
CSC242: Intro to AI
Lecture 7


Games of Imperfect Knowledge & 

Constraint Satisfaction
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Moral

Many people cannot learn from lectures


Do the homework!


If you do, exams will be easy


If you don’t, exams will be impossible


First exam: February 20



The Road Ahead

Complete calendar for the semester now online


Topics


Exam dates


Project dates


3 programming projects


3 in-class exams + final exam



Othello

Phase I due Feb 25


Project page updated, (re)check details!


Generating legal moves is not trivial!


A legal move must capture some pieces!


My own solution: 125 lines of Python


== 125 lines of C == 250 lines of Java




Stochastic Games of 
Perfect Information



Stochastic Games of 
Perfect Information

Examples:


Backgammon


Roulette


Candyland


Parcheesi


Why stochastic?


Why perfect information?
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Stochastic Games of 
Perfect Information

Examples:


Backgammon


Roulette


Candyland


Parcheesi


Why stochastic?  Contains a random element


Why perfect information?  No hidden state!



Expecti-Minimax

• Same as MINIMAX for MIN and MAX 
nodes	


• Same backing up utilities from terminal 
nodes	


• Take expectation over chance nodes	


• Weighted average of possible outcomes
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Expecti-Minimax

8
>>><

>>>:

Utility(s) if Terminal-Test(s)

maxa EMinimax(Result(S, a)) if Player(s) = max

mina EMinimax(Result(S, a)) if Player(s) = min

P
r P (r)EMinimax(Result(S, r)) if Player(s) = chance

EMinimax(s) =



Partial Observability

• Some of the state of the world is hidden 
(unobservable)



Partially-Observable 
Games

• Some of the state of the game is hidden 
from the player(s)	


• Interesting because:	


• Valuable real-world games like poker	


• Partial observability arises all the time in 
real-world problems



Partially-Observable 
Games

• Deterministic partial observability	


• Opponent has hidden state	


• No element of randomness	


• Examples?
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Partially-Observable 
Games

• Deterministic partial observability	


• Opponent has hidden state	


• Battleship, Stratego	


• Stochastic partial observability	


• Hidden information is random	


• Examples?



Stochastic Partially 
Observable Games





Weighted Minimax

• For each possible deal s:	


• Assume s is the actual situation	


• Compute Minimax or H-Minimax value of s	


• Weight value by probability of s	


• Take move that yields highest expected value 
over all the possible deals



Weighted Minimax
argmax

a

X

s

P (s)Minimax(Result(s, a))



Weighted Minimax
argmax

a

X

s

P (s)Minimax(Result(s, a))
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Monte Carlo Methods

• Use a “representative” 
sample to 
approximate a large, 
complex distribution



Monte-Carlo Minimax

• Can also sample during minimax search	


• Equivalently: expand a random sample of 
children at each level	


• Used in champion card playing programs	


• Bridge, Poker

argmax

a

1

N

NX

i=1

Minimax(Result(si, a))



Monte Carlo MiniMax
• Useful even for deterministic games of 

perfect information that have very high 
branching factors!



Summary

• Stochastic games	


• Expecti-MINIMAX: Compute expected 
MINIMAX value over chance nodes	


• Partially observable games	


• Weighted MINIMAX: Compute expected 
value over possible hidden states	


• When tree becomes too large, sample 
branches rather than explore exhaustively



Constraint Satisfaction



What is Constraint 
Satisfaction?

In most of the search problems we have 
discussed up to now, a solution corresponds 
to a path or the initial step in a path 
through a state space


Route-finding


Solving the 8 Puzzle


Game playing



What is Constraint 
Satisfaction?

In many other problems, however, a solution is a 
goal state itself


We don’t care what the path is to the goal


We can easily test if a state is a goal


But we must search to find a state that 
makes the test true


What problem did we see that was like this?



The Problem With 
State-Space Search

• State representation is specific to a given problem 
(or domain of problems)	


• Functions on states (successor generation, goal 
test) are specific to the state representation	


• Heuristic functions are both problem-specific and 
dependent on the state representation	


• Many design choices, many opportunities for coding 
errors



The CSP Approach

• Impose a structure on the representation 
of states	


• Using that representation, successor 
generation and goal tests are problem- and 
domain-independent	


• Can also develop effective problem- and 
domain-independent heuristics



Bottom Line

Represent	

State	


This Way

Write	

No	


Code!

No	

Bugs!



Example



Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

Assign a color to each region such that no two 
neighboring regions have the same color



Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

enum Color = red, green, blue

Color WA, NT, Q, NSW, V, SA, T



Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

Color WA, NT, Q, NSW, V, SA, T

enum Color = red, green, blue

State: assignment of colors to regions
Successor function: pick an unassigned region and 
assign it a color
Goal test: All regions assigned and no adjacent regions 
have the same color



Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

Color WA, NT, Q, NSW, V, SA, T

enum Color = red, green, blue

WA=red, NT=green, Q=red, NSW=green	

V=red, SA=blue, T=red



Constraint Satisfaction 
Problem (CSP)

X: Set of variables { X1, ..., Xn }
D: Set of domains { D1, ..., Dn }	

    Each domain Di = set of values { v1, ..., vk }
C: Set of constraints { C1, ..., Cm }



Australia Map CSP

X: { Xi } = { WA, NT, Q, NSW, V, SA, T }
D: Each Di = { red, green, blue }

C: { SA≠WA, SA≠NT, SA≠Q, SA≠NSW, 
SA≠V, WA≠NT, NT≠Q,Q≠NSW, 
VSW≠V }



More CSP Terminology

• Assignment: { Xi = vi, Xj = vj, ... }	


• Consistent: does not violate any constraints	


• Partial: some variables are unassigned	


• Complete: every variable is assigned	


• Solution: consistent, complete assignment



Constraints
• Unary constraint: one variable	


• e.g., NSW ≠ red,  Xi is even,  Xi = 2	


• Binary constraint: two variables	


• e.g., NSW ≠ WA,  Xi > Xj,  Xi+Xj = 2	


• “Global” constraint: more than two vars	


• e.g., Xi is between Xj and Xk,   AllDiff(Xi,Xj,Xk)	


• Can be reduced to set of binary constraints 
(possibly inefficiently)



• Faster to search (solve)	


• Problem-independent (no code!)	


• Constraint propagation



Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA R, G, B

NT R, G, B

SA R, G, B

Q R, G, B

NSW R, G, B

V R, G, B

T R, G, B

Possibilities: 	

37 = 2,187



Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA R, G, B

NT R, G, B

SA B

Q R, G, B

NSW R, G, B

V R, G, B

T R, G, B

Make choice: color SA blue	

!

Remaining possibilities:  
36 = 729



Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA R, G

NT R, G

SA B

Q R, G

NSW R, G

V R, G

T R, G, B

Simplify: remove B from  
adjacent regions	


!

Remaining possibilities:  
25 x 3 = 96



Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA R, G

NT R, G

SA B

Q R

NSW R, G

V R, G

T R, G, B

Make choice: color Q red	

!

Remaining possibilities:  
24 x 3 = 48



Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA R, G

NT G

SA B

Q R

NSW G

V R, G

T R, G, B

Simplify: remove R from  
adjacent regions	


!

Remaining possibilities:  
22 x 3 = 12



Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA R, G

NT G

SA B

Q R

NSW G

V R, G

T R, G, B

NT and NSW are forced G	

!

Remaining possibilities:  
22 x 3 = 12



Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA R

NT G

SA B

Q R

NSW G

V R

T R, G, B

Simplify: remove G from	

adjacent regions	


!

Remaining possibilities:  
3



Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA R

NT G

SA B

Q R

NSW G

V R

T R, G, B

WA and V are forced red	

!

Remaining possibilities:  
3



Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA R

NT G

SA B

Q R

NSW G

V R

T R
Choose: any color for T	


!

Solved!



Constraint Propagation

• Using the constraints to reduce the set of 
legal values of a variable, which can in turn 
reduce the legal values of another variable, 
and so on	


• Not a search process itself!	


• Part of state update in state-space search	


• A type of inference: making implicit 
information explicit



Arc-Consistency

• The particular kind of constraint 
propagation we just saw is called arc-
consistency	


• Why?  Because it involves considering 2 
nodes at a time (the ends of an arc)	


• There are other kinds of constraint 
propagation, but arc-consistency is usually 
the most practical



Constraint Propagation

• Can be used as pre-processing step for any 
kind of search	


• Including local search	


• Can be interleaved with any kind of search 
over partial assignments, where the action is 
“assign a value to an unassigned variable”	


• Popular choice: depth-first search



Domain-Independent 
Heuristics

• There are good heuristics for deciding which 
variable to assign next	


• Choose one with the smallest domain	


• Maximizes likelihood of making a correct 
choice!	


• Choose one involved in largest number of 
constraints	


• Likely to lead to lots of constraint propagation!



Check Your 
Understanding

• Why can’t you use 
constraint propagation 
after each step of local 
search?



Check Your 
Understanding

• Why can’t you use constraint propagation 
after each step of local search?	


• Because local search is over complete 
states	


• Every variable has a particular value	


• You can’t therefore remove a value from 
the domain of a variable



CSPs Summary
• Impose a structure on the representation 

of states:  Variables, Domains, Constraints	


• Backtracking search for complete, 
consistent assignment of values to variables	


• Inference (constraint propagation) can 
reduce the domains of variables	


• Preprocessing or interleaved with search


