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Othello Tournament 
Phase I Results

DS-DH

Deep-Blue

EvanMariaPlayer

Hyphaene-
Thebaica

KautzPlayer

OR-KC

a-a

alaska-boat

bent-paperclips

blake-phelps


crazy-pingpong

delicious-fudge

digital-teapot

invalid-munmap

is-rever

jar-vis

jesus-fish

no-name

othello-game

othello-player

problem-solved


random-words

robotics-
anonymous

saint-inferno

samurai-sharks

screaming-
banjos

spherical-cow

spline-
reticulators

team-victory



Best Team Name

Third Place:

     Hyphaene-Thebaica

Second Place:

     screaming-banjos

First Place:

     spherical-cow

0 Extra Credit Points!



Defeated KautzPlayer

DS-DH

Hyphaene-
Thebaica

OR-KC

a-a

alaska-boat

jar-vis

jesus-fish

no-name


othello-game

othello-player

problem-solved

random-words

saint-inferno

spherical-cow

spline-reticulators

team-victory

10 Extra Credit Points!



Best Performance

2nd Place:

   97 alaska-boat

   94 spherical-cow

   94 a-a

20 Extra Credit Points!



Best Performance

1st Place:

   106 spline-reticulators

   105 Hyphaene-Thebaica

30 Extra Credit Points!



Calendar
April 1: ULW First Draft Due


April 8: Project 2: Planning Due


April 8: Exam 3: Probability


April 29: Project 3: Neural Networks Due


April 29: ULW Final Draft Due


May 9: Final Exam



Bayesian Diagnosis

P (disease | symptom) =
P (symptom | disease)P (disease)

P (symptom)



Cavity

Toothache Catch



Combining Evidence
P(Cavity | toothache � catch)

toothache ¬toothache

catch ¬catch catch ¬catch

cavity 0.108 0.012 0.072 0.008

¬cavity 0.016 0.064 0.144 0.576

= � h0.180, 0.016i ⇡ h0.871, 0.129i



Exponential Growth of 
Combinations of Evidence

toothache ¬toothache

catch ¬catch catch ¬catch

bleeding ¬bleeding bleeding ¬bleeding bleeding ¬bleeding bleeding ¬bleeding

cavity ? ? ? ? ? ? ? ?

¬cavity ? ? ? ? ? ? ? ?

P(Cavity | toothache∧catch∧¬bleeding)



Conditional 
Independence

• Both toothache and catch are caused by a 
cavity, but neither has a direct effect on the 
other	


• The variables are independent given the 
presence or absence of a cavity	


• Notation: Toothache !Catch |Cavity



Benefit of Conditional 
Independence Assumptions

P(Cavity | toothache � catch) =

↵P(toothache | Cavity)P(catch | Cavity)P(Cavity)

Only need these probabilities - 
linear in the number of evidence variables!



Bayesian Network

• Data structure for compactly representing 
a joint probability distributions	


• Leverages (conditional) independencies 
between variables	


• Can be exponentially smaller than explicit 
tabular representation of the joint 
distribution	


• Supports many algorithms for inference and 
learning



Bayesian Networks

Cavity

Toothache Catch

Random Variables



Bayesian Networks

Cavity

Toothache Catch

“has direct influence on”



Bayesian Networks

Cavity

Toothache Catch

conditionally independent given parents



Bayesian Networks

Cavity

Toothache Catch

Weather



Bayesian Networks

Cavity

Toothache Catch

P(Toothache | Cavity) P(Catch | Cavity)

Conditional Probability	

Distributions



Bayesian Networks

Cavity

Toothache Catch

P(Toothache | Cavity) P(Catch | Cavity)

P(Cavity)

Prior Probability	

Distribution



Bayesian Networks

• Each node corresponds to a random 
variable	


• There is a link from X to Y if X has a direct 
influence on Y (no cycles; DAG)	


• The node for Xi stores the conditional 
distribution	


• Root nodes store the priors P(Xi)
P(Xi | Parents(Xi))



Bayesian Networks 
How-To

• Select random variables required to model 
the domain	


• Add links from causes to effects 	


• “Directly influences”	


• No cycles	


• Write down (conditional) probability 
distributions for each node



• Full joint distribution can be computed as 
the product of the separate conditional 
probabilities stored in the network

Semantics of Bayesian 
Networks

P (x1, . . . , xn) =
nY

i=1

P (xi | parents(Xi))



Cavity

Toothache Catch

P(Toothache | Cavity) P(Catch | Cavity)

P(Cavity)

P(toothache,cavity,catch) = 
    P(toothache|cavity)P(catch|cavity)P(cavity)



Cavity

Toothache Catch

P(Toothache | Cavity) P(Catch | Cavity)

P(Cavity)

P(¬toothache,cavity,catch) = 
    P(¬toothache|cavity)P(catch|cavity)P(cavity)



Cavity

Toothache Catch

P(Toothache | Cavity) P(Catch | Cavity)

P(Cavity)

P(¬toothache,¬cavity,catch) = 
    P(¬toothache|¬cavity)P(catch|¬cavity)P(¬cavity)



• A query can be answered from a Bayesian 
Network by computing sums of products 
of conditional probabilities from the 
network

Inference in Bayesian 
Networks



• A query can be answered from a Bayesian 
Network by computing sums of products 
of conditional probabilities from the 
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Inference in Bayesian 
Networks

P(X | e) = �P(X, e) = �
X

y

P(X, e,y)
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• A query can be answered from a Bayesian 
Network by computing sums of products 
of conditional probabilities from the 
network

Inference in Bayesian 
Networks

P(X | e) = �P(X, e) = �
X
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• A query can be answered from a Bayesian 
Network by computing sums of products 
of conditional probabilities from the 
network

Inference in Bayesian 
Networks

P(X | e) = �P(X, e) = �
X

y

P(X, e,y)

= ↵
X

y

nY

i=1

P (Xi | parents(Xi))





Alarm



Alarm

EarthquakeBurglary



Alarm

EarthquakeBurglary P(B)
0.001

P(E)
0.002



Alarm

EarthquakeBurglary P(B) P(¬B)
0.001 1-.001

P(E) P(¬E)
0.002 1-.002



Alarm

EarthquakeBurglary P(B)
0.001

P(E)
0.002



Alarm

EarthquakeBurglary P(B)
0.001

P(E)
0.002

B E P(A|
t t 0.95
t f 0.94
f t 0.29
f f 0.001



Alarm

EarthquakeBurglary P(B)
0.001

P(E)
0.002

B E P(A| P(¬A|
t t 0.95 1-.95
t f 0.94 1-.94
f t 0.29 1-.29
f f 0.001 1-.001



Alarm

EarthquakeBurglary

JohnCalls MaryCalls

P(B)
0.001

P(E)
0.002

B E P(A|
t t 0.95
t f 0.94
f t 0.29
f f 0.001



Alarm

EarthquakeBurglary

JohnCalls MaryCalls

P(B)
0.001

P(E)
0.002

A P(J|A)
t 0.9
f 0.05

A P(M|
t 0.7
f 0.01

B E P(A|
t t 0.95
t f 0.94
f t 0.29
f f 0.001



P(B | j,m)

P(Burglary | JohnCalls = True,MaryCalls = True)

Alarm

EarthquakeBurglary

JohnCalls MaryCalls

P(B)
0.001

P(E)
0.002

B E P(A|
t t 0.95
t f 0.94
f t 0.29
f f 0.001

A P(J|A)
t 0.9
f 0.05

A P(M|
t 0.7
f 0.01
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P(B, j,m, e, a)



Alarm

EarthquakeBurglary

JohnCalls MaryCalls

P(B)
0.001

P(E)
0.002

B E P(A|
t t 0.95
t f 0.94
f t 0.29
f f 0.001

A P(J|A)
t 0.9
f 0.05

A P(M|
t 0.7
f 0.01

P(B | j,m) = �P(B, j,m) = �
X

e

X

a

P(B, j,m, e, a)
WHY?



Alarm

EarthquakeBurglary

JohnCalls MaryCalls

P(B)
0.001

P(E)
0.002

B E P(A|
t t 0.95
t f 0.94
f t 0.29
f f 0.001

A P(J|A)
t 0.9
f 0.05

A P(M|
t 0.7
f 0.01

P(B | j,m) = �P(B, j,m) = �
X

e

X

a

P(B, j,m, e, a)Bayes Rule +  
Normalization Trick!
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Alarm

EarthquakeBurglary

JohnCalls MaryCalls

P(B)
0.001

P(E)
0.002

B E P(A|
t t 0.95
t f 0.94
f t 0.29
f f 0.001

A P(J|A)
t 0.9
f 0.05

A P(M|
t 0.7
f 0.01

P(B | j,m) = �P(B, j,m) = �
X

e

X

a

P(B, j,m, e, a)

Marginalizing Joint 
Distribution!



Alarm

EarthquakeBurglary

JohnCalls MaryCalls

P(B)
0.001

P(E)
0.002

B E P(A|
t t 0.95
t f 0.94
f t 0.29
f f 0.001

A P(J|A)
t 0.9
f 0.05
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t 0.7
f 0.01
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X
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P (x1, . . . , xn) =
nY

i=1

P (xi | parents(Xi))



Alarm

EarthquakeBurglary

JohnCalls MaryCalls

P(B)
0.001

P(E)
0.002

B E P(A|
t t 0.95
t f 0.94
f t 0.29
f f 0.001

A P(J|A)
t 0.9
f 0.05

A P(M|
t 0.7
f 0.01

P(B | j,m) = �P(B, j,m) = �
X

e

X

a

P(B, j,m, e, a)

P(b, j,m) = �
X

e

X

a

P(b)P(e)P(a | b, e)P(j | a)P(m | a)P(b|j,m)



P(b) P(¬e)

P(¬a|b,¬e)

P(j|¬a) P(m|¬a)

Alarm

EarthquakeBurglary

JohnCalls MaryCalls

P(B)
0.001

P(E)
0.002

B E P(A|
t t 0.95
t f 0.94
f t 0.29
f f 0.001

A P(J|A)
t 0.9
f 0.05

A P(M|
t 0.7
f 0.01

1-.002

P(b, j,m) = �P(b)P(e)P(a | b, e)P(j | a)P(m | a)+
P(b)P(e)P(¬a | b, e)P(j | ¬a)P(m | ¬a)+
P(b)P(¬e)P(a | b,¬e)P(j | a)P(m | a)+
P(b)P(¬e)P(¬a | b,¬e)P(j | ¬a)P(m | ¬a)

1-.94

P(b|j,m)



P(b) P(¬e)

P(¬a|b,¬e)

P(j|¬a) P(m|¬a)

Alarm

EarthquakeBurglary

JohnCalls MaryCalls

P(B)
0.001

P(E)
0.002

B E P(A|
t t 0.95
t f 0.94
f t 0.29
f f 0.001

A P(J|A)
t 0.9
f 0.05

A P(M|
t 0.7
f 0.01

1-.002

1-.94

P(B | j,m) = � ⇥0.00059224, 0.0014919⇤ � ⇥0.284, 0.716⇤



Optimizing Bayesian 
Network Inference

• It is often possible to optimize a query to a 
Bayesian Network	


• Idea: rearrange terms, so that each is 
evaluated as few times as possible



Example: Optimizing Inference

P(b, j,m) = �
X

e

X

a

P(b)P(e)P(a | b, e)P(j | a)P(m | a)P(b|j,m)

= ↵ P(b)
X

e

X

a

P(a|b, e)P(j|a)P(m|a)

= ↵ P(b)
X

a

X

e

P(a|b, e)P(j|a)P(m|a)

= ↵ P(b)
X

a

P(j|a)P(m|a)
X

e

P(a|b, e)



Example: Optimizing Inference

P(b, j,m) = �
X

e

X

a

P(b)P(e)P(a | b, e)P(j | a)P(m | a)P(b|j,m)

Before optimization:  2 x 2 x 5 = 20 multiplies 

= ↵ P(b)
X

a

P(j|a)P(m|a)
X

e

P(a|b, e)

After optimization:  1 + 2 x 3 = 7 multiplies 



Bayes Net Toolkits

• Many Bayesian 
Network tools are 
available	


• Variety of built-in 
optimization routines	


• Just input the network 
and let the system do 
the work!



Worst-Case 
Complexity

• Exact inference in Bayesian Networks can 
be shown to be as hard as computing the 
number of satisfying assignments of a 
propositional logic formula 	


•  #P-complete (harder than NP-complete)



Next Questions

• How do we learn the (conditional) 
probabilities for a Bayesian Network from a 
set of data?	


• How can be we do even faster approximate 
probabilistic inference?


