
CSC242: Intro to AI
Lecture 7

Games of Imperfect Knowledge &

Constraint Satisfaction

What is This?

0"

5"

10"

15"

20"

25"

Quiz 1

0"

5"

10"

15"

20"

25"

A

B

CD

F

F

Moral

Many people cannot learn from lectures

Do the homework!

If you do, exams will be easy

If you don’t, exams will be impossible

First exam: February 20

The Road Ahead

Complete calendar for the semester now online

Topics

Exam dates

Project dates

3 programming projects

3 in-class exams + final exam

Othello

Phase I due Feb 25

Project page updated, (re)check details!

Generating legal moves is not trivial!

A legal move must capture some pieces!

My own solution: 125 lines of Python

== 125 lines of C == 250 lines of Java

Stochastic Games of
Perfect Information

Stochastic Games of
Perfect Information

Examples:

Backgammon

Roulette

Candyland

Parcheesi

Why stochastic?

Why perfect information?

Stochastic Games of
Perfect Information

Examples:

Backgammon

Roulette

Candyland

Parcheesi

Why stochastic? Contains a random element

Why perfect information?

Stochastic Games of
Perfect Information

Examples:

Backgammon

Roulette

Candyland

Parcheesi

Why stochastic? Contains a random element

Why perfect information? No hidden state!

Expecti-Minimax

• Same as MINIMAX for MIN and MAX
nodes	

• Same backing up utilities from terminal
nodes	

• Take expectation over chance nodes	

• Weighted average of possible outcomes

CHANCE

MIN

MAX

CHANCE

MAX

. . .

. . .

B

1

. . .
1,1
1/36

1,2
1/18

TERMINAL

1,2
1/18

......

.........

......

1,1
1/36

...

......

...
C

. . .

1/18
6,5 6,6

1/36

1/18
6,5 6,6

1/36

2 –11–1

Expecti-Minimax

8
>>><

>>>:

Utility(s) if Terminal-Test(s)

maxa EMinimax(Result(S, a)) if Player(s) = max

mina EMinimax(Result(S, a)) if Player(s) = min

P
r P (r)EMinimax(Result(S, r)) if Player(s) = chance

EMinimax(s) =

Partial Observability

• Some of the state of the world is hidden
(unobservable)

Partially-Observable
Games

• Some of the state of the game is hidden
from the player(s)	

• Interesting because:	

• Valuable real-world games like poker	

• Partial observability arises all the time in
real-world problems

Partially-Observable
Games

• Deterministic partial observability	

• Opponent has hidden state	

• No element of randomness	

• Examples?

Partially-Observable
Games

• Deterministic partial observability	

• Opponent has hidden state	

• Battleship, Stratego

Partially-Observable
Games

• Deterministic partial observability	

• Opponent has hidden state	

• Battleship, Stratego	

• Stochastic partial observability	

• Hidden information is random	

• Examples?

Stochastic Partially
Observable Games

Weighted Minimax

• For each possible deal s:	

• Assume s is the actual situation	

• Compute Minimax or H-Minimax value of s	

• Weight value by probability of s	

• Take move that yields highest expected value
over all the possible deals

Weighted Minimax
argmax

a

X

s

P (s)Minimax(Result(s, a))

Weighted Minimax
argmax

a

X

s

P (s)Minimax(Result(s, a))

2-Player Hearts: 52−13
13

"

#
$

%

&
'= 8×109

4-Player Hearts: 39
13

"

#
$

%

&
' 26

13

"

#
$

%

&
' 13

13

"

#
$

%

&
'= 8×1016

4-Player Poker: 47
5

"

#
$

%

&
' 42

5

"

#
$

%

&
' 37

5

"

#
$

%

&
'=1×1017

Monte Carlo Methods

• Use a “representative”
sample to
approximate a large,
complex distribution

Monte-Carlo Minimax

• Can also sample during minimax search	

• Equivalently: expand a random sample of
children at each level	

• Used in champion card playing programs	

• Bridge, Poker

argmax

a

1

N

NX

i=1

Minimax(Result(si, a))

Monte Carlo MiniMax
• Useful even for deterministic games of

perfect information that have very high
branching factors!

Summary

• Stochastic games	

• Expecti-MINIMAX: Compute expected
MINIMAX value over chance nodes	

• Partially observable games	

• Weighted MINIMAX: Compute expected
value over possible hidden states	

• When tree becomes too large, sample
branches rather than explore exhaustively

Constraint Satisfaction

What is Constraint
Satisfaction?

In most of the search problems we have
discussed up to now, a solution corresponds
to a path or the initial step in a path
through a state space

Route-finding

Solving the 8 Puzzle

Game playing

What is Constraint
Satisfaction?

In many other problems, however, a solution is a
goal state itself

We don’t care what the path is to the goal

We can easily test if a state is a goal

But we must search to find a state that
makes the test true

What problem did we see that was like this?

The Problem With
State-Space Search

• State representation is specific to a given problem
(or domain of problems)	

• Functions on states (successor generation, goal
test) are specific to the state representation	

• Heuristic functions are both problem-specific and
dependent on the state representation	

• Many design choices, many opportunities for coding
errors

The CSP Approach

• Impose a structure on the representation
of states	

• Using that representation, successor
generation and goal tests are problem- and
domain-independent	

• Can also develop effective problem- and
domain-independent heuristics

Bottom Line

Represent	

State	

This Way

Write	

No	

Code!

No	

Bugs!

Example

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

Assign a color to each region such that no two
neighboring regions have the same color

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

enum Color = red, green, blue

Color WA, NT, Q, NSW, V, SA, T

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

Color WA, NT, Q, NSW, V, SA, T

enum Color = red, green, blue

State: assignment of colors to regions
Successor function: pick an unassigned region and
assign it a color
Goal test: All regions assigned and no adjacent regions
have the same color

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

Color WA, NT, Q, NSW, V, SA, T

enum Color = red, green, blue

WA=red, NT=green, Q=red, NSW=green	

V=red, SA=blue, T=red

Constraint Satisfaction
Problem (CSP)

X: Set of variables { X1, ..., Xn }
D: Set of domains { D1, ..., Dn }	

 Each domain Di = set of values { v1, ..., vk }
C: Set of constraints { C1, ..., Cm }

Australia Map CSP

X: { Xi } = { WA, NT, Q, NSW, V, SA, T }
D: Each Di = { red, green, blue }

C: { SA≠WA, SA≠NT, SA≠Q, SA≠NSW,
SA≠V, WA≠NT, NT≠Q,Q≠NSW,
VSW≠V }

More CSP Terminology

• Assignment: { Xi = vi, Xj = vj, ... }	

• Consistent: does not violate any constraints	

• Partial: some variables are unassigned	

• Complete: every variable is assigned	

• Solution: consistent, complete assignment

Constraints
• Unary constraint: one variable	

• e.g., NSW ≠ red, Xi is even, Xi = 2	

• Binary constraint: two variables	

• e.g., NSW ≠ WA, Xi > Xj, Xi+Xj = 2	

• “Global” constraint: more than two vars	

• e.g., Xi is between Xj and Xk, AllDiff(Xi,Xj,Xk)	

• Can be reduced to set of binary constraints
(possibly inefficiently)

• Faster to search (solve)	

• Problem-independent (no code!)	

• Constraint propagation

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA R, G, B

NT R, G, B

SA R, G, B

Q R, G, B

NSW R, G, B

V R, G, B

T R, G, B

Possibilities: 	

37 = 2,187

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA R, G, B

NT R, G, B

SA B

Q R, G, B

NSW R, G, B

V R, G, B

T R, G, B

Make choice: color SA blue	

!

Remaining possibilities:  
36 = 729

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA R, G

NT R, G

SA B

Q R, G

NSW R, G

V R, G

T R, G, B

Simplify: remove B from  
adjacent regions	

!

Remaining possibilities:  
25 x 3 = 96

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA R, G

NT R, G

SA B

Q R

NSW R, G

V R, G

T R, G, B

Make choice: color Q red	

!

Remaining possibilities:  
24 x 3 = 48

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA R, G

NT G

SA B

Q R

NSW G

V R, G

T R, G, B

Simplify: remove R from  
adjacent regions	

!

Remaining possibilities:  
22 x 3 = 12

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA R, G

NT G

SA B

Q R

NSW G

V R, G

T R, G, B

NT and NSW are forced G	

!

Remaining possibilities:  
22 x 3 = 12

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA R

NT G

SA B

Q R

NSW G

V R

T R, G, B

Simplify: remove G from	

adjacent regions	

!

Remaining possibilities:  
3

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA R

NT G

SA B

Q R

NSW G

V R

T R, G, B

WA and V are forced red	

!

Remaining possibilities:  
3

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA R

NT G

SA B

Q R

NSW G

V R

T R
Choose: any color for T	

!

Solved!

Constraint Propagation

• Using the constraints to reduce the set of
legal values of a variable, which can in turn
reduce the legal values of another variable,
and so on	

• Not a search process itself!	

• Part of state update in state-space search	

• A type of inference: making implicit
information explicit

Arc-Consistency

• The particular kind of constraint
propagation we just saw is called arc-
consistency	

• Why? Because it involves considering 2
nodes at a time (the ends of an arc)	

• There are other kinds of constraint
propagation, but arc-consistency is usually
the most practical

Constraint Propagation

• Can be used as pre-processing step for any
kind of search	

• Including local search	

• Can be interleaved with any kind of search
over partial assignments, where the action is
“assign a value to an unassigned variable”	

• Popular choice: depth-first search

Domain-Independent
Heuristics

• There are good heuristics for deciding which
variable to assign next	

• Choose one with the smallest domain	

• Maximizes likelihood of making a correct
choice!	

• Choose one involved in largest number of
constraints	

• Likely to lead to lots of constraint propagation!

Check Your
Understanding

• Why can’t you use
constraint propagation
after each step of local
search?

Check Your
Understanding

• Why can’t you use constraint propagation
after each step of local search?	

• Because local search is over complete
states	

• Every variable has a particular value	

• You can’t therefore remove a value from
the domain of a variable

CSPs Summary
• Impose a structure on the representation

of states: Variables, Domains, Constraints	

• Backtracking search for complete,
consistent assignment of values to variables	

• Inference (constraint propagation) can
reduce the domains of variables	

• Preprocessing or interleaved with search

