CSC242: Intro to AI

Lecture 17
Learning from Examples

Learning
 from Examples

Learning

Why Learn?

- Can't anticipate all possible situations that the agent might find themselves in
- Cannot anticipate all changes that might occur over time
- Don't know how to program it other than by learning!

Dimensions of Learning

Teacher
 Unsupervised
 Supervised

Learner
Active \longrightarrow Passive

Feedback
Delayed

Dimensions of Learning

Teacher
 Unsupervised
 Supervised

Learner
Active \longrightarrow Passive

Feedback
Delayed

A Classifier

Edible

A Classifier

Edible

A Classifier

Learning a Classifier

Training Data

Edible

Edible

Poison

Generalization

- Ability to classify items that were never seen before
- Going beyond simple memorization

Features

- img9201.jpg

- (color=green, leafs_per_stem=3, leaf_edge=jagged)
- The observable properties of the things to classified
- Also called "attributes"

Labels

- Classification: Symbols
- Regression: Numbers

Hypothesis Space

Training Data

Learner

- Space of possible outputs of the learning system
- Polynomial functions, decision trees, neural networks, ...

Learning Functions from Examples

Function Learning

- There is some function $y=f(x)$ Hypothesis
- We don't know f
- We want to learn a function h that approximates the true function f

Function Learning

- There is some function $y=f(x)$
- We don't know f
- We want to learn a function h that approximates the true function f
- Learning is a search through the space of possible hypotheses for one that will perform well

Supervised Learning

- Given a training set of N example inputoutput pairs:

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{\mathrm{N}}, y_{\mathrm{N}}\right)
$$

where each $y_{j}=f\left(x_{j}\right)$

- Discover function h that approximates f
- Search through the space of possible hypotheses for one that will perform well

Training Data

$$
h(x)=?
$$

Evaluating Accuracy

- Training set: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{\mathrm{N}}, y_{\mathrm{N}}\right)$
- Test set: Additional $\left(x_{j}, y_{j}\right)$ pairs distinct from training set
- Test accuracy of h by comparing $h\left(x_{j}\right)$ to y_{j} for $\left(x_{j}, y_{j}\right)$ from test set
- Generalization:Ability to handle examples in test set that were not in training test

Training Data

$$
h(x)=?
$$

Testing Data

x	y
3	9
4	12
6	18

$$
\begin{aligned}
& f(x)=y \\
& h(x)=y ?
\end{aligned}
$$

Hypothesis Space

- The class of functions that are acceptable as solutions, e.g.
- Linear functions $y=m x+b$
- Polynomials (of some degree)
- Decision trees
- Neural networks
- Turing machines

$$
y=-0.4 x+3
$$

$$
\begin{aligned}
& \text { (a) } \\
& \text { (b) } \\
& y=-0.4 x+3 \quad y=c_{7} x^{7}+c_{6} x^{6}+\ldots+c_{1} x+c_{0} \\
& =\sum_{i=0}^{7} c_{i} x^{i}
\end{aligned}
$$

Occam's Razor

William of Occam (or Ockham)
l4th c.

$$
\left.\begin{array}{rl}
y=-0.4 x+3 & y
\end{array}=c_{7} x^{7}+c_{6} x^{6}+\ldots+c_{1} x+c_{0}\right)
$$

$$
\begin{gathered}
y=c_{6} x^{6}+c_{5} x^{5} \ldots+c_{1} x+c_{0} \\
y=m x+b
\end{gathered}
$$

$$
\begin{gathered}
y=c_{6} x^{6}+c_{5} x^{5} \ldots+c_{1} x+c_{0} \quad a x+b+c \sin (x) \\
y=m x+b
\end{gathered}
$$

$$
\begin{array}{cc}
y=c_{6} x^{6}+c_{5} x^{5} \ldots+c_{1} x+c_{0} & a x+b+c \sin (x) \\
y=m x+b &
\end{array}
$$

Error and Overfitting

- It is often preferable to allow some error in the fit of the hypothesis to the training data in order to improve generalization
- Allowing too little error - resulting in a complex hypothesis with poor generalization - is overfitting
- Using too simple a hypothesis that has very high error - resulting again in poor generalization - is underfitting

Overfitting

- When a learned model adjusts to the noise in the input rather than the signal
- Becomes more likely as the hypothesis space and number of input attributes grows
- Becomes less likely as the number of training examples increases

Learning Decision Trees

Classification

- Output $y=f(x)$ is one of a finite set of values (classes, categories, ...)
- Boolean classification: yes/no or true/false
- Input is vector x of values for attributes
- Factored representation

Example

- Going out to dinner with Stuart Russell
- Restaurants often busy in SF; sometimes have to wait for a table
- Decision: Do we wait or do something else?

Attributes (Features)

Alternate : is there a suitable alternative nearby
Bar: does it have a comfy bar
FriSat: is it a Friday or Saturday
Hungry: are we hungry
Patrons: None, Some, Full
Price: $\$, \$ \$, \$ \$ \$$
Raining: is it raining outside
Reservation: do we have a reservation
Type: French, Italian, Thai, burger, ...
WaitEstimate: 0-10, 10-30, 30-60, >60

Decision Making

- If the host/hostess says you'll have to wait:
- Then if there's no one in the restaurant you don't want to be there either;
- But if there are a few people but it's not full, then you should wait
- Otherwise you need to consider how long he/she told you the wait would be

Decision Tree

- Each node in the tree represents a test on a single attribute
- Children of the node are labelled with the possible values of the feature
- Each path represents a series of tests, and the leaf node gives the value of the function when the input passes those tests

Inducing Decision Trees

From Examples

- Examples: (\mathbf{x}, y) where \mathbf{x} is a vector of values for the input attributes and y is a single Boolean value (yes/no, true/false)

	Input Attributes										Will Wait
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
X	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	y
X	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	y
X	No	Yes	No	No	Some	\$	No	No	Burger	0-10	y
x	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	y
x	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	y
x	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	y
X	No	Yes	No	No	None	\$	Yes	No	Burger	$0-10$	y
x	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	y
X	No	Yes	Yes	No	Full	$\$$	Yes	No	Burger	>60	y
X	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	y
X	No	No	No	No	None	\$	No	No	Thai	0-10	y
X	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	y

Inducing Decision Trees From Examples

- Examples: (x,y)
- Want a shallow tree (short paths, fewer tests)
- Greedy algorithm (AIMA Fig 18.5)
- Always test the most important attribute first
- Makes the most difference to classification of an example

	Input Attributes										Will Wait
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
X	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	y
X	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	y
x	No	Yes	No	No	Some	\$	No	No	Burger	0-10	y
x	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	y
X	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	y
X	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	y
x	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	y
X	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	y
X	No	Yes	Yes	No	Full	$\$$	Yes	No	Burger	>60	y
X	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	y
X	No	No	No	No	None	\$	No	No	Thai	0-10	y
X	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	y

	Input Attributes										Will Wait
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
x	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	y
x	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	y
x	No	Yes	No	No	Some	\$	No	No	Burger	0-10	y
X	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	y
X	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	y
X	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	y
X	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	y
X	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	y
X	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	y
X	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	y
X	No	No	No	No	None	\$	No	No	Thai	0-10	y
X	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	y

Poor split: children very mixed!

	Input Attributes										Will Wait
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
X	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	y
X	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	y
X	No	Yes	No	No	Some	$\$$	No	No	Burger	0-10	y
X	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	y
X	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	y
X	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	y
X	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	y
X	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	y
X	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	y
X	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	y
X	No	No	No	No	None	\$	No	No	Thai	0-10	y
X	Yes	Yes	Yes	Yes	Full	$\$$	No	No	Burger	30-60	y

	Input Attributes										Will Wait
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
X	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	y
x	Yes	No	No	Yes	Full	$\$$	No	No	Thai	30-60	y
x	No	Yes	No	No	Some	\$	No	No	Burger	0-10	y
X	Yes	No	Yes	Yes	Full	$\$$	Yes	No	Thai	10-30	y
X	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	y
X	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	y
X	No	Yes	No	No	None	$\$$	Yes	No	Burger	0-10	y
X	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	y
X	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	y
X	Yes	Yes	Yes	Yes	Full	\$\$8	No	Yes	Italian	10-30	y
X	No	No	No	No	None	\$	No	No	Thai	0-10	y
X	Yes	Yes	Yes	Yes	Full	$\$$	No	No	Burger	30-60	y

	Input Attributes										Will Wait
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
x	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	y
x	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	y
x	No	Yes	No	No	Some	\$	No	No	Burger	0-10	y
X	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	y
X	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	y
X	No	Yes	No	Yes	Some	\$8	Yes	Yes	Italian	0-10	y
X	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	y
x	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	y
X	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	y
X	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	y
X	No	No	No	No	None	\$	No	No	Thai	0-10	y
X	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	y

Good split: children very unbalanced!

Entropy

- S is a sample of training examples
- p_{\oplus} is the proportion of positive examples in S
- p_{\ominus} is the proportion of negative examples in S
- Entropy measures the impurity of S

$$
\operatorname{Entropy}(S) \equiv-p_{\oplus} \log _{2} p_{\oplus}-p_{\ominus} \log _{2} p_{\ominus}
$$

Information Gain

$\operatorname{Gain}(S, A)=$ expected reduction in entropy due to sorting on A

$$
\operatorname{Gain}(S, A) \equiv \operatorname{Entropy}(S)-\sum_{v \in \operatorname{Values}(A)} \frac{\left|S_{v}\right|}{|S|} \operatorname{Entropy}\left(S_{v}\right)
$$

$\operatorname{Entropy}(S)=-0.5 \log _{2} 0.5-0.5 \log _{2} 0.5=1$
$\operatorname{Entropy}\left(S_{F}\right)=\operatorname{Entropy}\left(S_{I}\right)=\operatorname{Entropy}\left(S_{T}\right)=\operatorname{Entropy}\left(S_{B}\right)=1$
$\operatorname{Gain}($ Type $)=\operatorname{Entropy}(S)-\sum_{v \in T y p e} \frac{\left|S_{v}\right|}{|S|} \operatorname{Entropy}\left(S_{v}\right)=1-1=0$

Entropy $(S)=-0.5 \log _{2} 0.5-0.5 \log _{2} 0.5=1$
Entropy $\left(S_{N}\right)=-0 \log _{2} 0-(1) \log _{2} 1=0$
Entropy $\left(S_{S}\right)=-(1) \log _{2} 1-0 \log _{2} 0=0$
Entropy $\left(S_{F}\right)=-(1 / 3) \log _{2} 1 / 3-2 / 3 \log _{2} 2 / 3=0.92$
$\operatorname{Gain}($ Patron $)=1-\sum_{v \in \operatorname{Patron}} \frac{\left|S_{v}\right|}{|S|} \operatorname{Entropy}\left(S_{v}\right)=1-(1 / 2)(0.92)=0.54$

Avoiding Overfitting

- Problem: How to determine when to stop growing the decision tree?

Reduced-Error Pruning

Split data into training and validation set
Do until further pruning is harmful:

1. Evaluate impact on validation set of pruning each possible node (plus those below it)
2. Greedily remove the one that most improves validation set accuracy

- produces smallest version of most accurate subtree

Effect of Reduced-Error Pruning

Evaluating Learning Mechanisms

Evaluating Learning

- Split data into training set and testing set
- Learn a hypothesis h using the training set and evaluate it on the testing set
- Start with training set of size 1 up to size $N-1$

Learning Curve

Error Rate

- Error rate: proportion of times $h(x) \neq y$ for an (x, y) example
- Inverse of proportion correct (accuracy)
- Need to evaluate error rate on examples not used in training

Cross-Validation

- Randomly split data into training and testing (in some proportion)
- Hold out test data during training
- Doesn't use all data for training

k-Fold Cross-Validation

- Divide data into k equal subsets
- Perform k rounds of learning
- Leave out 1 subset ($1 / k$ of the data) each round; use for testing that round
- Average test scores over k rounds

Learning (from Examples) Summary

Learning

- Kinds and dimensions of learning
- General framework for supervised, passive, immediate feedback learning
- Classification and Regression
- Data: training, testing, (pruning)
- Generalization, error, overfitting
- Hypothesis space: lines, curves, decision trees, ...

Coming Up

- April 8: Exam 3, Probability \& Introduction to Learning
- Project 3: Learning to Recognize Faces using Neural Networks
- Assigned: April 10th
- Due on April 29
- April 11: Neural Networks Part I

