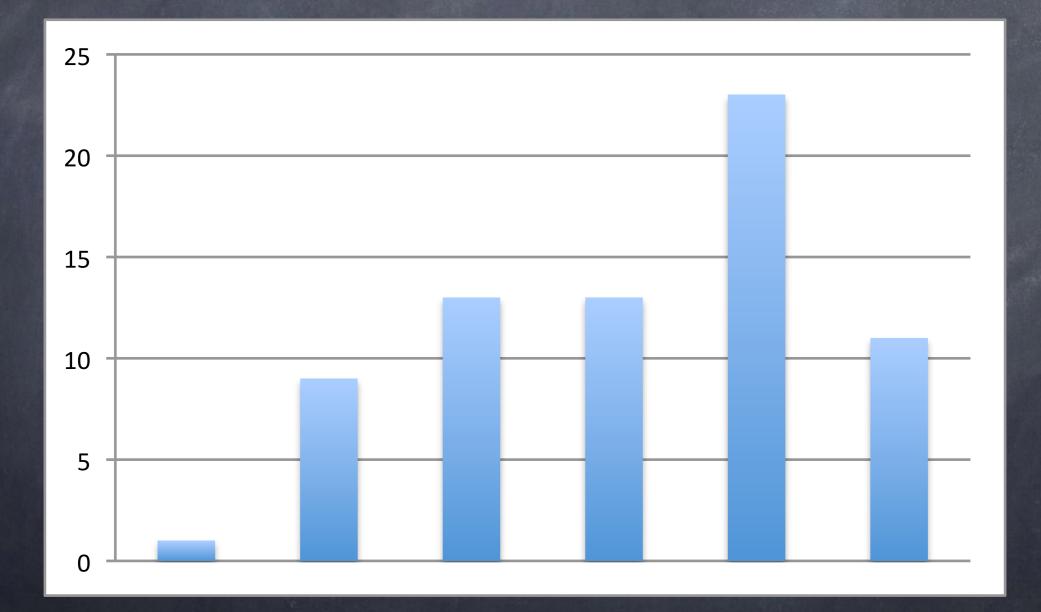
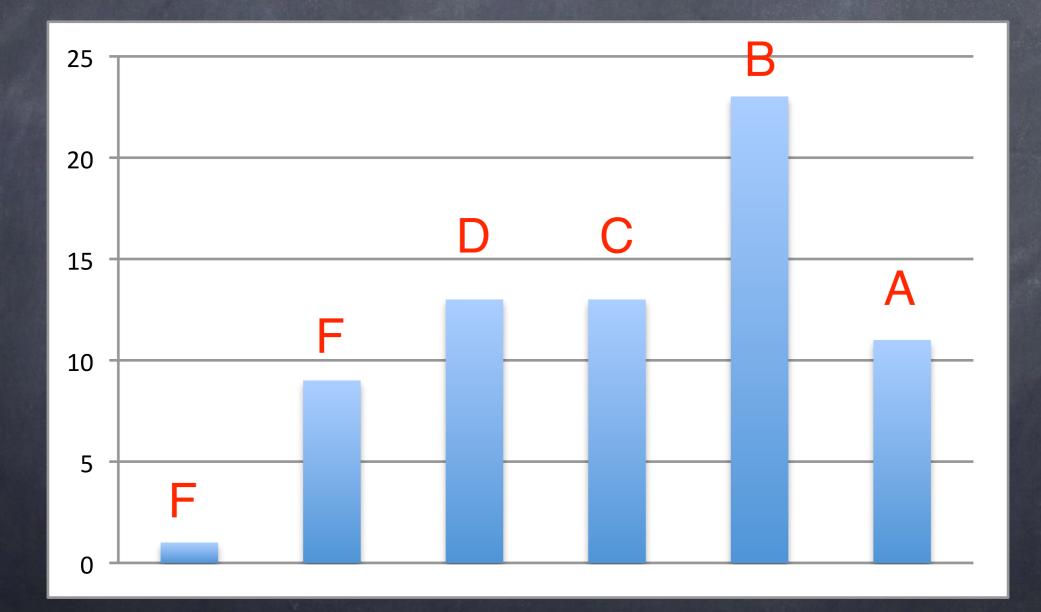
#### CSC242: Intro to AI

Lecture 7 Games of Imperfect Knowledge & Constraint Satisfaction

#### What is This?



#### Quiz 1



#### Moral

Many people cannot learn from lectures
Do the homework!
If you do, exams will be easy
If you don't, exams will be impossible
First exam: February 20

#### The Road Ahead

Complete calendar for the semester now online Topics Sexam dates Project dates 3 programming projects
 3 in-class exams + final exam

#### Othello

 O Phase I due Feb 25
 Project page updated, (re)check details! Generating legal moves is not trivial! A legal move must capture some pieces! My own solution: 125 lines of Python 

Searching Examples:

Backgammon

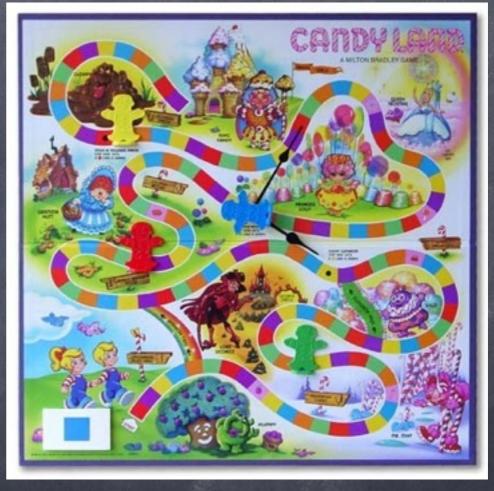
Roulette

Candyland

Parcheesi

Why stochastic?

Why perfect information?



Searchart Examples:

Backgammon

Roulette

Candyland

Parcheesi



Why stochastic? Contains a random element
Why perfect information?

Searchart Examples:

Backgammon

Roulette

Candyland

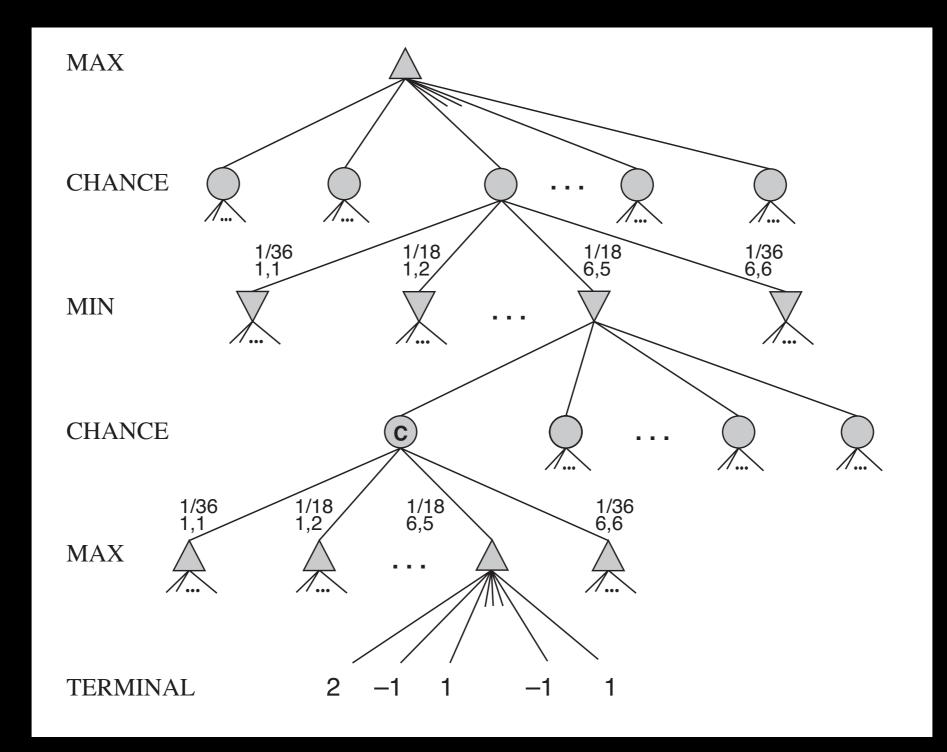
Parcheesi



Why stochastic? Contains a random element
Why perfect information? No hidden state!

#### Expecti-Minimax

- Same as MINIMAX for MIN and MAX nodes
- Same backing up utilities from terminal nodes
- Take expectation over chance nodes
  - Weighted average of possible outcomes



#### Expecti-Minimax

EMINIMAX(s) =

 $\begin{cases} \text{UTILITY}(s) \\ \max_{a} \text{EMINIMAX}(\text{RESULT}(S, a)) \\ \min_{a} \text{EMINIMAX}(\text{RESULT}(S, a)) \\ \sum_{r} P(r) \text{EMINIMAX}(\text{RESULT}(S, r)) \end{cases}$ 

if TERMINAL-TEST(s) if PLAYER(s) = MAX if PLAYER(s) = MIN if PLAYER(s) = CHANCE

# Partial Observability

 Some of the state of the world is hidden (unobservable)

- Some of the state of the game is hidden from the player(s)
- Interesting because:
  - Valuable real-world games like poker
  - Partial observability arises all the time in real-world problems

- Deterministic partial observability
  - Opponent has hidden state
  - No element of randomness
  - Examples?

- Deterministic partial observability
  - Opponent has hidden state
  - Battleship, Stratego

- Deterministic partial observability
  - Opponent has hidden state
  - Battleship, Stratego
- Stochastic partial observability
  - Hidden information is random
  - Examples?

#### Stochastic Partially Observable Games



| Hand                                                   | Frequency | Approx.<br>Probability | Approx.<br>Cumulative | Approx.<br>Odds | Mathematical expression of absolute<br>frequency             |
|--------------------------------------------------------|-----------|------------------------|-----------------------|-----------------|--------------------------------------------------------------|
| Royal flush                                            | 4         | 0.000154%              | 0.000154%             | 649,739 : 1     | $\begin{pmatrix} 4\\1 \end{pmatrix}$                         |
| Straight flush (excluding royal flush)                 | 36        | 0.00139%               | 0.00154%              | 72,192.33 : 1   | $\binom{10}{1}\binom{4}{1} - \binom{4}{1}$                   |
| Four of a kind                                         | 624       | 0.0240%                | 0.0256%               | 4,164 : 1       | $\binom{13}{1}\binom{12}{1}\binom{4}{1}$                     |
| Full house                                             | 3,744     | 0.144%                 | 0.170%                | 693.2 : 1       | $\binom{13}{1}\binom{4}{3}\binom{12}{1}\binom{4}{2}$         |
| Flush (excluding royal flush and straight flush)       | 5,108     | 0.197%                 | 0.367%                | 507.8 : 1       | $\binom{13}{5}\binom{4}{1} - \binom{10}{1}\binom{4}{1}$      |
| Straight (excluding royal flush and straight<br>flush) | 10,200    | 0.392%                 | 0.76%                 | 253.8 : 1       | $\binom{10}{1}\binom{4}{1}^5 - \binom{10}{1}\binom{4}{1}$    |
| Three of a kind                                        | 54,912    | 2.11%                  | 2.87%                 | 46.3 : 1        | $\binom{13}{1}\binom{4}{3}\binom{12}{2}\binom{4}{1}^2$       |
| Two pair                                               | 123,552   | 4.75%                  | 7.62%                 | 20.03 : 1       | $\binom{13}{2}\binom{4}{2}^2\binom{11}{1}\binom{4}{1}$       |
| One pair                                               | 1,098,240 | 42.3%                  | 49.9%                 | 1.36 : 1        | $\binom{13}{1}\binom{4}{2}\binom{12}{3}\binom{4}{1}^3$       |
| No pair / High card                                    | 1,302,540 | 50.1%                  | 100%                  | .995 : 1        | $\left[\binom{13}{5}-10\right]\left[\binom{4}{1}^5-4\right]$ |
| Total                                                  | 2,598,960 | 100%                   | 100%                  | 1:1             | $\binom{52}{5}$                                              |

# Weighted Minimax

- For each possible deal s:
  - Assume s is the actual situation
  - Compute Minimax or H-Minimax value of s
  - $\bullet\,$  Weight value by probability of s
- Take move that yields highest expected value over all the possible deals

# Weighted Minimax $\operatorname{argmax}_{a} \sum_{s} P(s) \operatorname{Minimax}(\operatorname{Result}(s, a))$

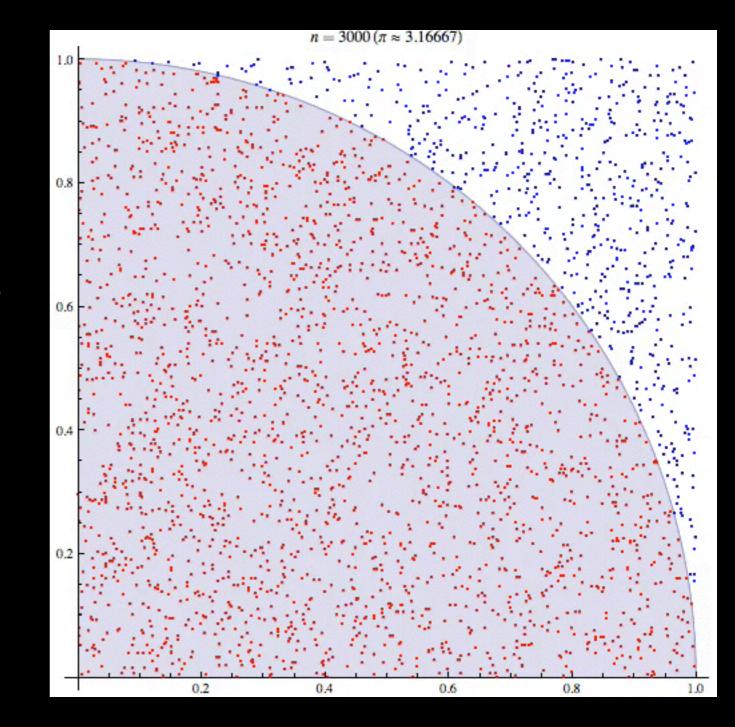
#### Weighted Minimax

 $\underset{a}{\operatorname{argmax}} \sum_{s} P(s) \operatorname{MINIMAX}(\operatorname{RESULT}(s, a))$ 

2-Player Hearts:  $\begin{pmatrix} 52-13\\13 \end{pmatrix} = 8 \times 10^9$ 4-Player Hearts:  $\begin{pmatrix} 39\\13 \end{pmatrix} \begin{pmatrix} 26\\13 \end{pmatrix} \begin{pmatrix} 13\\13 \end{pmatrix} = 8 \times 10^{16}$ 4-Player Poker:  $\begin{pmatrix} 47\\5 \end{pmatrix} \begin{pmatrix} 42\\5 \end{pmatrix} \begin{pmatrix} 37\\5 \end{pmatrix} = 1 \times 10^{17}$ 

#### Monte Carlo Methods

 Use a "representative" sample to approximate a large, complex distribution

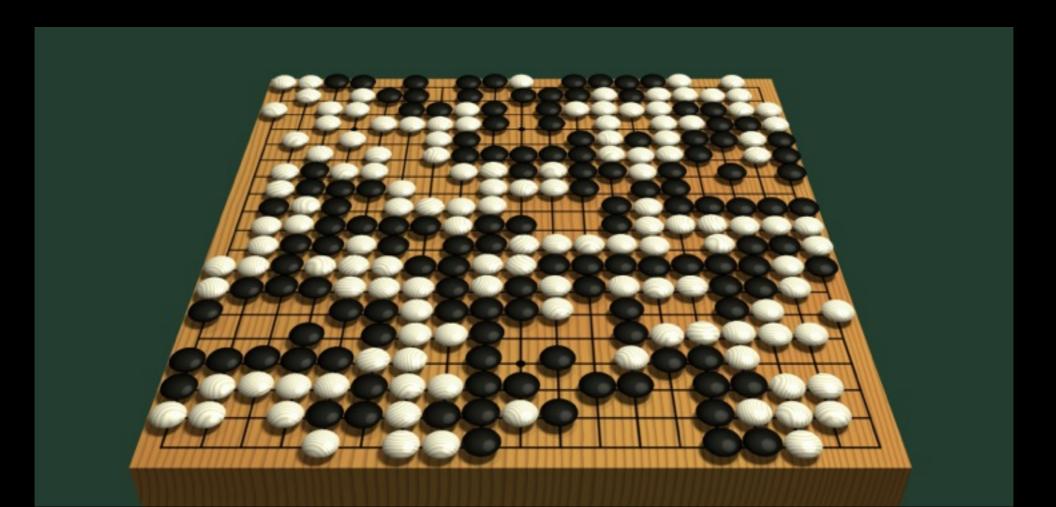


# $\frac{\text{Monte-Carlo Minimax}}{\underset{a}{\operatorname{argmax}} \frac{1}{N} \sum_{i=1}^{N} \operatorname{Minimax}(\operatorname{Result}(s_i, a))$

- Can also sample during minimax search
  - Equivalently: expand a random sample of children at each level
- Used in champion card playing programs
  - Bridge, Poker

#### Monte Carlo MiniMax

 Useful even for deterministic games of perfect information that have very high branching factors!



#### Summary

- Stochastic games
  - Expecti-MINIMAX: Compute expected MINIMAX value over chance nodes
- Partially observable games
  - Weighted MINIMAX: Compute expected value over possible hidden states
  - When tree becomes too large, sample branches rather than explore exhaustively

#### Constraint Satisfaction

#### What is Constraint Satisfaction?

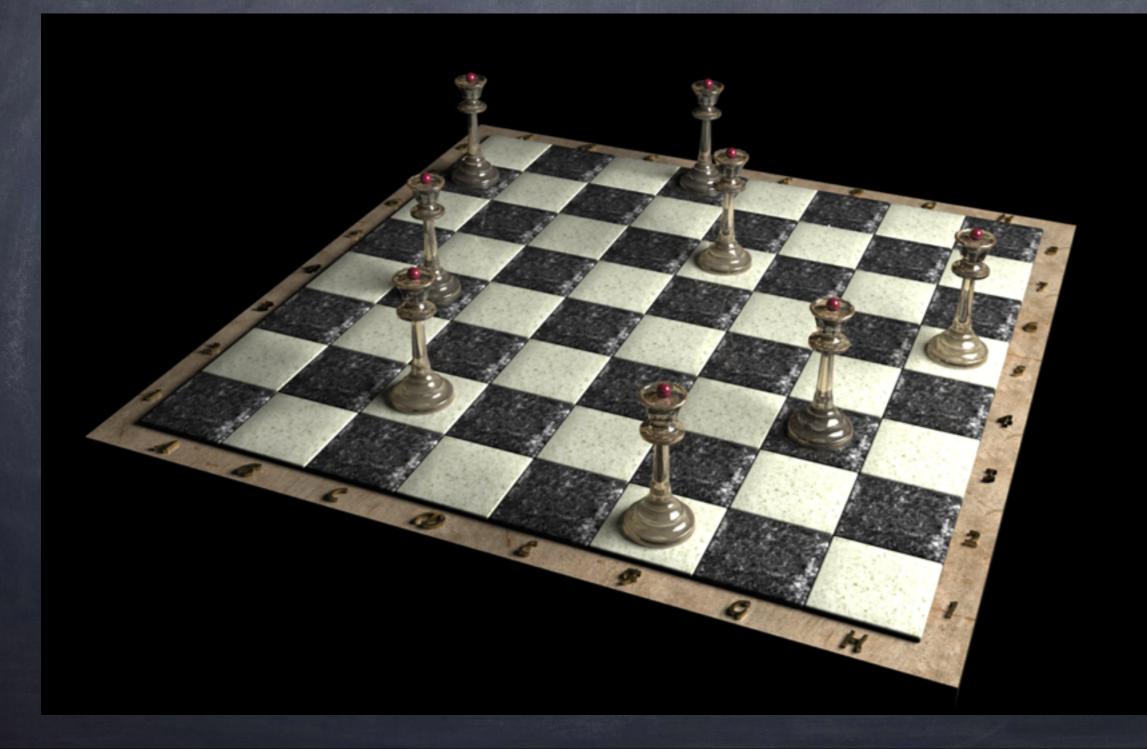
In most of the search problems we have discussed up to now, a solution corresponds to a path or the initial step in a path through a state space

Route-finding

Solving the 8 Puzzle

Game playing

#### What is Constraint Satisfaction?



# The Problem With State-Space Search

- State representation is specific to a given problem (or domain of problems)
- Functions on states (successor generation, goal test) are specific to the state representation
- Heuristic functions are both problem-specific and dependent on the state representation
- Many design choices, many opportunities for coding errors

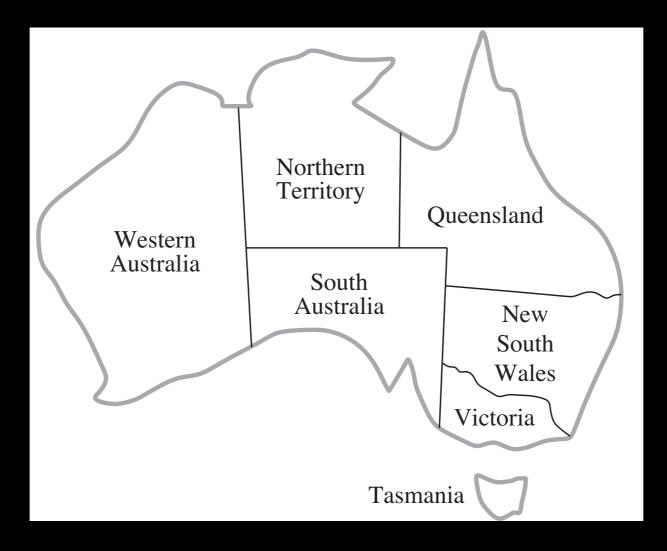
# The CSP Approach

- Impose a structure on the representation of states
- Using that representation, successor generation and goal tests are problem- and domain-independent
- Can also develop effective problem- and domain-independent heuristics

#### Bottom Line



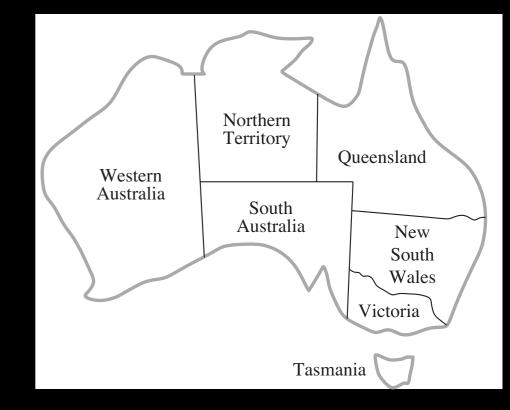




Assign a color to each region such that no two neighboring regions have the same color

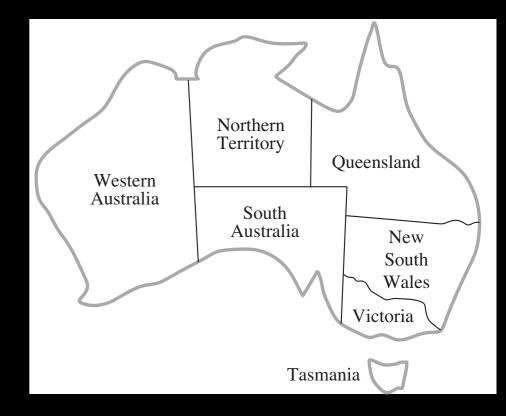
#### Color WA, NT, Q, NSW, V, SA, T

#### enum Color = red, green, blue



#### Color WA, NT, Q, NSW, V, SA, T

enum Color = red, green, blue



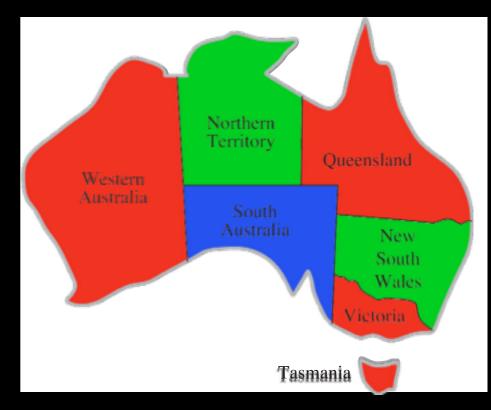
State: assignment of colors to regions

Successor function: pick an unassigned region and assign it a color

Goal test: All regions assigned and no adjacent regions have the same color

#### Color WA, NT, Q, NSW, V, SA, T

enum Color = red, green, blue



#### WA=red, NT=green, Q=red, NSW=green V=red, SA=blue, T=red

# Constraint Satisfaction Problem (CSP)

X: Set of variables {  $X_1, ..., X_n$  } D: Set of domains {  $D_1, ..., D_n$  } Each domain  $D_i$  = set of values {  $v_1, ..., v_k$  } C: Set of constraints {  $C_1, ..., C_m$  }

# Australia Map CSP

X: { X<sub>i</sub> } = {WA, NT, Q, NSW, V, SA, T } D: Each D<sub>i</sub> = { red, green, blue } C: {  $SA \neq WA$ ,  $SA \neq NT$ ,  $SA \neq Q$ ,  $SA \neq NSW$ ,  $SA \neq V$ ,  $WA \neq NT$ ,  $NT \neq Q$ ,  $Q \neq NSW$ ,  $VSW \neq V$  }

### More CSP Terminology

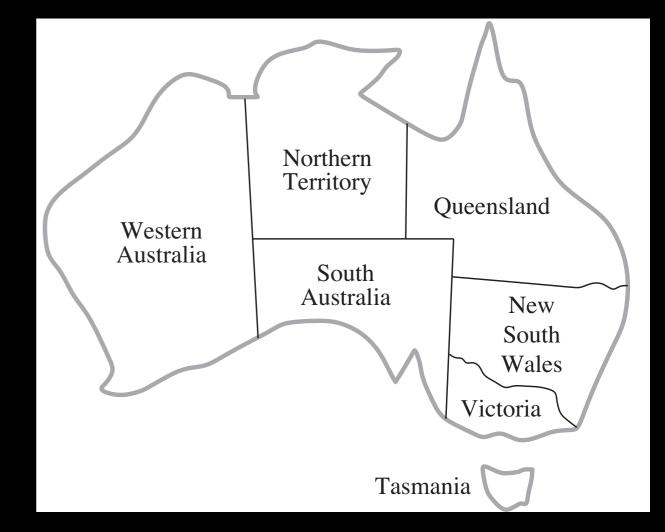
- Assignment:  $\{X_i = v_i, X_j = v_j, ...\}$
- Consistent: does not violate any constraints
- Partial: some variables are unassigned
- Complete: every variable is assigned
- Solution: consistent, complete assignment

### Constraints

- Unary constraint: one variable
  - e.g., NSW  $\neq$  red, X<sub>i</sub> is even, X<sub>i</sub> = 2
- Binary constraint: two variables
  - e.g., NSW  $\neq$  WA, X<sub>i</sub> > X<sub>j</sub>, X<sub>i</sub>+X<sub>j</sub> = 2
- "Global" constraint: more than two vars
  - e.g.,  $X_i$  is between  $X_j$  and  $X_k$ , AllDiff( $X_i, X_j, X_k$ )
  - Can be reduced to set of binary constraints (possibly inefficiently)

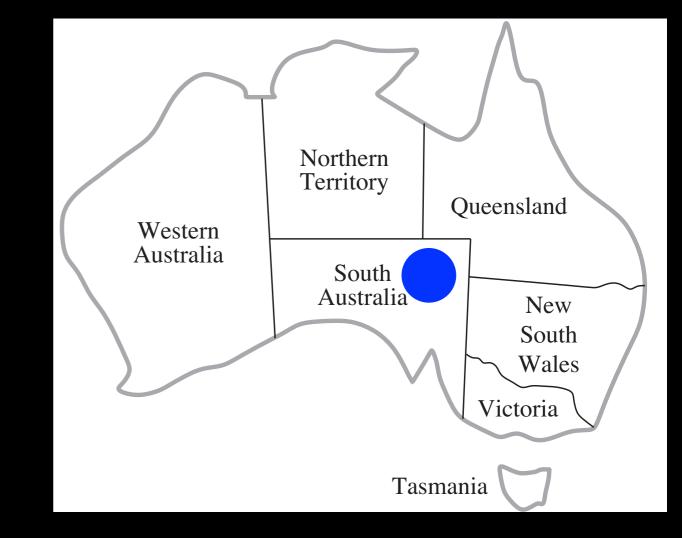


| WA  | R, G, B |
|-----|---------|
| NT  | R, G, B |
| SA  | R, G, B |
| Q   | R, G, B |
| NSW | R, G, B |
| V   | R, G, B |
| Τ   | R, G, B |



Possibilities:  $3^7 = 2,187$ 

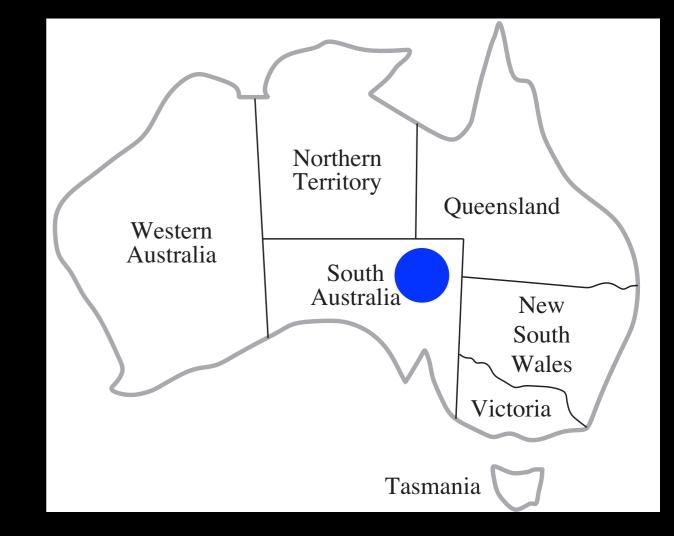
| WA  | R, G, B |
|-----|---------|
| NT  | R, G, B |
| SA  | B       |
| Q   | R, G, B |
| NSW | R, G, B |
| V   | R, G, B |
| Τ   | R, G, B |



#### Make choice: color SA blue

Remaining possibilities:  $3^6 = 729$ 

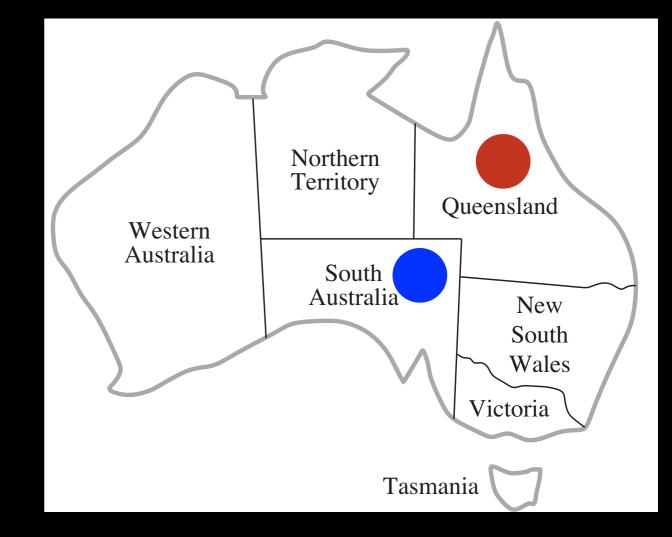
| WA  | R, G    |
|-----|---------|
| NT  | R, G    |
| SA  | B       |
| Q   | R, G    |
| NSW | R, G    |
| V   | R, G    |
| Т   | R, G, B |



Simplify: remove B from adjacent regions

Remaining possibilities:  $2^5 \times 3 = 96$ 

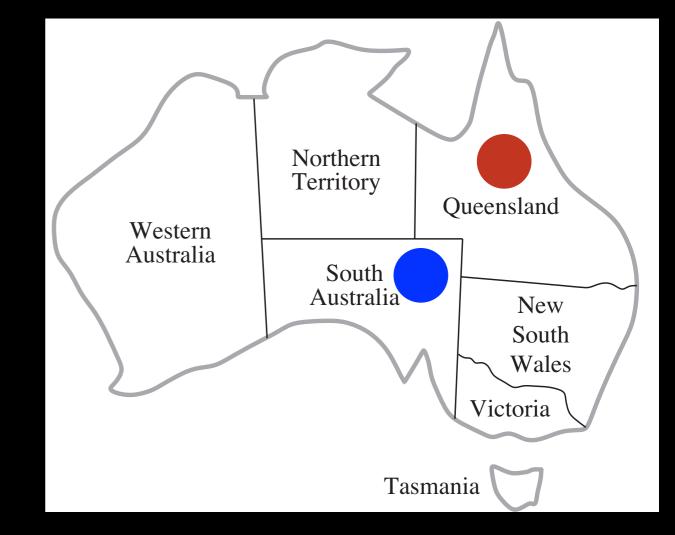
| WA  | R, G    |
|-----|---------|
| NT  | R, G    |
| SA  | B       |
| Q   | R       |
| NSW | R, G    |
| V   | R, G    |
| Т   | R, G, B |



#### Make choice: color Q red

Remaining possibilities:  $2^4 \times 3 = 48$ 

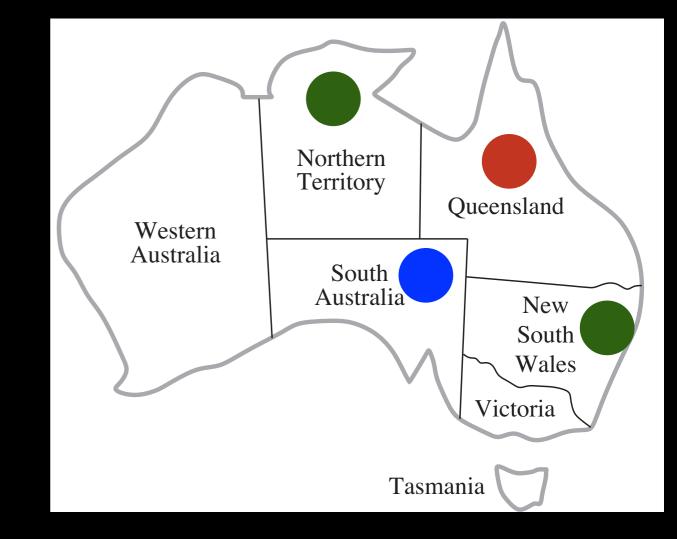
| WA  | R, G    |
|-----|---------|
| NT  | G       |
| SA  | B       |
| Q   | R       |
| NSW | G       |
| V   | R, G    |
| Т   | R, G, B |



Simplify: remove R from adjacent regions

Remaining possibilities:  $2^2 \times 3 = 12$ 

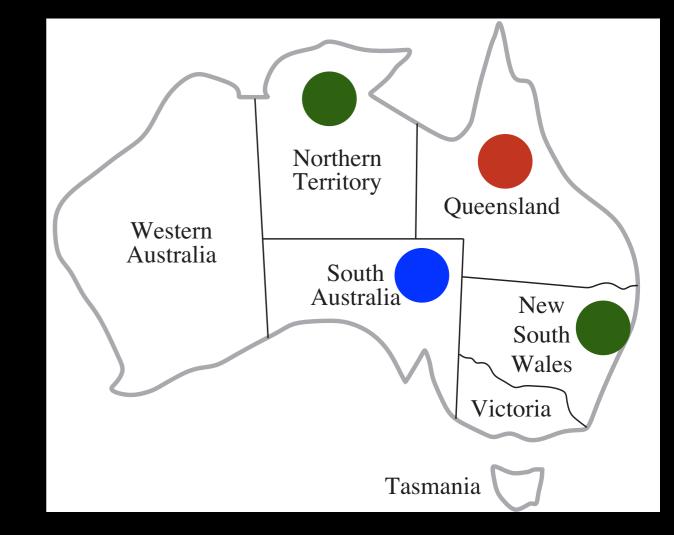
| WA  | R, G    |
|-----|---------|
| NT  | G       |
| SA  | B       |
| Q   | R       |
| NSW | G       |
| V   | R, G    |
| Т   | R, G, B |



#### NT and NSW are forced G

Remaining possibilities:  $2^2 \times 3 = 12$ 

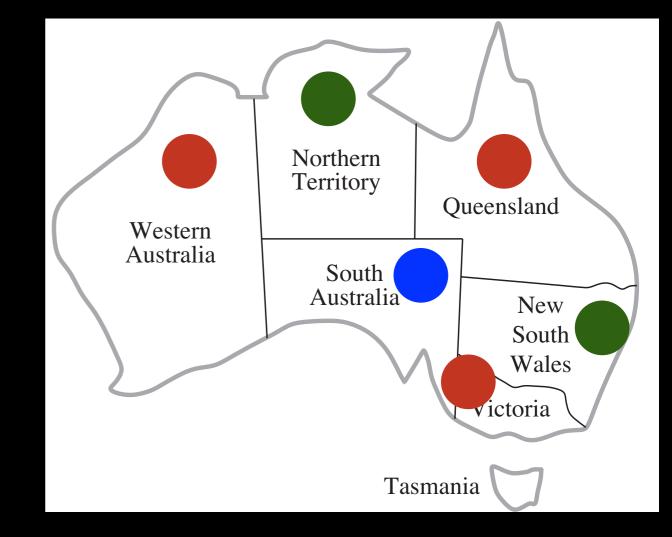
| WA  | R       |
|-----|---------|
| NT  | G       |
| SA  | B       |
| Q   | R       |
| NSW | G       |
| V   | R       |
| Т   | R, G, B |



Simplify: remove G from adjacent regions

Remaining possibilities: 3

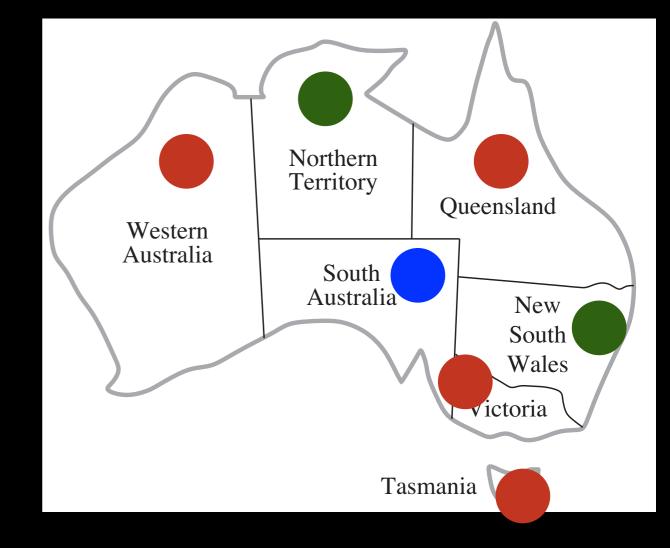
| WA  | R       |
|-----|---------|
| NT  | G       |
| SA  | B       |
| Q   | R       |
| NSW | G       |
| V   | R       |
|     | R, G, B |



#### WA and V are forced red

Remaining possibilities: 3

| WA  | R |
|-----|---|
| NT  | G |
| SA  | B |
| Q   | R |
| NSW | G |
| V   | R |
| T   | R |



#### Choose: any color for T

Solved!

# Constraint Propagation

- Using the constraints to reduce the set of legal values of a variable, which can in turn reduce the legal values of another variable, and so on
- Not a search process itself!
  - Part of state update in state-space search
- A type of inference: making implicit information explicit

### Arc-Consistency

- The particular kind of constraint propagation we just saw is called arcconsistency
  - Why? Because it involves considering 2 nodes at a time (the ends of an arc)
- There are other kinds of constraint propagation, but arc-consistency is usually the most practical

# Constraint Propagation

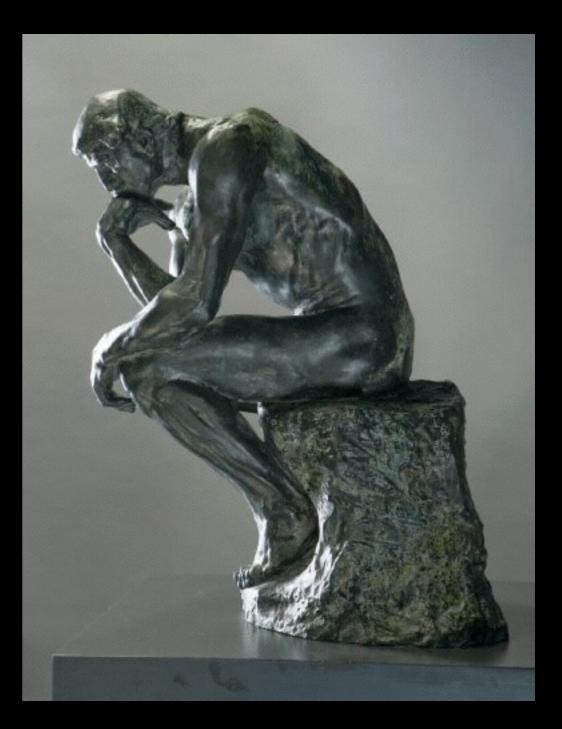
- Can be used as pre-processing step for any kind of search
  - Including local search
- Can be interleaved with any kind of search over partial assignments, where the action is "assign a value to an unassigned variable"
  - Popular choice: depth-first search

# Domain-Independent Heuristics

- There are good heuristics for deciding which variable to assign next
- Choose one with the smallest domain
  - Maximizes likelihood of making a correct choice!
- Choose one involved in largest number of constraints
  - Likely to lead to lots of constraint propagation!

### Check Your Understanding

 Why can't you use constraint propagation after each step of local search?



### Check Your Understanding

- Why can't you use constraint propagation after each step of local search?
- Because local search is over complete states
  - Every variable has a particular value
  - You can't therefore remove a value from the domain of a variable

# CSPs Summary

- Impose a structure on the representation of states: Variables, Domains, Constraints
- Backtracking search for complete, consistent assignment of values to variables
- Inference (constraint propagation) can reduce the domains of variables
  - Preprocessing or interleaved with search