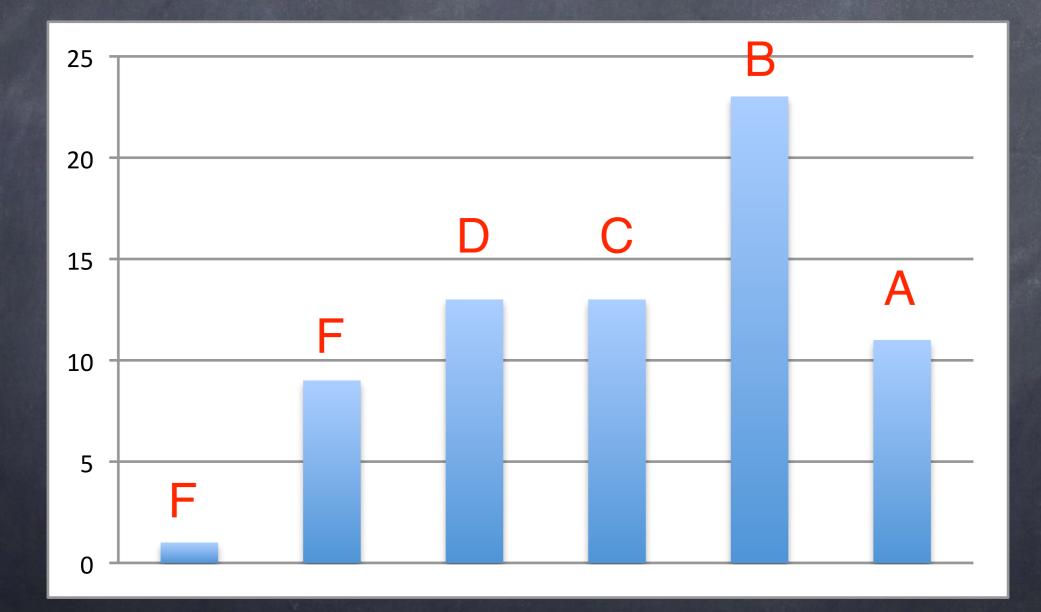
CSC242: Intro to AI

Lecture 7 Games of Imperfect Knowledge & Constraint Satisfaction

What is This?



Quiz 1



Moral

Many people cannot learn from lectures
Do the homework!
If you do, exams will be easy
If you don't, exams will be impossible
First exam: February 20

The Road Ahead

Complete calendar for the semester now online Topics Sexam dates Project dates 3 programming projects
 3 in-class exams + final exam

Othello

 O Phase I due Feb 25
 Project page updated, (re)check details! Generating legal moves is not trivial! A legal move must capture some pieces! My own solution: 125 lines of Python

Searching Examples:

Backgammon

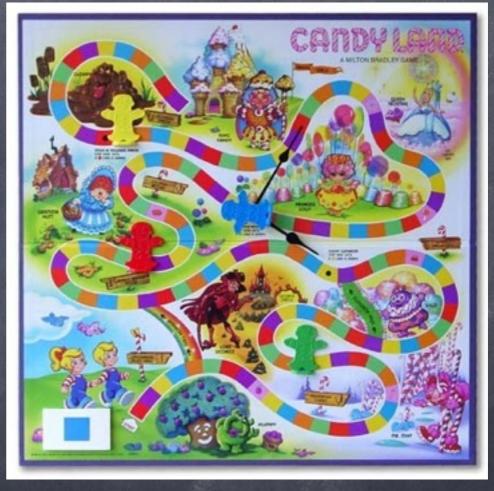
Roulette

Candyland

Parcheesi

Why stochastic?

Why perfect information?



Searchart Examples:

Backgammon

Roulette

Candyland

Parcheesi

Why stochastic? Contains a random element
Why perfect information?

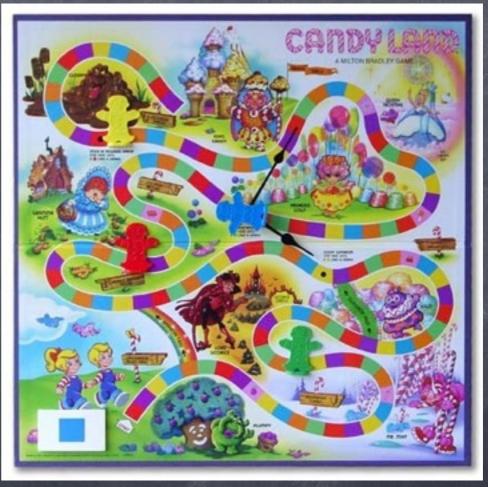
Searchart Examples:

Backgammon

Roulette

Candyland

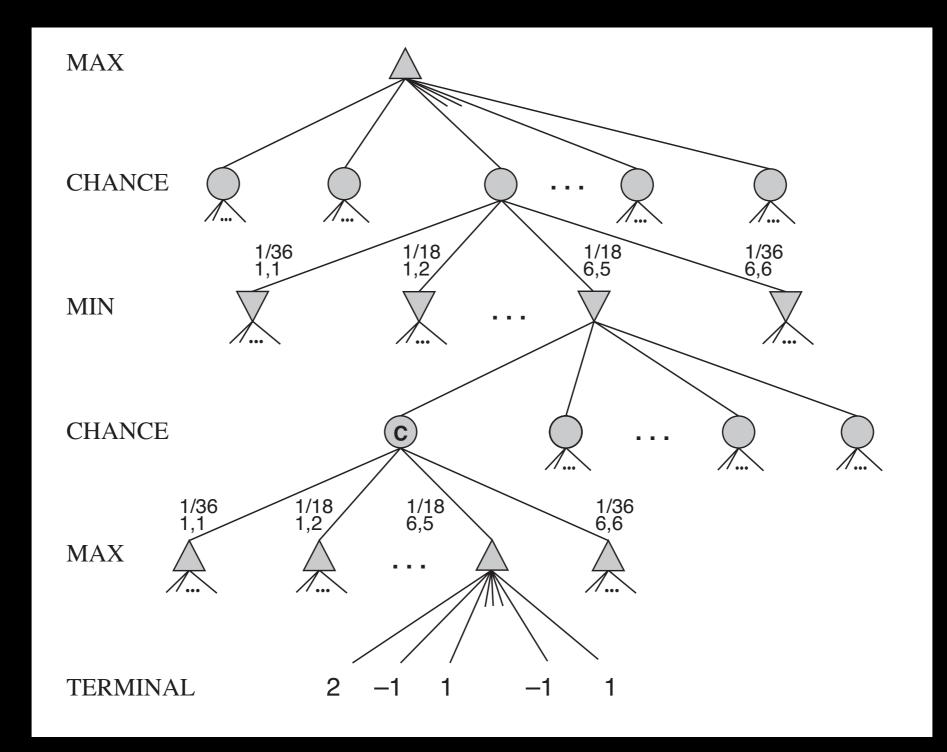
Parcheesi



Why stochastic? Contains a random element
Why perfect information? No hidden state!

Expecti-Minimax

- Same as MINIMAX for MIN and MAX nodes
- Same backing up utilities from terminal nodes
- Take expectation over chance nodes
 - Weighted average of possible outcomes



Expecti-Minimax

EMINIMAX(s) =

 $\begin{cases} \text{UTILITY}(s) \\ \max_{a} \text{EMINIMAX}(\text{RESULT}(S, a)) \\ \min_{a} \text{EMINIMAX}(\text{RESULT}(S, a)) \\ \sum_{r} P(r) \text{EMINIMAX}(\text{RESULT}(S, r)) \end{cases}$

if TERMINAL-TEST(s) if PLAYER(s) = MAX if PLAYER(s) = MIN if PLAYER(s) = CHANCE

Partial Observability

 Some of the state of the world is hidden (unobservable)

- Some of the state of the game is hidden from the player(s)
- Interesting because:
 - Valuable real-world games like poker
 - Partial observability arises all the time in real-world problems

- Deterministic partial observability
 - Opponent has hidden state
 - No element of randomness
 - Examples?

- Deterministic partial observability
 - Opponent has hidden state
 - Battleship, Stratego

- Deterministic partial observability
 - Opponent has hidden state
 - Battleship, Stratego
- Stochastic partial observability
 - Hidden information is random
 - Examples?

Stochastic Partially Observable Games

Hand	Frequency	Approx. Probability	Approx. Cumulative	Approx. Odds	Mathematical expression of absolute frequency
Royal flush	4	0.000154%	0.000154%	649,739 : 1	$\begin{pmatrix} 4\\1 \end{pmatrix}$
Straight flush (excluding royal flush)	36	0.00139%	0.00154%	72,192.33 : 1	$\binom{10}{1}\binom{4}{1} - \binom{4}{1}$
Four of a kind	624	0.0240%	0.0256%	4,164 : 1	$\binom{13}{1}\binom{12}{1}\binom{4}{1}$
Full house	3,744	0.144%	0.170%	693.2 : 1	$\binom{13}{1}\binom{4}{3}\binom{12}{1}\binom{4}{2}$
Flush (excluding royal flush and straight flush)	5,108	0.197%	0.367%	507.8 : 1	$\binom{13}{5}\binom{4}{1} - \binom{10}{1}\binom{4}{1}$
Straight (excluding royal flush and straight flush)	10,200	0.392%	0.76%	253.8 : 1	$\binom{10}{1}\binom{4}{1}^5 - \binom{10}{1}\binom{4}{1}$
Three of a kind	54,912	2.11%	2.87%	46.3 : 1	$\binom{13}{1}\binom{4}{3}\binom{12}{2}\binom{4}{1}^2$
Two pair	123,552	4.75%	7.62%	20.03 : 1	$\binom{13}{2}\binom{4}{2}^2\binom{11}{1}\binom{4}{1}$
One pair	1,098,240	42.3%	49.9%	1.36 : 1	$\binom{13}{1}\binom{4}{2}\binom{12}{3}\binom{4}{1}^3$
No pair / High card	1,302,540	50.1%	100%	.995 : 1	$\left[\binom{13}{5}-10\right]\left[\binom{4}{1}^5-4\right]$
Total	2,598,960	100%	100%	1:1	$\binom{52}{5}$

Weighted Minimax

- For each possible deal s:
 - Assume s is the actual situation
 - Compute Minimax or H-Minimax value of s
 - $\bullet\,$ Weight value by probability of s
- Take move that yields highest expected value over all the possible deals

Weighted Minimax $\operatorname{argmax}_{a} \sum_{s} P(s) \operatorname{Minimax}(\operatorname{Result}(s, a))$

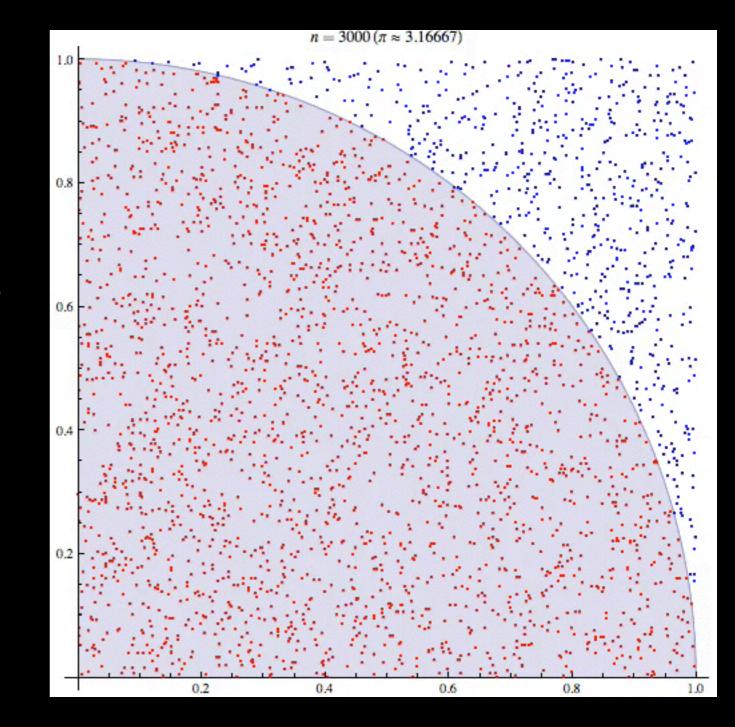
Weighted Minimax

 $\underset{a}{\operatorname{argmax}} \sum_{s} P(s) \operatorname{MINIMAX}(\operatorname{RESULT}(s, a))$

2-Player Hearts: $\begin{pmatrix} 52-13\\13 \end{pmatrix} = 8 \times 10^9$ 4-Player Hearts: $\begin{pmatrix} 39\\13 \end{pmatrix} \begin{pmatrix} 26\\13 \end{pmatrix} \begin{pmatrix} 13\\13 \end{pmatrix} = 8 \times 10^{16}$ 4-Player Poker: $\begin{pmatrix} 47\\5 \end{pmatrix} \begin{pmatrix} 42\\5 \end{pmatrix} \begin{pmatrix} 37\\5 \end{pmatrix} = 1 \times 10^{17}$

Monte Carlo Methods

 Use a "representative" sample to approximate a large, complex distribution

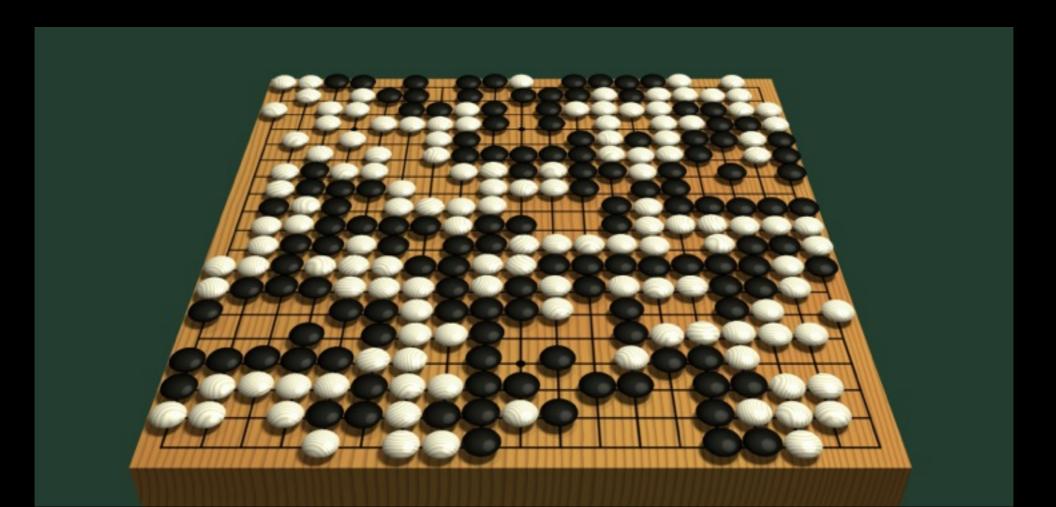


$\frac{\text{Monte-Carlo Minimax}}{\underset{a}{\operatorname{argmax}} \frac{1}{N} \sum_{i=1}^{N} \operatorname{Minimax}(\operatorname{Result}(s_i, a))$

- Can also sample during minimax search
 - Equivalently: expand a random sample of children at each level
- Used in champion card playing programs
 - Bridge, Poker

Monte Carlo MiniMax

 Useful even for deterministic games of perfect information that have very high branching factors!



Summary

- Stochastic games
 - Expecti-MINIMAX: Compute expected MINIMAX value over chance nodes
- Partially observable games
 - Weighted MINIMAX: Compute expected value over possible hidden states
 - When tree becomes too large, sample branches rather than explore exhaustively

Constraint Satisfaction

What is Constraint Satisfaction?

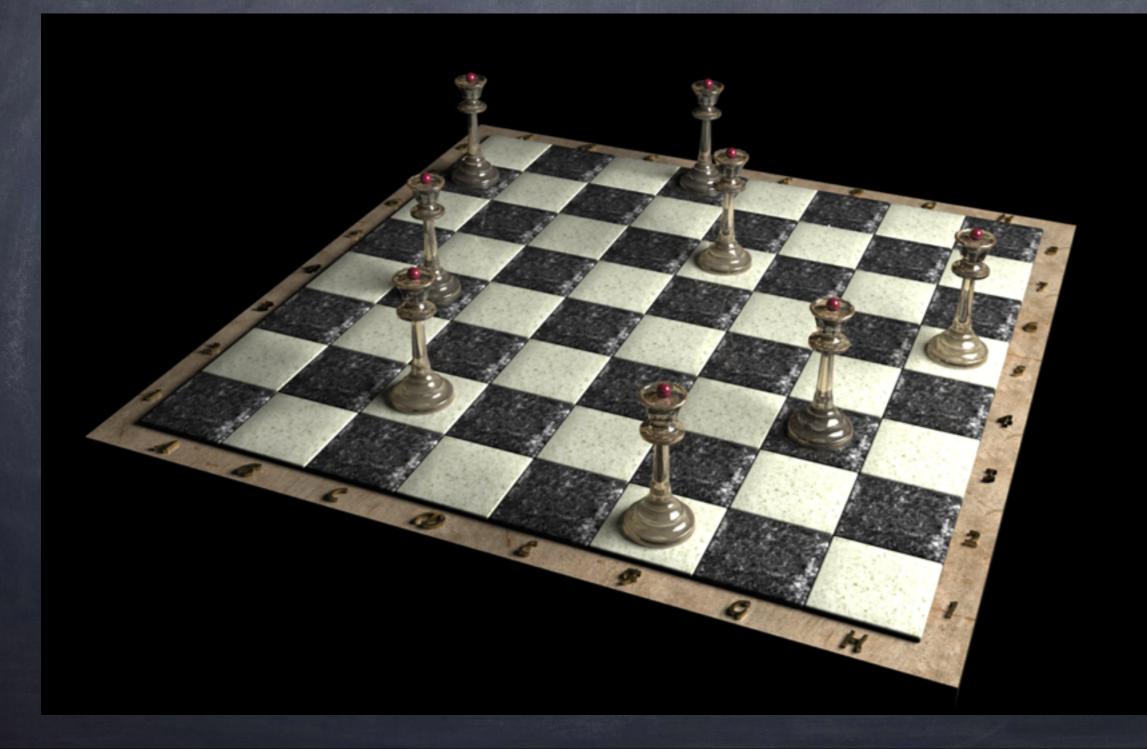
In most of the search problems we have discussed up to now, a solution corresponds to a path or the initial step in a path through a state space

Route-finding

Solving the 8 Puzzle

Game playing

What is Constraint Satisfaction?



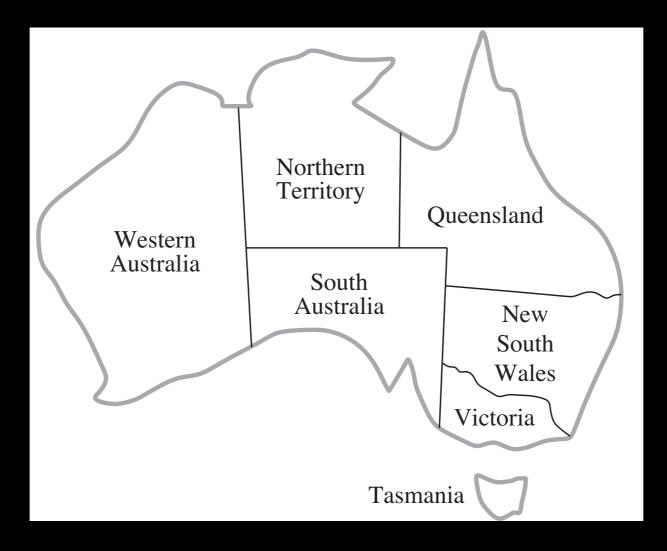
The Problem With State-Space Search

- State representation is specific to a given problem (or domain of problems)
- Functions on states (successor generation, goal test) are specific to the state representation
- Heuristic functions are both problem-specific and dependent on the state representation
- Many design choices, many opportunities for coding errors

The CSP Approach

- Impose a structure on the representation of states
- Using that representation, successor generation and goal tests are problem- and domain-independent
- Can also develop effective problem- and domain-independent heuristics

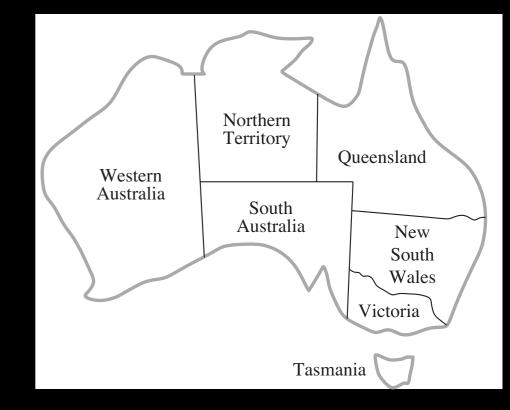
Bottom Line



Assign a color to each region such that no two neighboring regions have the same color

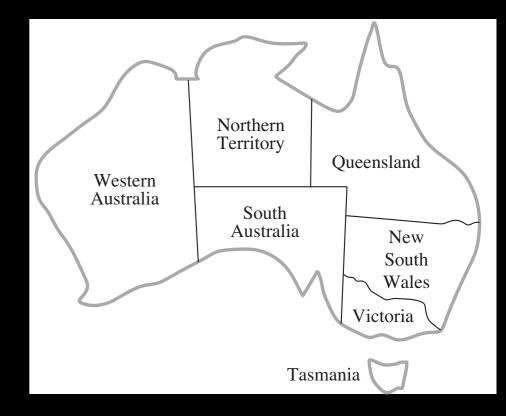
Color WA, NT, Q, NSW, V, SA, T

enum Color = red, green, blue



Color WA, NT, Q, NSW, V, SA, T

enum Color = red, green, blue



State: assignment of colors to regions

Successor function: pick an unassigned region and assign it a color

Goal test: All regions assigned and no adjacent regions have the same color

Color WA, NT, Q, NSW, V, SA, T

enum Color = red, green, blue

WA=red, NT=green, Q=red, NSW=green V=red, SA=blue, T=red

Constraint Satisfaction Problem (CSP)

X: Set of variables { $X_1, ..., X_n$ } D: Set of domains { $D_1, ..., D_n$ } Each domain D_i = set of values { $v_1, ..., v_k$ } C: Set of constraints { $C_1, ..., C_m$ }

Australia Map CSP

X: { X_i } = {WA, NT, Q, NSW, V, SA, T } D: Each D_i = { red, green, blue } C: { $SA \neq WA$, $SA \neq NT$, $SA \neq Q$, $SA \neq NSW$, $SA \neq V$, $WA \neq NT$, $NT \neq Q$, $Q \neq NSW$, $VSW \neq V$ }

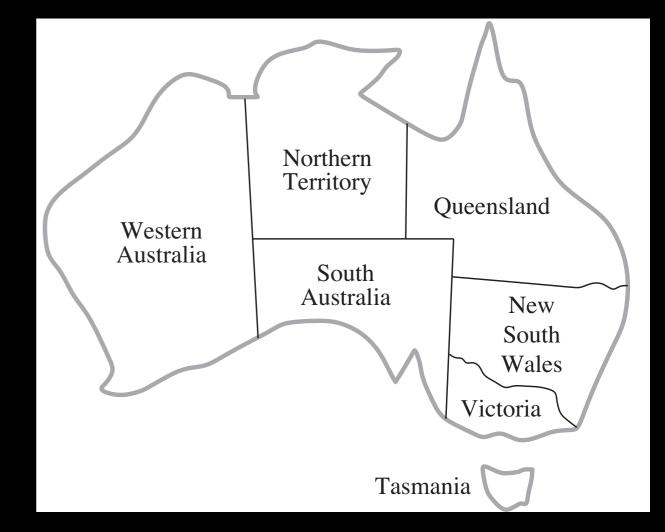
More CSP Terminology

- Assignment: $\{X_i = v_i, X_j = v_j, ...\}$
- Consistent: does not violate any constraints
- Partial: some variables are unassigned
- Complete: every variable is assigned
- Solution: consistent, complete assignment

Constraints

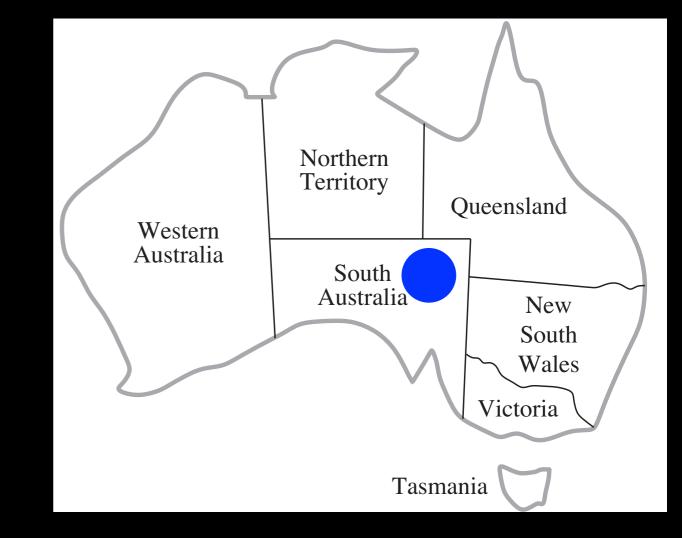
- Unary constraint: one variable
 - e.g., NSW \neq red, X_i is even, X_i = 2
- Binary constraint: two variables
 - e.g., NSW \neq WA, X_i > X_j, X_i+X_j = 2
- "Global" constraint: more than two vars
 - e.g., X_i is between X_j and X_k , AllDiff(X_i, X_j, X_k)
 - Can be reduced to set of binary constraints (possibly inefficiently)

WA	R, G, B
NT	R, G, B
SA	R, G, B
Q	R, G, B
NSW	R, G, B
V	R, G, B
Τ	R, G, B



Possibilities: $3^7 = 2,187$

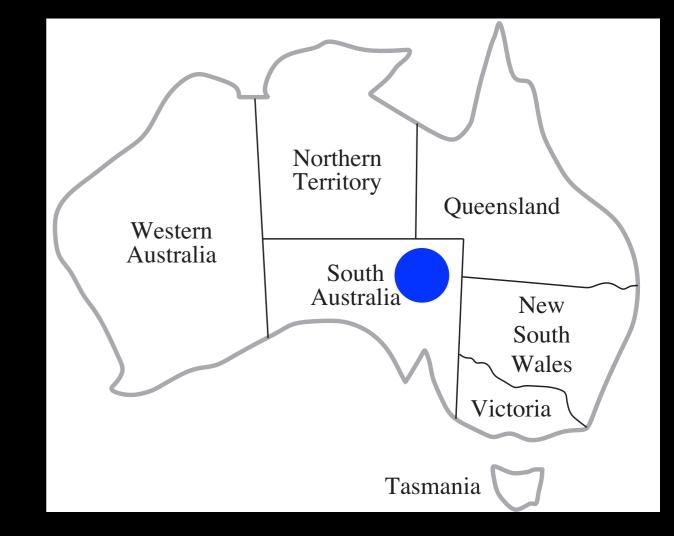
WA	R, G, B
NT	R, G, B
SA	B
Q	R, G, B
NSW	R, G, B
V	R, G, B
Τ	R, G, B



Make choice: color SA blue

Remaining possibilities: $3^6 = 729$

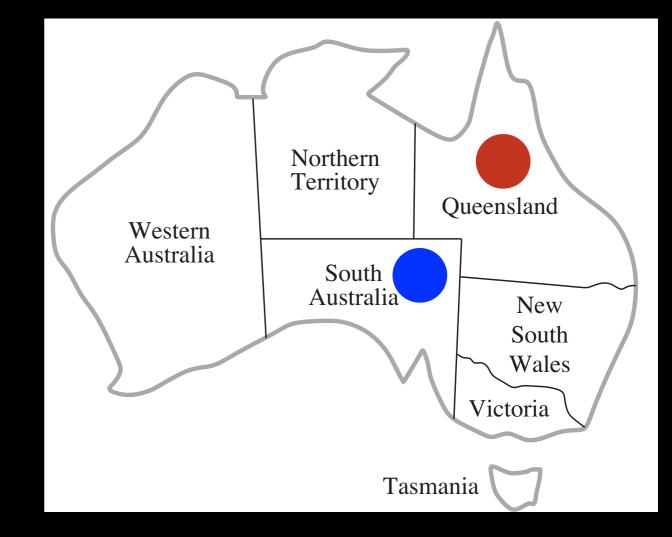
WA	R, G
NT	R, G
SA	B
Q	R, G
NSW	R, G
V	R, G
Т	R, G, B



Simplify: remove B from adjacent regions

Remaining possibilities: $2^5 \times 3 = 96$

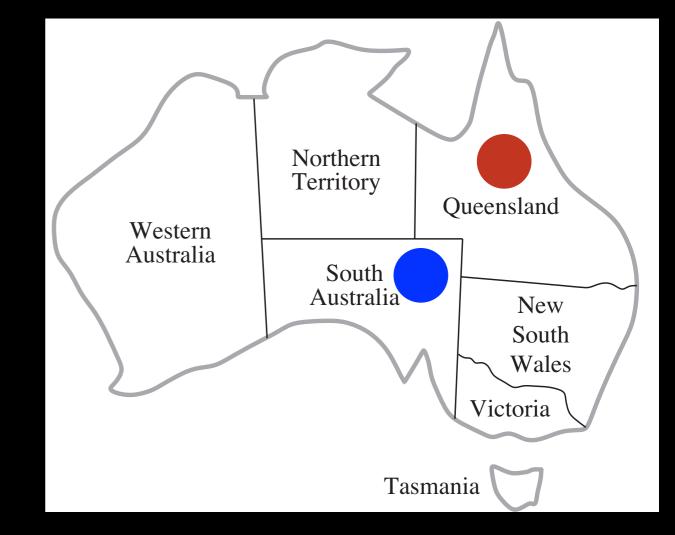
WA	R, G
NT	R, G
SA	B
Q	R
NSW	R, G
V	R, G
Т	R, G, B



Make choice: color Q red

Remaining possibilities: $2^4 \times 3 = 48$

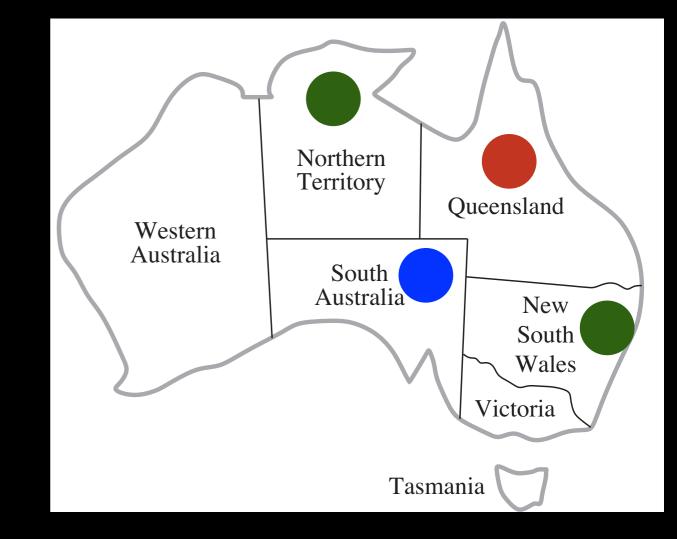
WA	R, G
NT	G
SA	B
Q	R
NSW	G
V	R, G
Т	R, G, B



Simplify: remove R from adjacent regions

Remaining possibilities: $2^2 \times 3 = 12$

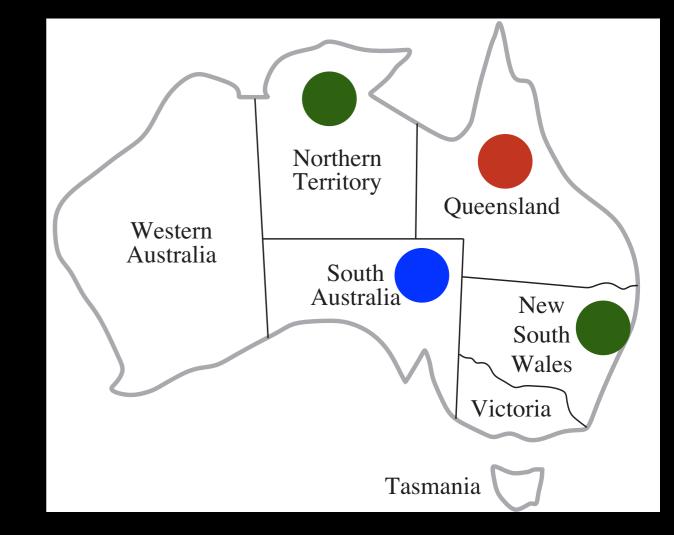
WA	R, G
NT	G
SA	B
Q	R
NSW	G
V	R, G
Т	R, G, B



NT and NSW are forced G

Remaining possibilities: $2^2 \times 3 = 12$

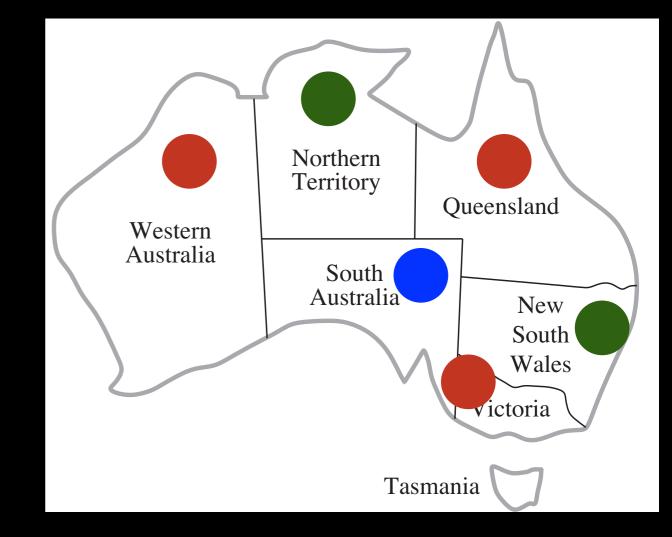
WA	R
NT	G
SA	B
Q	R
NSW	G
V	R
Т	R, G, B



Simplify: remove G from adjacent regions

Remaining possibilities: 3

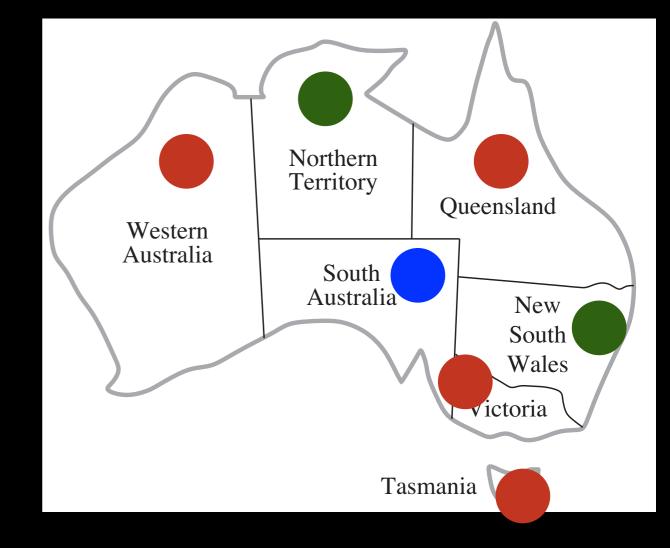
WA	R
NT	G
SA	B
Q	R
NSW	G
V	R
	R, G, B



WA and V are forced red

Remaining possibilities: 3

WA	R
NT	G
SA	B
Q	R
NSW	G
V	R
T	R



Choose: any color for T

Solved!

Constraint Propagation

- Using the constraints to reduce the set of legal values of a variable, which can in turn reduce the legal values of another variable, and so on
- Not a search process itself!
 - Part of state update in state-space search
- A type of inference: making implicit information explicit

Arc-Consistency

- The particular kind of constraint propagation we just saw is called arcconsistency
 - Why? Because it involves considering 2 nodes at a time (the ends of an arc)
- There are other kinds of constraint propagation, but arc-consistency is usually the most practical

Constraint Propagation

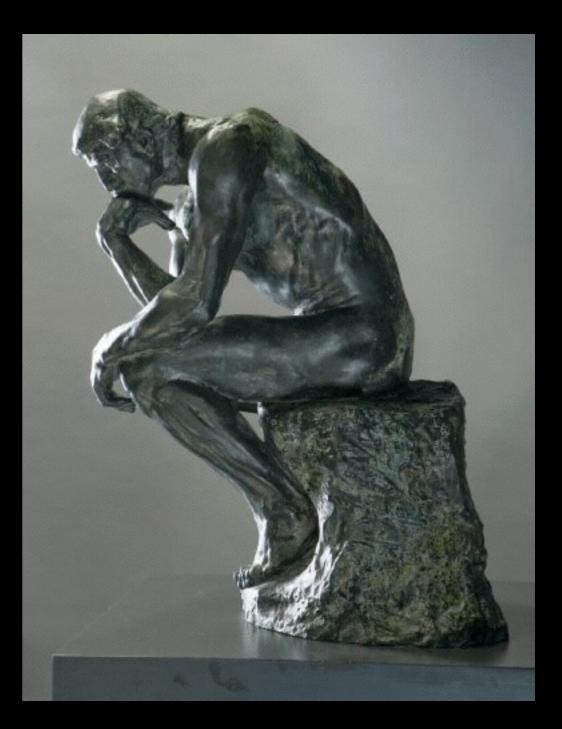
- Can be used as pre-processing step for any kind of search
 - Including local search
- Can be interleaved with any kind of search over partial assignments, where the action is "assign a value to an unassigned variable"
 - Popular choice: depth-first search

Domain-Independent Heuristics

- There are good heuristics for deciding which variable to assign next
- Choose one with the smallest domain
 - Maximizes likelihood of making a correct choice!
- Choose one involved in largest number of constraints
 - Likely to lead to lots of constraint propagation!

Check Your Understanding

 Why can't you use constraint propagation after each step of local search?



Check Your Understanding

- Why can't you use constraint propagation after each step of local search?
- Because local search is over complete states
 - Every variable has a particular value
 - You can't therefore remove a value from the domain of a variable

CSPs Summary

- Impose a structure on the representation of states: Variables, Domains, Constraints
- Backtracking search for complete, consistent assignment of values to variables
- Inference (constraint propagation) can reduce the domains of variables
 - Preprocessing or interleaved with search