CSC242: Intro to AI

Lecture 15 Bayesian Networks

THE LIFE AND SCIENCE OF RICHARD FEYNMAN JAMES GLEICK

Richard Feynman 1918-1988

Othello Tournament Phase I Results

- Ø DS-DH
- Deep-Blue
- SevanMariaPlayer
- Hyphaene Thebaica
- KautzPlayer
- OR-KC
- ø a−a
- 🛛 alaska-boat
- ø bent-paperclips
- ø blake-phelps

- o crazy-pingpong
- ø delicious-fudge
- ø digital-teapot
- Invalid-munmap
- is-rever
- 🧔 jar-vis
- ø jesus-fish
- ⊘ no-name
- o othello-game
- ø othello-player
- ø problem-solved

- or random-words
- o robotics
 - anonymous
- samurai-sharks
- screaming
 - banjos
- spherical-cow
- spline
 - reticulators
- ø team-victory

Best Team Name

Third Place:

 Se
 O Extra Credit Points!
 Screang-Danjos
 First Place: spherical-cow

Defeated KautzPlayer

ODS-DH othello-player Hyphaene-The lved ORrds 10 Extra Credit Points! o a-a 10 👁 alaska-boat Spherical-cow Spline-reticulators ⊘ jar-vis ø jesus-fish team-victory ⊘ no-name

Best Performance

2nd Place:
20 Extra Credit Points!

94 a-a

Best Performance

Calendar

April 1: ULW First Draft Due April 8: Project 2: Planning Due April 8: Exam 3: Probability April 29: Project 3: Neural Networks Due April 29: ULW Final Draft Due
 May 9: Final Exam

Bayesian Diagnosis

$P(disease \mid symptom) = \frac{P(symptom \mid disease)P(disease)}{P(symptom)}$

Cavity

Too thache

Catch

Combining Evidence

 $\mathbf{P}(Cavity \mid toothache \land catch) = \alpha \langle 0.180, 0.016 \rangle \approx \langle 0.871, 0.129 \rangle$

	tooth	nache	$\neg toothache$		
	catch	$\neg catch$	catch	$\neg catch$	
cavity	0.108	0.012	0.072	0.008	
$\neg cavity$	0.016	0.064	0.144	0.576	

Exponential Growth of Combinations of Evidence

P(*Cavity* | *toothache* ∧ *catch* ∧ ¬*bleeding*)

	too thache				$\neg toothache$			
	catch		$\neg catch$		catch		$\neg catch$	
	bleeding	$\neg bleeding$	bleeding	$\neg bleeding$	bleeding	$\neg bleeding$	bleeding	$\neg bleeding$
cavity	?	?	?	?	?	?	?	?
$\neg cavity$?.	?.	?	?	?	?.	?.	?.

Conditional Independence

- Both *toothache* and *catch* are caused by a cavity, but neither has a direct effect on the other
- The variables are independent given the presence or absence of a cavity
- Notation: *Toothache* || *Catch* | *Cavity*

Benefit of Conditional Independence Assumptions

 $\mathbf{P}(Cavity \mid toothache \land catch) =$

 $\alpha \mathbf{P}(toothache \mid Cavity) \mathbf{P}(catch \mid Cavity) \mathbf{P}(Cavity)$

Only need these probabilities linear in the number of evidence variables!

- Data structure for compactly representing a joint probability distributions
- Leverages (conditional) independencies between variables
- Can be exponentially smaller than explicit tabular representation of the joint distribution
- Supports many algorithms for inference and learning

conditionally independent given parents

- Each node corresponds to a random variable
- There is a link from X to Y if X has a direct influence on Y (no cycles; DAG)
- The node for X_i stores the conditional distribution $P(X_i | Parents(X_i))$
- Root nodes store the priors $\mathbf{P}(X_i)$

Bayesian Networks How-To

- Select random variables required to model the domain
- Add links from causes to effects
 - "Directly influences"
 - No cycles
- Write down (conditional) probability distributions for each node

Semantics of Bayesian Networks

 Full joint distribution can be computed as the product of the separate conditional probabilities stored in the network

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i \mid parents(X_i))$$

P(toothache, cavity, catch) = P(toothache|cavity)P(catch|cavity)P(cavity)P(cavity)

 $P(\neg toothache, cavity, catch) = P(\neg toothache | cavity)P(catch | cavity)P(cavity)P(cavity)$

 $P(\neg toothache, \neg cavity, catch) = P(\neg toothache | \neg cavity) P(catch | \neg cavity) P(\neg cavity) P(\neg cavity)$

 A query can be answered from a Bayesian Network by computing sums of products of conditional probabilities from the network

 A query can be answered from a Bayesian Network by computing sums of products of conditional probabilities from the network

 $\mathbf{P}(X \mid \mathbf{e}) =$

 A query can be answered from a Bayesian Network by computing sums of products of conditional probabilities from the network

 $\mathbf{P}(X \mid \mathbf{e}) = \alpha \ \mathbf{P}(X, \mathbf{e}) =$

 A query can be answered from a Bayesian Network by computing sums of products of conditional probabilities from the network

$$\mathbf{P}(X \mid \mathbf{e}) = \alpha \ \mathbf{P}(X, \mathbf{e}) = \alpha \ \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$$

 A query can be answered from a Bayesian Network by computing sums of products of conditional probabilities from the network

$$\mathbf{P}(X \mid \mathbf{e}) = \alpha \mathbf{P}(X, \mathbf{e}) = \alpha \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$$
$$= \alpha \sum_{\mathbf{y}} \prod_{i=1}^{n} P(X_i \mid parents(X_i))$$

 $\begin{array}{c|c} P(B) & P(\neg B_{E} \\ \hline 0.001 & 1-.081 \end{array}$ $P(E) P(\neg E)$ Burglary) 0.002 1-.002 Alarm

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
	B	E	P(A	$P(\neg A \mid$			
Alarm	t	t	0.95	195			
	t	f	0.94	194			
	f	t	0.29	129			
	f	f	0.001	1001			

J

J

 $\mathbf{P}(Burglary \mid JohnCalls = True, MaryCalls = True)$ $\mathbf{P}(B \mid j, m)$

 $\mathbf{P}(B \mid j, m) = \alpha \mathbf{P}(B, j, m)$

 $\mathbf{P}(B \mid j, m) = \alpha \mathbf{P}(B, j, m)$

 $\mathbf{P}(B \mid j, m) = \alpha \mathbf{P}(B, j, m)$

Bayes Rule + Normalization Trick!

$$\mathbf{P}(B \mid j, m) = \alpha \ \mathbf{P}(B, j, m) = \alpha \ \sum_{e} \sum_{a} \mathbf{P}(B, j, m, e, a)$$

$$\mathbf{P}(B \mid j, m) = \alpha \mathbf{P}(B, j, m) = \alpha \sum_{e} \sum_{a} \mathbf{P}(B, j, m, e, a)$$

$$\mathbf{P}(B \mid j, m) = \alpha \ \mathbf{P}(B, j, m) = \alpha \ \sum_{e} \sum_{a} \mathbf{P}(B, j, m, e, a)$$

Marginalizing Joint Distribution!

$$\mathbf{P}(B \mid j, m) = \alpha \ \mathbf{P}(B, j, m) = \alpha \ \sum_{e} \sum_{a} \mathbf{P}(B, j, m, e, a)$$
$$P(x_1, \dots, x_n) = \prod_{i=1}^{n} P(x_i \mid parents(X_i))$$

$$\mathbf{P}(B \mid j, m) = \alpha \ \mathbf{P}(B, j, m) = \alpha \ \sum_{e} \sum_{a} \mathbf{P}(B, j, m, e, a)$$

 $\mathbf{P}(b|j,m) = \alpha \sum_{e} \sum_{a} \mathbf{P}(b) \mathbf{P}(e) \mathbf{P}(a \mid b, e) \mathbf{P}(j \mid a) \mathbf{P}(m \mid a)$

 $\begin{aligned} \mathbf{P}(b|j,m) &= \alpha \ \mathbf{P}(b) \ \mathbf{P}(e) \ \mathbf{P}(a \mid b, e) \ \mathbf{P}(j \mid a) \ \mathbf{P}(m \mid a) + \\ & \mathbf{P}(b) \ \mathbf{P}(e) \ \mathbf{P}(\neg a \mid b, e) \ \mathbf{P}(j \mid \neg a) \ \mathbf{P}(m \mid \neg a) + \\ & \mathbf{P}(b) \ \mathbf{P}(\neg e) \ \mathbf{P}(a \mid b, \neg e) \ \mathbf{P}(j \mid a) \ \mathbf{P}(m \mid a) + \\ & \mathbf{P}(b) \ \mathbf{P}(\neg e) \ \mathbf{P}(\neg a \mid b, \neg e) \ \mathbf{P}(j \mid \neg a) \ \mathbf{P}(m \mid \neg a) \end{aligned}$

 $\mathbf{P}(B \mid j, m) = \alpha \ \langle 0.00059224, 0.0014919 \rangle \approx \langle 0.284, 0.716 \rangle$

Optimizing Bayesian Network Inference

- It is often possible to optimize a query to a Bayesian Network
- Idea: rearrange terms, so that each is evaluated as few times as possible

Example: Optimizing Inference

$$\mathbf{P}(b|j,m) = \alpha \sum_{e} \sum_{a} \mathbf{P}(b) \mathbf{P}(e) \mathbf{P}(a \mid b, e) \mathbf{P}(j \mid a) \mathbf{P}(m \mid a)$$

Before optimization: $2 \times 2 \times 5 = 20$ multiplies

$$= \alpha \mathbf{P}(b) \sum_{a} \mathbf{P}(j|a) \mathbf{P}(m|a) \sum_{e} \mathbf{P}(a|b,e)$$

After optimization: $1 + 2 \times 3 = 7$ multiplies

Bayes Net Toolkits

- Many Bayesian Network tools are available
- Variety of built-in optimization routines
- Just input the network and let the system do the work!

Worst-Case Complexity

- Exact inference in Bayesian Networks can be shown to be as hard as computing the number of satisfying assignments of a propositional logic formula
- **#P-complete** (harder than NP-complete)

Next Questions

- How do we learn the (conditional) probabilities for a Bayesian Network from a set of data?
- How can be we do even faster approximate probabilistic inference?