CSC242: Intro to AI

Lecture 18: Details on Decision Trees; Neural Networks Part I

Details on Learning Decision Trees

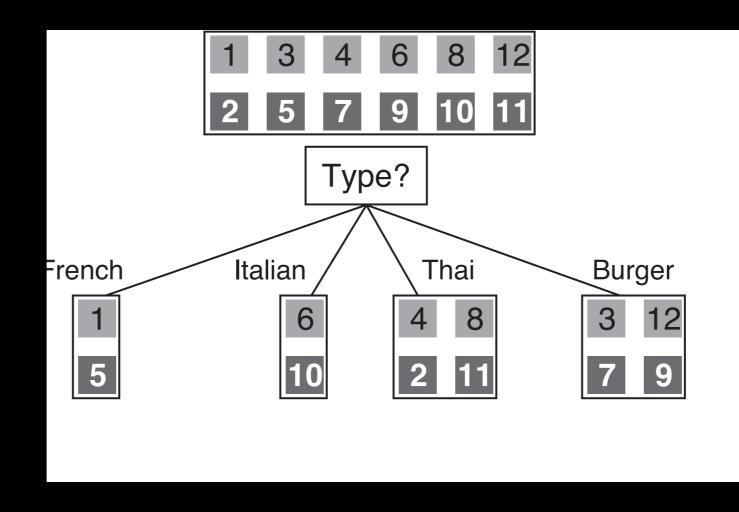
Decision Tree

- Each node in the tree represents a test on a single attribute
- Children of the node are labelled with the possible values of the feature
- Each path represents a series of tests, and the leaf node gives the value of the function when the input passes those tests

Inducing Decision Trees From Examples • Examples: (x,y)

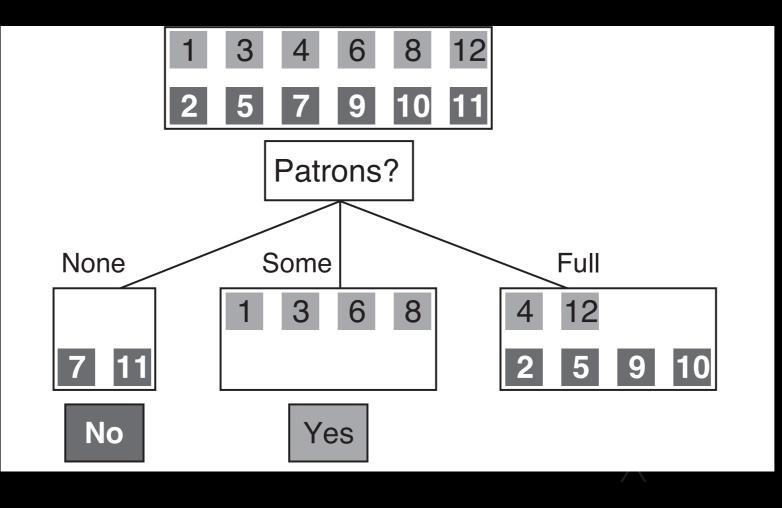
- Want a shallow tree (short paths, fewer tests)
- Greedy algorithm (AIMA Fig 18.5)
 - Always test the most important attribute first
 - Makes the most difference to classification of an example

	Input Attributes													
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait			
x	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	y			
х	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	y			
x	No	Yes	No	No	Some	\$	No	No	Burger	0-10	y			
х	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	y			
х	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	> 60	y			
х	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	y			
x	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	y			
х	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	y			
х	No	Yes	Yes	No	Full	\$	Yes	No	Burger	> 60	y			
х	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	y			
х	No	No	No	No	None	\$	No	No	Thai	0-10	y			
х	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	y			



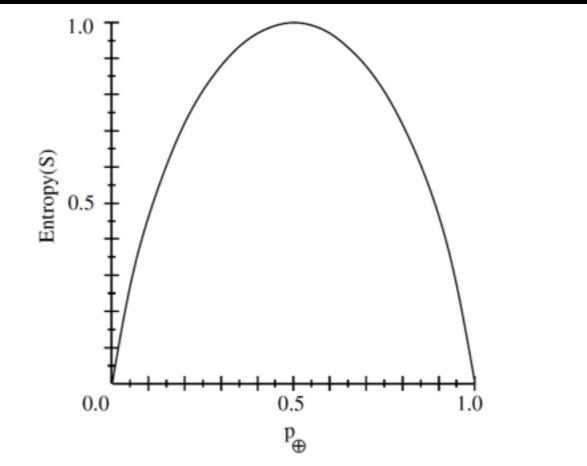
Poor split: children very mixed!

	Input Attributes													
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait			
x	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	y			
x	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	y			
x	No	Yes	No	No	Some	\$	No	No	Burger	0-10	y			
x	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	y			
x	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	> 60	y			
x	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	y			
x	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	y			
x	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	y			
х	No	Yes	Yes	No	Full	\$	Yes	No	Burger	> 60	y			
х	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	y			
х	No	No	No	No	None	\$	No	No	Thai	0-10	y			
х	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	y			



Good split: children very unbalanced!

Entropy



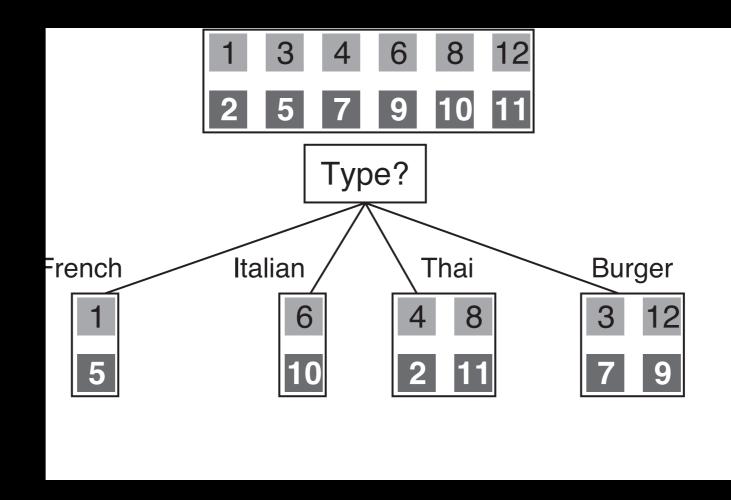
- $\bullet~S$ is a sample of training examples
- p_\oplus is the proportion of positive examples in S
- p_{\ominus} is the proportion of negative examples in S
- \bullet Entropy measures the impurity of S

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

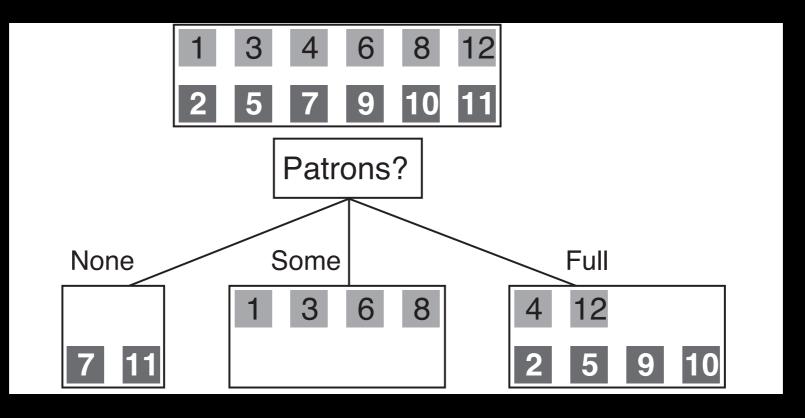
Information Gain

Gain(S, A) = expected reduction in entropy due to sorting on A

$$Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

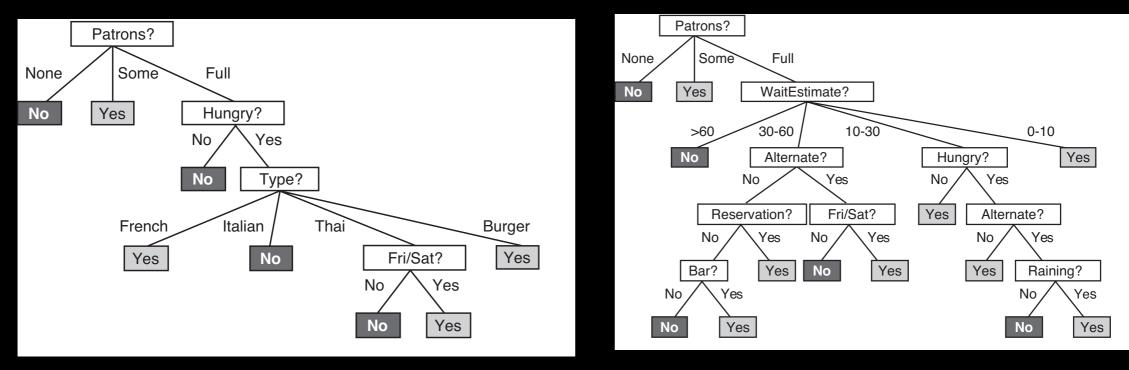


 $Entropy(S) = -0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$ $Entropy(S_F) = Entropy(S_I) = Entropy(S_T) = Entropy(S_B) = 1$ $Gain(Type) = Entropy(S) - \sum_{v \in Type} \frac{|S_v|}{|S|} Entropy(S_v) = 1 - 1 = 0$



 $Entropy(S) = -0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$ $Entropy(S_N) = -0 \log_2 0 - (1) \log_2 1 = 0$ $Entropy(S_S) = -(1) \log_2 1 - 0 \log_2 0 = 0$ $Entropy(S_F) = -(\frac{1}{3}) \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} = 0.92$ $Gain(Patron) = 1 - \sum_{\nu \in Patron} \frac{|S_{\nu}|}{|S|} Entropy(S_{\nu}) = 1 - (\frac{1}{2})(0.92) = 0.54$

Avoiding Overfitting



 Problem: How to determine when to stop growing the decision tree?

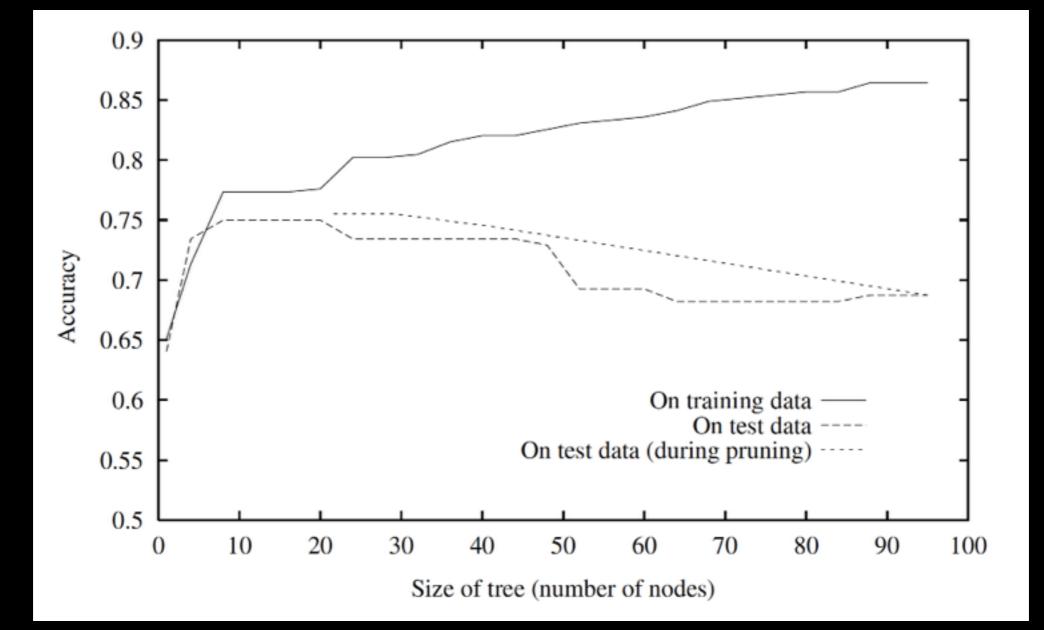
Reduced-Error Pruning

Split data into training and validation set

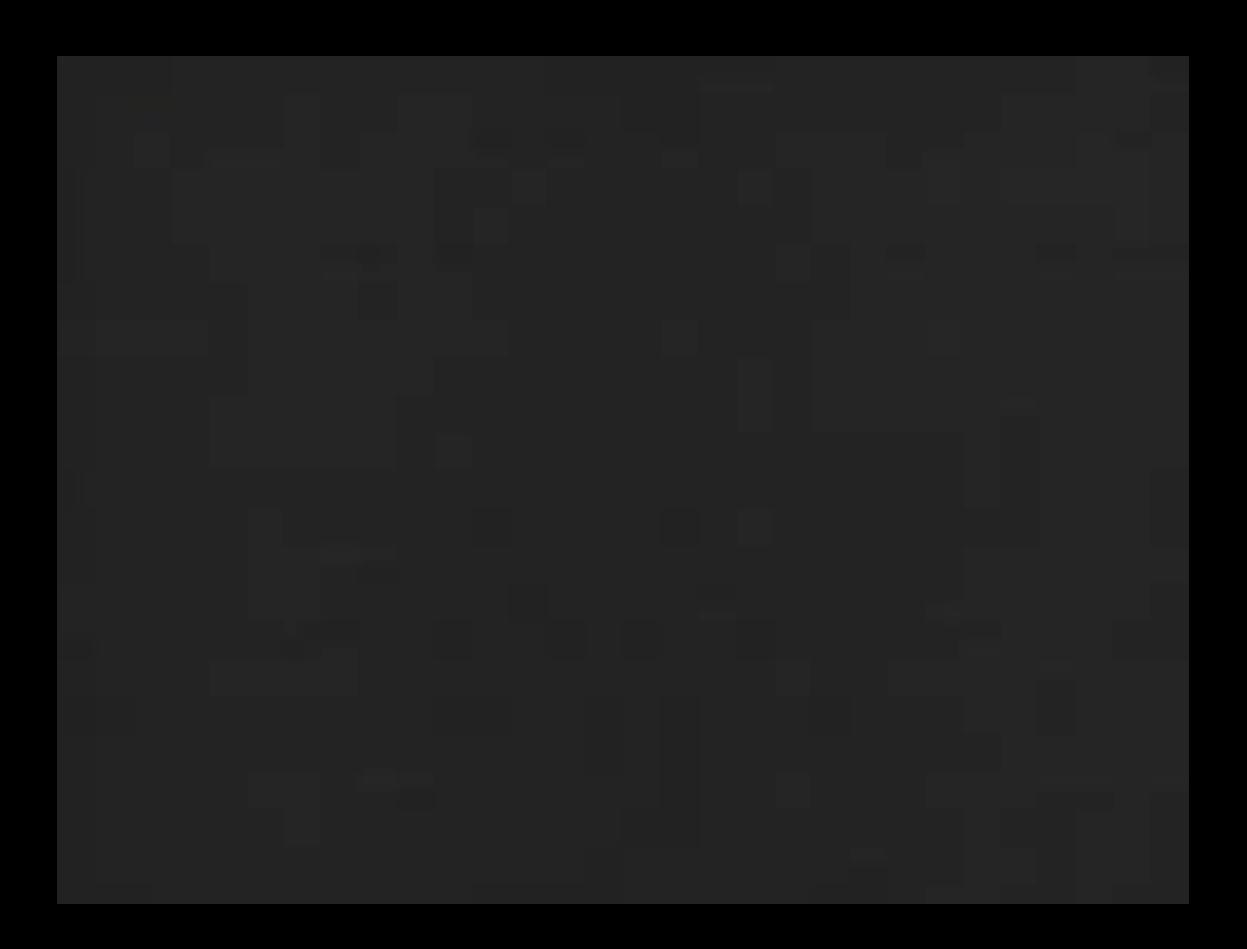
Do until further pruning is harmful:

- 1. Evaluate impact on *validation* set of pruning each possible node (plus those below it)
- 2. Greedily remove the one that most improves validation set accuracy
 - produces smallest version of most accurate subtree

Effect of Reduced-Error Pruning



Learning Neural Networks

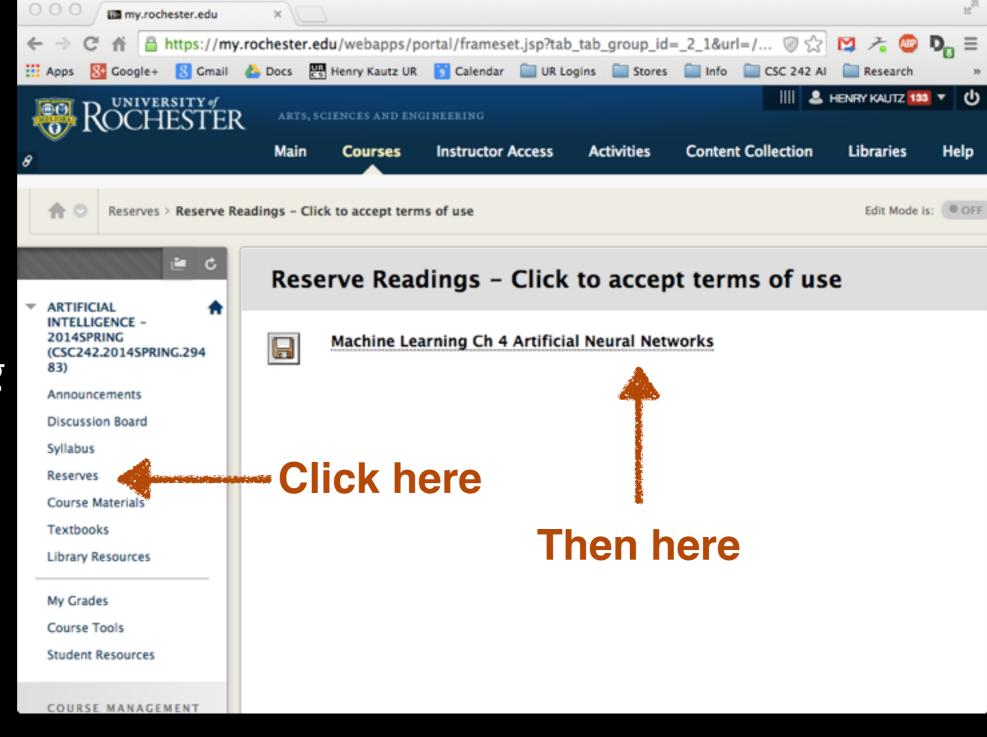


Reserve Readings

Artificial Neural Networks

Chapter 4 of Machine Learning

by Tom Mitchell



Artificial Neural Networks

[Read Ch. 4] [Recommended exercises 4.1, 4.2, 4.5, 4.9, 4.11]

- Threshold units
- \bullet Gradient descent
- Multilayer networks
- Backpropagation
- Hidden layer representations
- Example: Face Recognition
- Advanced topics

Connectionist Models

Consider humans:

- \bullet Neuron switching time $\tilde{}$.001 second
- \bullet Number of neurons ~ 10^{10}
- \bullet Connections per neuron ~ 10^{4-5}
- \bullet Scene recognition time $\tilde{}$.1 second
- \bullet 100 inference steps doesn't seem like enough
- \rightarrow much parallel computation

Properties of artificial neural nets (ANN's):

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

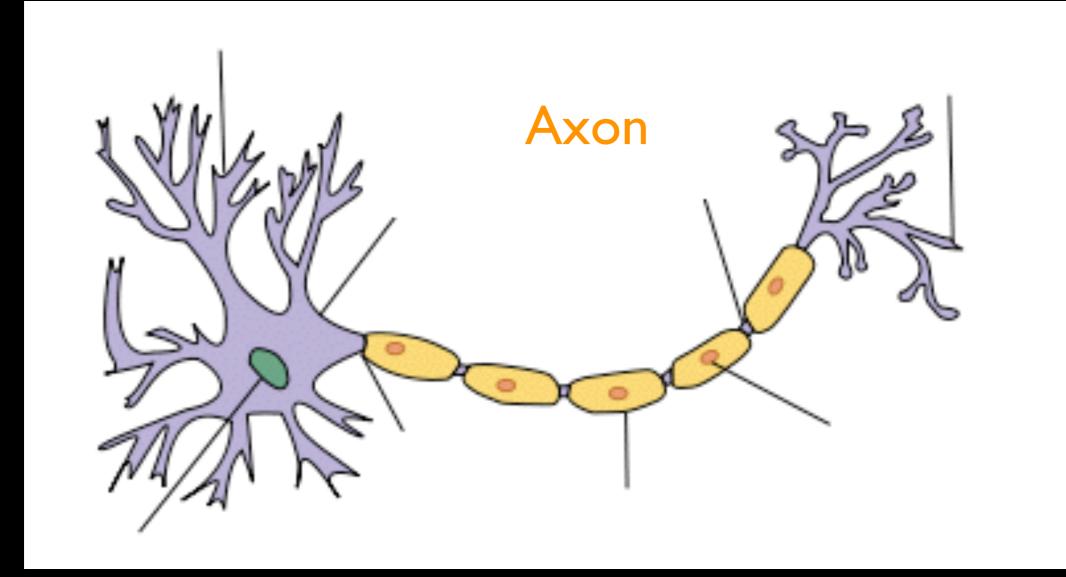
When to Consider Neural Networks

- Input is high-dimensional discrete or real-valued (e.g. raw sensor input)
- Output is discrete or real valued
- Output is a vector of values
- Possibly noisy data
- \bullet Form of target function is unknown
- Human readability of result is unimportant

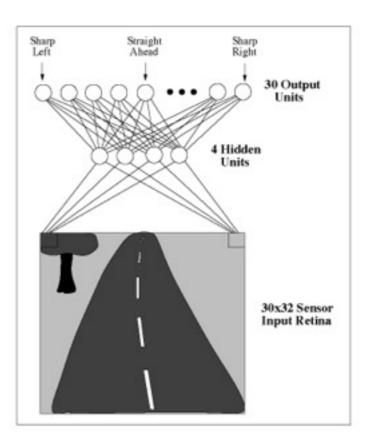
Examples:

- Speech phoneme recognition [Waibel]
- Image classification [Kanade, Baluja, Rowley]
- Financial prediction

Dendrites

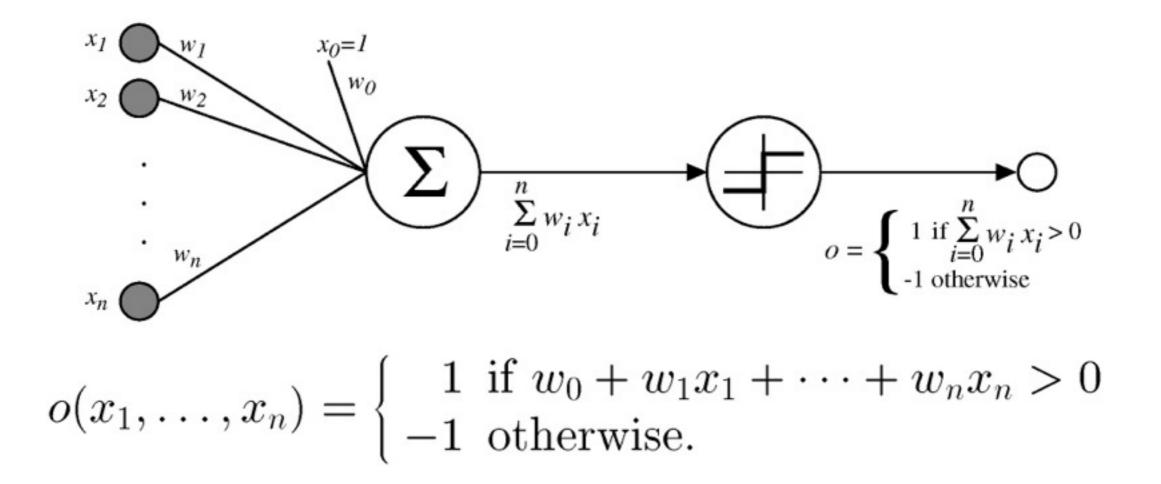


ALVINN drives 70 mph on highways



٠	٠	٠	٠		٠					C			٠	٠	•	٠	٠					۰		٠	*	•					
٠	٠		٠		٠	٠						*	٠		-		٠							*	٠						
٠	٠	٠	٠		٠								٠			٠	•						*	٠	•		-				
٠	٠	٠	٠		٠							-	٠	•		•							٠								
								C								٠	٠					*		٠	٠					4	
			٠												٠	٠		٠								•					
٠					٠										٠										٠						
٠	٠	٠	٠	٠												٠		٠	٠												
٠	٠	٠		٠			С	C								٠		٠	٠												
٠	٠	٠	e	٠			C			D	D	D					٠	٠	٠	٠	•										
٠	٠	٠	٠		0								С				٠	٠								٠					
٠	٠	٠	٠									C				•	٠	٠	٠					٠							
٠	٠															٠	٠		٠	٠											
	a				C												٠			٠	٠		*		٠						
	٠		C	C															٠	٠					٠						
٠	٠	٠	c	C				-						C			٠		٠		٠	٠		٠	•						
	٠	0	С																٠			٠		٠	٠					0	
	٠	۰		C		٠	٠		.*		*				C			*	٠			٠		٠	٠		٠				
	0				٠		•	٠	•			•			0	D	٥		×	٠	٠			٠	٠						
														С			۰					٠	٠	٠	٠			٠			
0	٥		D						٠						0	0	С	0			٠	٠					-				
																				٠	E.	٠	٠	٠							
			×	٠		٠	٠			٠											٠			٠	٠						
		۵					-										0				•		٠		٠						
						и,									C	C	C	0	۰				٠	٠	٠						
		٠	٠	٠	٠	٠				٠	٠				C	0	C		С		*				٠		٠	-	٠		
		٠				٠								C	C	٥	0			*	٠			*	٠	•					
			٠	٠										C	C	٥	C		C					٠							
										-	+	-	4		0		0		C					٠	٠		٠		-		
															0																

Perceptron



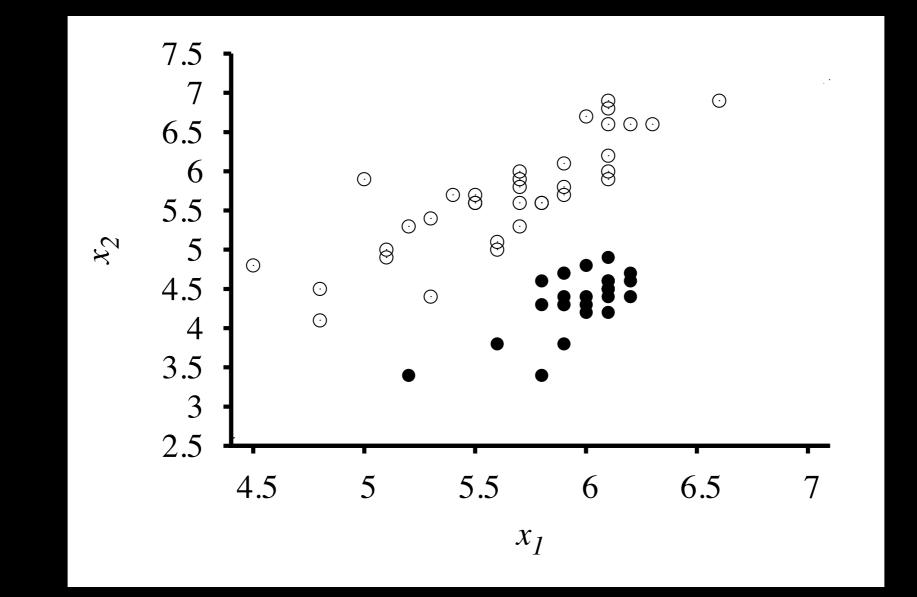
Sometimes we'll use simpler vector notation:

$$o(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} > 0 \\ -1 & \text{otherwise.} \end{cases}$$

What Do Perceptrons Do?

 To understand how perceptrons can be used to solve classification problems, we need to introduce the concept of a decision boundary

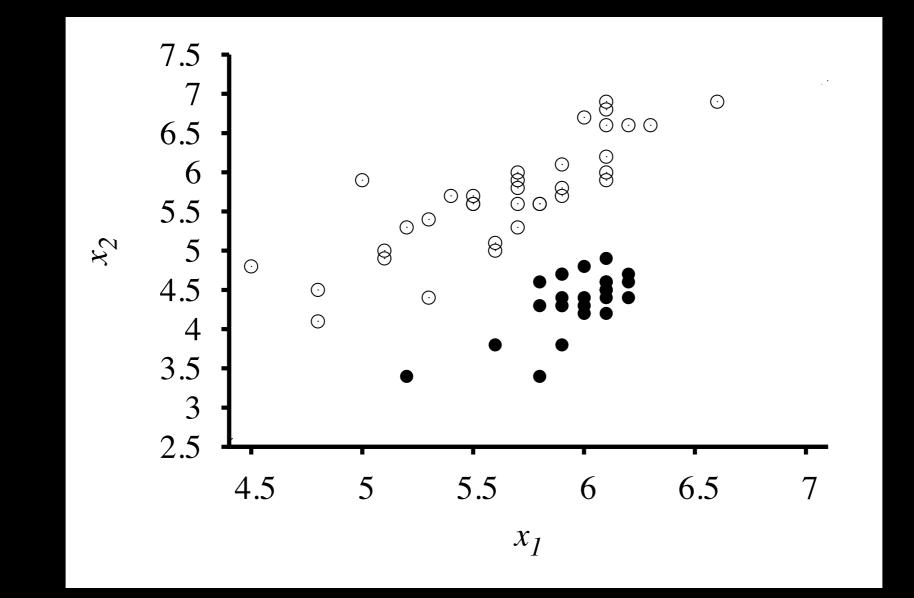
Earthquake or Atomic Bomb?



S-Wave

P-Wave

Earthquake or Atomic Bomb?



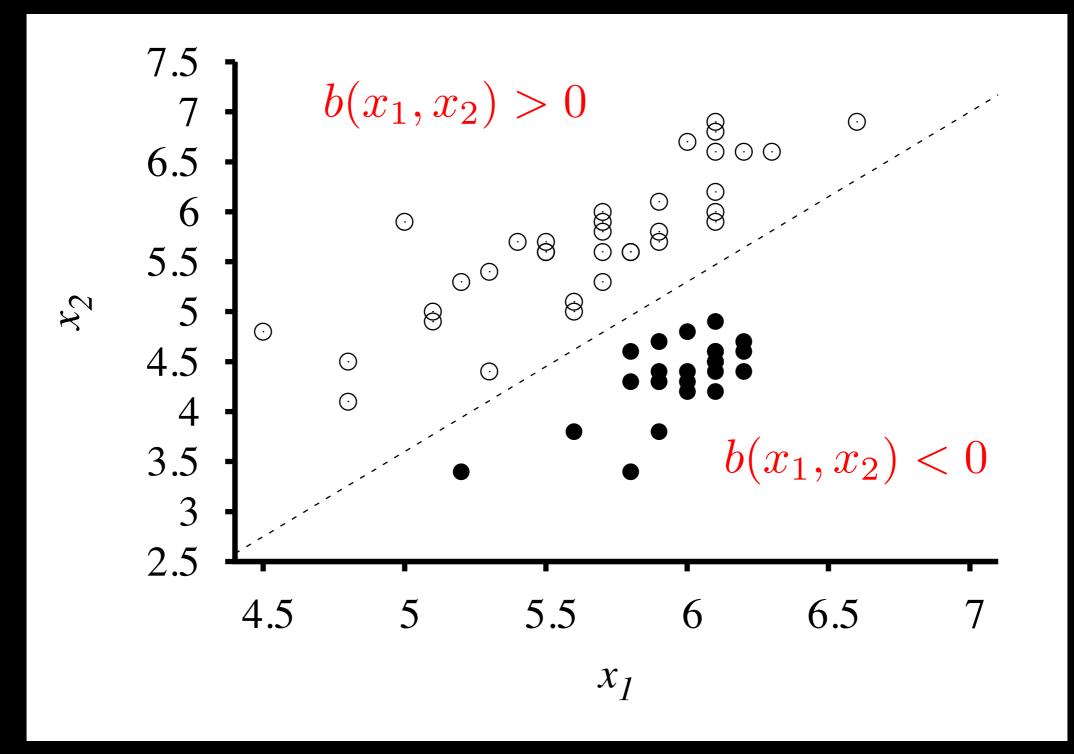
S-Wave

P-Wave

Decision Boundary

 Path (or surface in higher dimensions) that separates the two classes

> $b(\mathbf{x_1}, \mathbf{x_2}) > 0$ if x is from an earthquake < 0 if x is from an explosion



$$b(x_1, x_2) = x_2 - 1.7x_1 + 4.9$$

Linear Separator

- Decision boundary is a line
 - Line in 2D, plane in 3D, hyperplane in nD
- Data that admit a linear separator are said to be <u>linearly seperable</u>

Linear Classifier

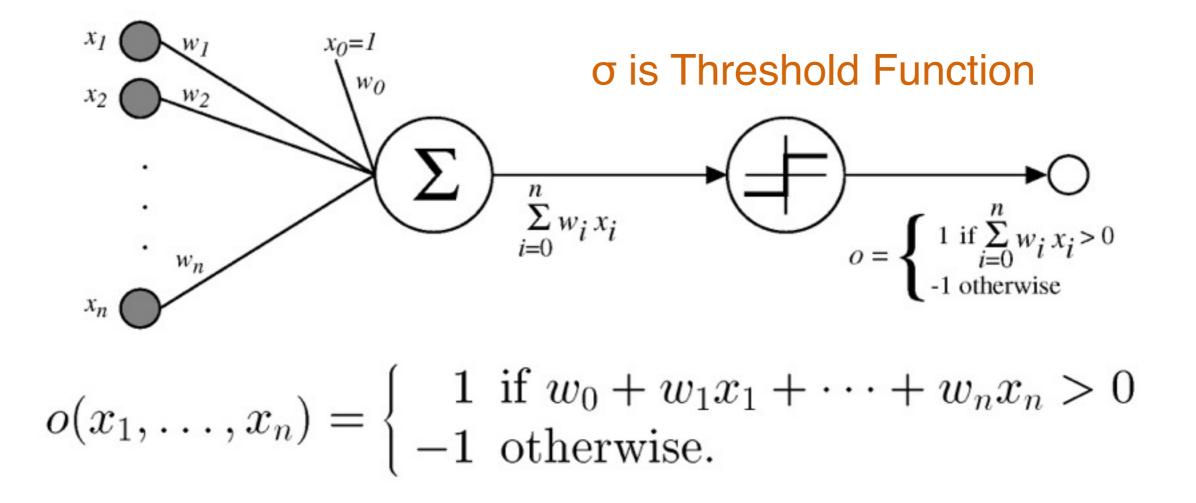
 $w_0 + w_1 x_1 + w_2 x_2 = 0$

 $\mathbf{w} \cdot \mathbf{x} = 0$

All instances of one class are above the line: $\mathbf{w} \cdot \mathbf{x} > 0$ All instances of one class are below the line: $\mathbf{w} \cdot \mathbf{x} < 0$

 $h_{\mathbf{w}}(\mathbf{x}) = Threshold(\mathbf{w} \cdot \mathbf{x})$

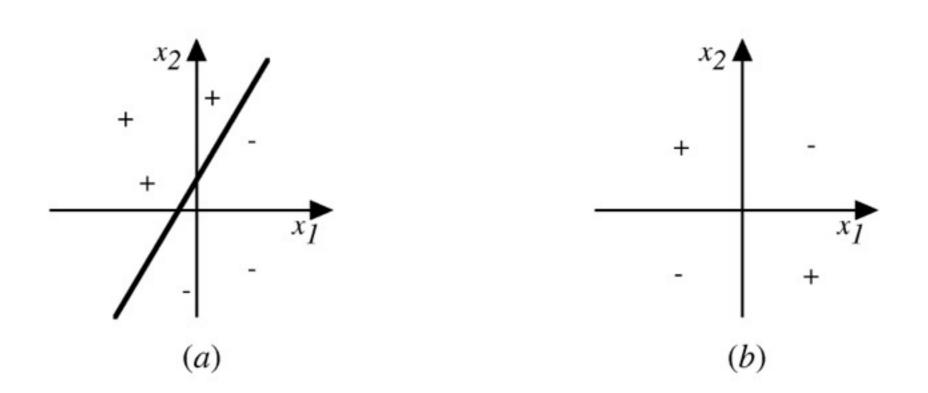
Perceptron



Sometimes we'll use simpler vector notation:

$$o(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} > 0\\ -1 & \text{otherwise.} \end{cases}$$

Decision Surface of a Perceptron



Represents some useful functions

• What weights represent $g(x_1, x_2) = AND(x_1, x_2)?$

But some functions not representable

- e.g., not linearly separable
- Therefore, we'll want networks of these...

Exercise

$$o(x_1, \dots, x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \dots + w_n x_n > 0 \\ -1 & \text{otherwise.} \end{cases}$$

- Where true = I, false = -I, what is the perceptron for:
 - NOT(x_1)
 - $AND(x_1,x_2)$
 - $OR(x_1,x_2)$
 - $XOR(x_1,x_2)$

Exercise

$$o(x_1,\ldots,x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \cdots + w_n x_n > 0\\ -1 & \text{otherwise.} \end{cases}$$

- Where true = I, false = -I, what is the perceptron for:
 - NOT(x₁) = $\sigma((-1)x_1)$
 - $AND(x_1,x_2)$
 - $OR(x_1,x_2)$
 - $XOR(x_1,x_2)$

Exercise

$$o(x_1, \dots, x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \dots + w_n x_n > 0 \\ -1 & \text{otherwise.} \end{cases}$$

- Where true = I, false = -I, what is the perceptron for:
 - NOT(x₁) = $\sigma((-1)x_1)$
 - $AND(x_1,x_2) = \sigma(x_1 + x_2 1.5)$
 - $OR(x_1,x_2)$
 - $XOR(x_1,x_2)$

Exercise

$$o(x_1,\ldots,x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \cdots + w_n x_n > 0\\ -1 & \text{otherwise.} \end{cases}$$

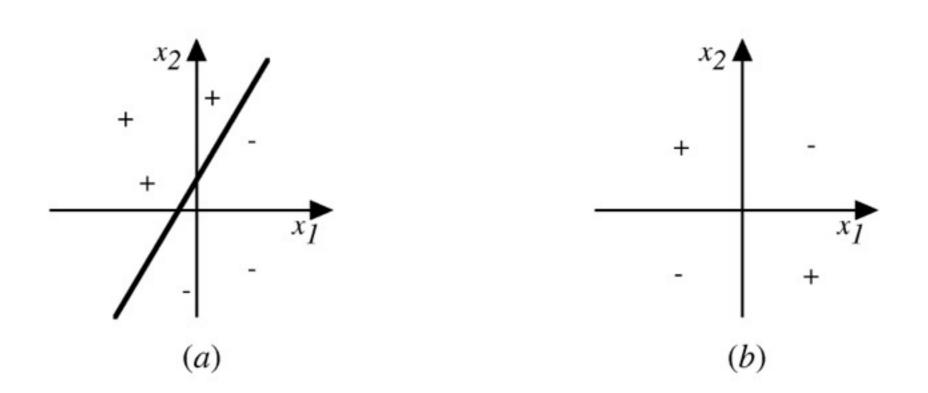
- Where true = I, false = -I, what is the perceptron for:
 - NOT(x₁) = $\sigma((-1)x_1)$
 - $AND(x_1,x_2) = \sigma(x_1 + x_2 1.5)$
 - $OR(x_1,x_2) = \sigma(x_1 + x_2 + 0.5)$
 - $XOR(x_1,x_2)$

Exercise

$$o(x_1,\ldots,x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \cdots + w_n x_n > 0\\ -1 & \text{otherwise.} \end{cases}$$

- Where true = I, false = -I, what is the perceptron for:
 - $NOT(x_1) = o((-1)x_1)$
 - $AND(x_1,x_2) = o(x_1 + x_2 1.5)$
 - $OR(x_1,x_2) = o(x_1 + x_2 + 0.5)$
 - $XOR(x_1,x_2)$ NO SOLUTION!

Decision Surface of a Perceptron



Represents some useful functions

• What weights represent $g(x_1, x_2) = AND(x_1, x_2)?$

But some functions not representable

- e.g., not linearly separable
- Therefore, we'll want networks of these...

Training

- Training is using data to set the weights for a perceptron (or network of perceptrons)
- Idea:
 - Start with random weights
 - For each piece of data:
 - Set inputs to the data features
 - Compare output to the label (target value)
 - If not same then adjust the weights

Perceptron training rule

$$w_i \leftarrow w_i + \Delta w_i$$

where

$$\Delta w_i = \eta (t - o) x_i$$

Where:

- $t = c(\vec{x})$ is target value
- $\bullet~o~{\rm is~perceptron}$ output
- η is small constant (e.g., .1) called *learning rate*

GRADIENT-DESCENT(training_examples, η)

Each training example is a pair of the form $\langle \vec{x}, t \rangle$, where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05).

- Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - Initialize each Δw_i to zero.
 - For each $\langle \vec{x}, t \rangle$ in training_examples, Do * Input the instance \vec{x} to the unit and compute the output o
 - * For each linear unit weight w_i , Do

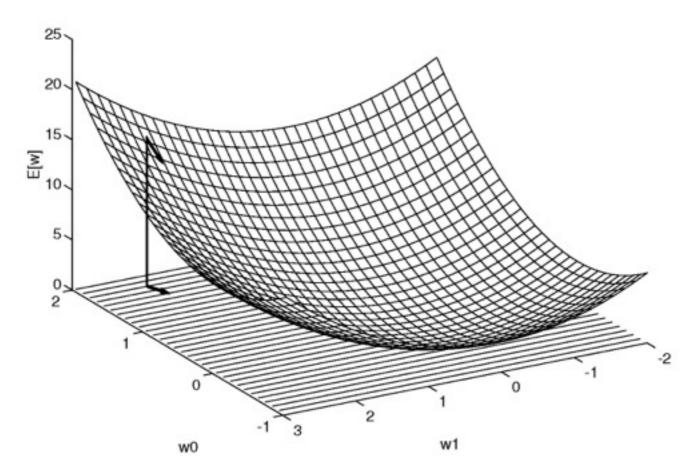
$$\Delta w_i \leftarrow \Delta w_i + \eta (t - o) x_i$$

- For each linear unit weight w_i , Do

$$w_i \leftarrow w_i + \Delta w_i$$

Justifying the Training Rule

- Define the error E as the sum of squared differences between the outputs and the targets across the training set
- Goal: find weights that minimize E
- Gradient descent: Repeat:
 - Compute the slope (gradient) of E with respect to each of the current weights
 - Make a small change in the weights in the "downward" direction



Gradient

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_n}\right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

Deriving Training Rule (Ignoring Threshold Function σ)

$$\begin{aligned} \frac{\partial E}{\partial w_i} &= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_d (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_d \frac{\partial}{\partial w_i} (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_d 2 (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)^2 \\ &= \sum_d (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x_d})^2 \\ \frac{\partial E}{\partial w_i} &= \sum_d (t_d - o_d) (-x_{i,d}) \end{aligned}$$

Incremental (Stochastic) Gradient Descent

Batch mode Gradient Descent: Do until satisfied

1. Compute the gradient $\nabla E_D[\vec{w}]$

2. $\vec{w} \leftarrow \vec{w} - \eta \nabla E_D[\vec{w}]$

Incremental mode Gradient Descent: Do until satisfied

- \bullet For each training example d in D
 - 1. Compute the gradient $\nabla E_d[\vec{w}]$

2. $\vec{w} \leftarrow \vec{w} - \eta \nabla E_d[\vec{w}]$

$$E_D[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$
$$E_d[\vec{w}] \equiv \frac{1}{2} (t_d - o_d)^2$$

Incremental Gradient Descent can approximate Batch Gradient Descent arbitrarily closely if η made small enough

Summary

Perceptron training rule guaranteed to succeed if

- Training examples are linearly separable
- Sufficiently small learning rate η

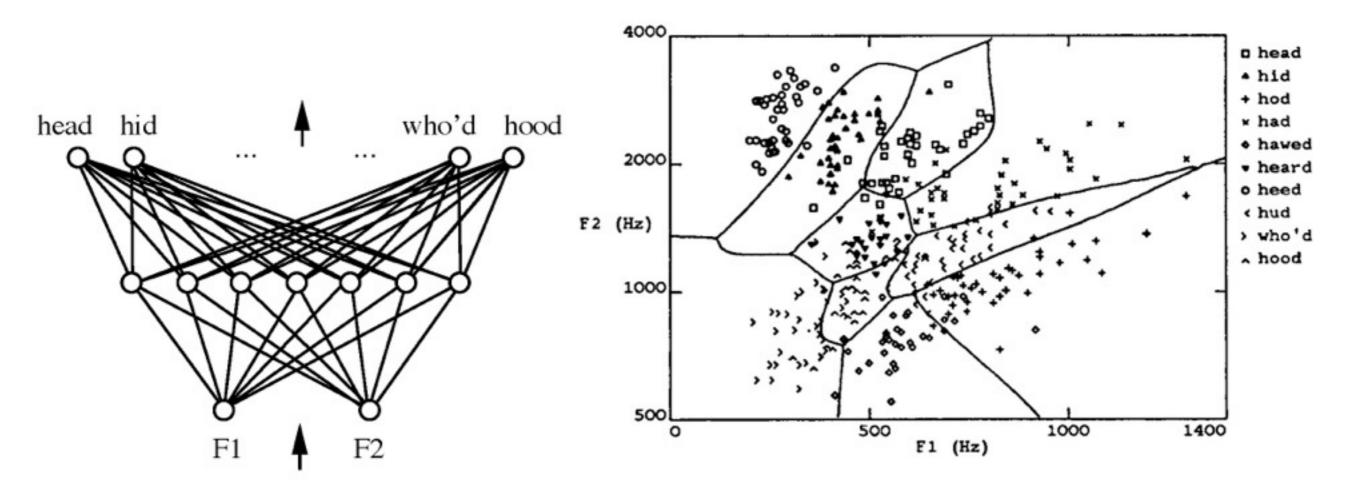
Linear unit training rule uses gradient descent

- Guaranteed to converge to hypothesis with minimum squared error
- \bullet Given sufficiently small learning rate η
- Even when training data contains noise
- \bullet Even when training data not separable by H

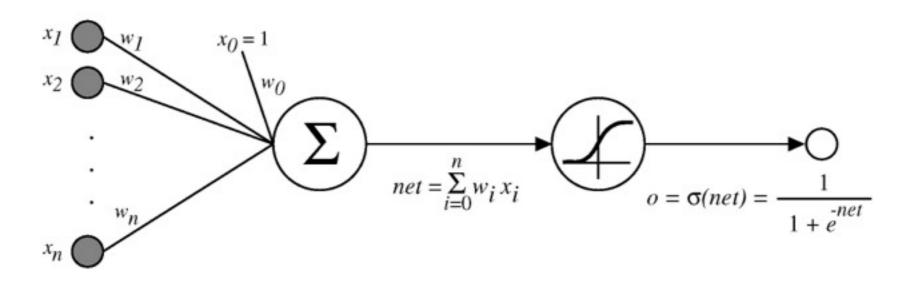
Epochs

- It can take a lot of small steps to reach the optimal set of weights
- What if you run through all the training data and are not yet at the optimum?
- Run through the training data again ...
- ... and again ...
- ... and again!
- Each pass through the training data is an epoch

Multilayer Networks of Sigmoid Units



Sigmoid Unit



 $\sigma(x)$ is the sigmoid function

$$\frac{1}{1 + e^{-x}}$$

Nice property: $\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$

We can derive gradient decent rules to train

- One sigmoid unit
- Multilayer networks of sigmoid units \rightarrow Backpropagation

Coming Up April 15 – Neural Network II Back by Popular Demand! Seven better than Neural Networks I! April 17 – In-Class Workshop for Project 3 Live highly attractive TAs will personally help you complete the project!

An afternoon you will not soon forget!