CSC242: Intro to AI

 Lecture 15 Bayesian Networks

THE LIFE AND SCIENCE OF RICHARD FEYNMAN

JAMES GLEICK

Richard Feynman 1918-1988

horizon

Othello Tournament

Phase I Results

- DS-DH
- Deep-Blue
- EvanMariaPlayer
- Hyphaene-

Thebaica

- KautzPlayer
- OR-KC
- a-a
- alaska-boat
- bent-paperclips
- blake-phelps
- crazy-pingpong
- delicious-fudge
- digital-teapot
- invalid-munmap
- is-rever
- jar-vis
- jesus-fish
- no-name
- othello-game
- othello-player
- problem-solved
- random-words
- roboticsanonymous
- saint-inferno
- samurai-sharks
- screamingbanjos
- spherical-cow
- splinereticulators
- team-victory

Best Team Name

-Third Place:

- Se 0 Extra Credit Points!
stieanling-oarijus
eFirst Place:
spherical-cow

Defeated KautzPlayer

- DS-DH
- Hyphaene-

The

- OR- 10 Extra Credit Points! rds
- a-a
- alaska-boat
- jar-vis
- jesus-fish
- no-name
- othello-game
- othello-player ved 10
- spherical-cow
- spline-reticulators
- team-victory

Best Performance

-2nd Place:
20 Extra Credit Points!
$94 a-a$

Best Performance

๒1s
30 Extra Credit Points!

Calendar

- April 1: ULW First Draft Due
- April 8: Project 2: Planning Due
- April 8: Exam 3: Probability
- April 29: Project 3: Neural Networks Due
- April 29: ULW Final Draft Due
- May 9: Final Exam

Bayesian Diagnosis

$$
P(\text { disease } \mid \text { symptom })=\frac{P(\text { symptom } \mid \text { disease }) P(\text { disease })}{P(\text { symptom })}
$$

Cavity

Toothache

Catch

Combining Evidence

$\mathbf{P}($ Cavity \mid toothache \wedge catch $)$

$$
=\alpha\langle 0.180,0.016\rangle \approx\langle 0.871,0.129\rangle
$$

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	0.108	0.012	0.072	0.008
\neg cavity	0.016	0.064	0.144	0.576

Exponential Growth of Combinations of Evidence

$P($ Cavity \mid toothache \wedge catch $\wedge \neg$ bleeding $)$

	toothache				\neg toothache			
	catch		\neg catch		catch		\neg catch	
	bleeding	\rightarrow bleeding						
cavity	?	?	?	?	?	?	?	?
\neg cavity	?	?	?	?	?	?	?	?

Conditional Independence

- Both toothache and catch are caused by a cavity, but neither has a direct effect on the other
- The variables are independent given the presence or absence of a cavity
- Notation: Toothache || Catch | Cavity

Benefit of Conditional Independence Assumptions

$\mathbf{P}($ Cavity \mid toothache \wedge catch $)=$

$$
\alpha \mathbf{P}(\text { toothache } \mid \text { Cavity }) \mathbf{P}(\text { catch } \mid \text { Cavity }) \mathbf{P}(\text { Cavity })
$$

Only need these probabilities linear in the number of evidence variables!

Bayesian Network

- Data structure for compactly representing a joint probability distributions
- Leverages (conditional) independencies between variables
- Can be exponentially smaller than explicit tabular representation of the joint distribution
- Supports many algorithms for inference and learning

Bayesian Networks

Bayesian Networks

Bayesian Networks

conditionally independent given parents

Bayesian Networks

Bayesian Networks

Conditional Probability
Distributions

Bayesian Networks

Prior Probability
Distribution

Bayesian Networks

- Each node corresponds to a random variable
- There is a link from X to Y if X has a direct influence on Y (no cycles; DAG)
- The node for X_{i} stores the conditional distribution $\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
- Root nodes store the priors $\mathbf{P}\left(X_{i}\right)$

Bayesian Networks How-To

- Select random variables required to model the domain
- Add links from causes to effects
- "Directly influences"
- No cycles
- Write down (conditional) probability distributions for each node

Semantics of Bayesian Networks

- Full joint distribution can be computed as the product of the separate conditional probabilities stored in the network

$$
P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

\mathbf{P} (Toothache | Cavity)

Cavity \mathbf{P} (Cavity)
$P($ toothache, cavity, catch $)=$
$P($ toothache \mid cavity $) P($ catch \mid cavity $) P($ cavity $)$
\mathbf{P} (Toothache | Cavity)

$P(\neg$ toothache, cavity, catch $)=$

$$
P(\neg \text { toothache } \mid \text { cavity }) P(\text { catch } \mid \text { cavity }) P(\text { cavity })
$$

\mathbf{P} (Toothache | Cavity)

Toothache

Cavity \mathbf{P} (Cavity)
$P(\neg$ toothache,\neg cavity, catch $)=$

$$
P(\neg \text { toothache } \mid \neg \text { cavity }) P(\text { catch } \mid \neg \text { cavity }) P(\neg \text { cavity })
$$

Inference in Bayesian Networks

- A query can be answered from a Bayesian Network by computing sums of products of conditional probabilities from the network

Inference in Bayesian Networks

- A query can be answered from a Bayesian Network by computing sums of products of conditional probabilities from the network

$$
\mathbf{P}(X \mid \mathbf{e})=
$$

Inference in Bayesian Networks

- A query can be answered from a Bayesian Network by computing sums of products of conditional probabilities from the network

$$
\mathbf{P}(X \mid \mathbf{e})=\alpha \mathbf{P}(X, \mathbf{e})=
$$

Inference in Bayesian Networks

- A query can be answered from a Bayesian Network by computing sums of products of conditional probabilities from the network

$$
\mathbf{P}(X \mid \mathbf{e})=\alpha \mathbf{P}(X, \mathbf{e})=\alpha \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})
$$

Inference in Bayesian Networks

- A query can be answered from a Bayesian Network by computing sums of products of conditional probabilities from the network

$$
\begin{aligned}
\mathbf{P}(X \mid \mathbf{e}) & =\alpha \mathbf{P}(X, \mathbf{e})=\alpha \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y}) \\
& =\alpha \sum_{\mathbf{y}} \prod_{i=1}^{n} P\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
\end{aligned}
$$

\odot

$\mathbf{P}($ Burglary \mid JohnCalls $=$ True, MaryCalls $=$ True $)$ $\mathbf{P}(B \mid j, m)$

$\mathbf{P}(B \mid j, m)=\alpha \mathbf{P}(B, j, m)$

$\mathbf{P}(B \mid j, m)=\alpha \mathbf{P}(B, j, m)$

$\mathbf{P}(B \mid j, m)=\alpha \mathbf{P}(B, j, m)$

Bayes Rule + Normalization Trick!

$\mathbf{P}(B \mid j, m)=\alpha \mathbf{P}(B, j, m)=\alpha \sum_{e} \sum_{a} \mathbf{P}(B, j, m, e, a)$

$\mathbf{P}(B \mid j, m)=\alpha \mathbf{P}(B, j, m)=\alpha \sum_{e} \sum_{a} \mathbf{P}(B, j, m, e, a)$

WHY?

$\mathbf{P}(B \mid j, m)=\alpha \mathbf{P}(B, j, m)=\alpha \sum_{e} \sum_{a} \mathbf{P}(B, j, m, e, a)$
Marginalizing Joint Distribution!

$\mathbf{P}(B \mid j, m)=\alpha \mathbf{P}(B, j, m)=\alpha \sum_{e} \sum_{a} \mathbf{P}(B, j, m, e, a)$

$$
P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

$\mathbf{P}(B \mid j, m)=\alpha \mathbf{P}(B, j, m)=\alpha \sum_{e} \sum_{a} \mathbf{P}(B, j, m, e, a)$
$\mathbf{P}(b \mid j, m)=\alpha \sum_{e} \sum_{a} \mathbf{P}(b) \mathbf{P}(e) \mathbf{P}(a \mid b, e) \mathbf{P}(j \mid a) \mathbf{P}(m \mid a)$

$$
\begin{aligned}
\mathbf{P}(b \mid j, m)=\alpha & \mathbf{P}(b) \mathbf{P}(e) \mathbf{P}(a \mid b, e) \mathbf{P}(j \mid a) \mathbf{P}(m \mid a)+ \\
& \mathbf{P}(b) \mathbf{P}(e) \mathbf{P}(\neg a \mid b, e) \mathbf{P}(j \mid \neg a) \mathbf{P}(m \mid \neg a)+ \\
& \mathbf{P}(b) \mathbf{P}(\neg e) \mathbf{P}(a \mid b, \neg e) \mathbf{P}(j \mid a) \mathbf{P}(m \mid a)+ \\
& \mathbf{P}(b) \mathbf{P}(\neg e) \mathbf{P}(\neg a \mid b, \neg e) \mathbf{P}(j \mid \neg a) \mathbf{P}(m \mid \neg a)
\end{aligned}
$$

$\mathbf{P}(B \mid j, m)=\alpha\langle 0.00059224,0.0014919\rangle \approx\langle 0.284,0.716\rangle$

Optimizing Bayesian Network Inference

- It is often possible to optimize a query to a Bayesian Network
- Idea: rearrange terms, so that each is evaluated as few times as possible

Example: Optimizing Inference

$$
\begin{aligned}
\mathbf{P}(b \mid j, m) & =\alpha \sum_{e} \sum_{a} \mathbf{P}(b) \mathbf{P}(e) \mathbf{P}(a \mid b, e) \mathbf{P}(j \mid a) \mathbf{P}(m \mid a) \\
& =\alpha \mathbf{P}(b) \sum_{e} \sum_{a} \mathbf{P}(a \mid b, e) \mathbf{P}(j \mid a) \mathbf{P}(m \mid a) \\
& =\alpha \mathbf{P}(b) \sum_{a} \sum_{e} \mathbf{P}(a \mid b, e) \mathbf{P}(j \mid a) \mathbf{P}(m \mid a) \\
& =\alpha \mathbf{P}(b) \sum_{a} \mathbf{P}(j \mid a) \mathbf{P}(m \mid a) \sum_{e} \mathbf{P}(a \mid b, e)
\end{aligned}
$$

Example: Optimizing Inference

$$
\mathbf{P}(b \mid j, m)=\alpha \sum_{e} \sum_{a} \mathbf{P}(b) \mathbf{P}(e) \mathbf{P}(a \mid b, e) \mathbf{P}(j \mid a) \mathbf{P}(m \mid a)
$$

Before optimization: $2 \times 2 \times 5=20$ multiplies

$$
=\alpha \mathbf{P}(b) \sum_{a} \mathbf{P}(j \mid a) \mathbf{P}(m \mid a) \sum_{e} \mathbf{P}(a \mid b, e)
$$

After optimization: $1+2 \times 3=7$ multiplies

Bayes Net Toolkits

- Many Bayesian Network tools are available
- Variety of built-in optimization routines
- Just input the network and let the system do the work!

76 PIE RECIPES from AMERICA'S GOLDEN AGE OF BAKING

Worst-Case Complexity

- Exact inference in Bayesian Networks can be shown to be as hard as computing the number of satisfying assignments of a propositional logic formula
- \#P-complete (harder than NP-complete)

Next Questions

- How do we learn the (conditional) probabilities for a Bayesian Network from a set of data?
- How can be we do even faster approximate probabilistic inference?

