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Reinforcement Learning I



A Joke



A robot walks up to a 
counter



and says, “I’ll have a 
beer”



The human at the counter 
says, “I can’t serve you a beer”



The robot says, “Is it because  
you discriminate against robots?!”



The human says, “No, it’s because 
this is a hardware store”



Reinforcement Learning

• Learning how to act from rewards and 
punishments (reinforcement)	


• What should robot learn?	


• Not to order a beer in a hardware store?	


• Not to go to a hardware store when he 
wants a beer?



Reinforcement Learning

• Learning how to act from rewards and 
punishments (reinforcement)	


• What did the robot do wrong?	


• Ordering a beer?	


• Going into the hardware store?	


• Walking toward the hardware store?



Key Issues

• How to account for the delay between 
actions and consequences?	


• How to simultaneously learn a model of 
the environment while acting in the 
environment?	


• “Imagine playing a new game whose rules 
you don’t know; after hundred or so moves, 
your opponent announces, ‘You lose.’”



B.F. Skinner (1904-1990)
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Learning from Experience Plays a Role in …

Psychology

Artificial Intelligence

Control Theory and 
Operations Research

Artificial Neural Networks

Reinforcement 
Learning (RL)

Neuroscience
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What is Reinforcement Learning?

Learning from interaction 
Goal-oriented learning 
Learning about, from, and while interacting with an 
external environment 
Learning what to do—how to map situations to actions
—so as to maximize a numerical reward signal
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Supervised Learning

Supervised Learning  
SystemInputs Outputs

Training Info  =  desired (target) outputs

Error  =  (target output  –  actual output)
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Reinforcement Learning

RL 
SystemInputs Outputs (“actions”)

Training Info  =  evaluations (“rewards” / “penalties”)

Objective:  get as much reward as possible
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Key Features of RL

Learner is not told which actions to take 
Trial-and-Error search 
Possibility of delayed reward (sacrifice short-term 
gains for greater long-term gains) 
The need to explore and exploit 
Considers the whole problem of a goal-directed agent 
interacting with an uncertain environment
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Complete Agent

Temporally situated 
Continual learning and planning 
Object is to affect the environment 
Environment is stochastic and uncertain

Environment

actionstate

reward
Agent
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Elements of RL

Policy: what to do 
Reward: what is good 
Value: what is good because it predicts reward 
Model: what follows what

Policy

Reward

Value
Model of 

environment
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An Extended Example: Tic-Tac-Toe
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Assume an imperfect opponent: he/
she sometimes makes mistakes
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An RL Approach to Tic-Tac-Toe

1. Make a table with one entry per state:

2. Now play lots of games. To 
pick our moves, look ahead 
one step:

State         V(s) – estimated probability of winning
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current state

various possible 

next states*
Just pick the next state with the highest 
estimated prob. of winning — the largest V(s); 
a greedy move. 
!
But 10% of the time pick a move at random; 
an exploratory move.
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RL Learning Rule for Tic-Tac-Toe

“Exploratory” move

movegreedy  our after  statethe–    s
movegreedy  our before  statethe–     s
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How can we improve this T.T.T. player?

Take advantage of symmetries 
representation/generalization 
How might this backfire? 

Do we need “random” moves? Why? 
Do we always need a full 10%? 

Can we learn from “random” moves? 
Can we learn offline? 

Pre-training from self play? 
Using learned models of opponent? 

…
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e.g. Generalization

Table                              Generalizing Function Approximator

State            VState            V
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How is Tic-Tac-Toe Too Easy?

Finite, small number of states 
One-step look-ahead is always possible 
State completely observable 
…
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Some Notable RL Applications

TD-Gammon: Tesauro 
world’s best backgammon program 

Elevator Control: Crites & Barto 
high performance down-peak elevator controller 

Dynamic Channel Assignment: Singh & Bertsekas, Nie & 
Haykin 

high performance assignment of radio channels to mobile telephone calls 

…
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TD-Gammon

Start with a random network 
Play very many games against self 
Learn a value function from this simulated experience

This produces arguably the best player in the world

Action selection 
by 2–3 ply searchValue

TD error 
Vt+1 − Vt

Tesauro, 1992–1995

Effective branching factor 400



Reinforcement Learning 29

Evaluative Feedback

Evaluating actions vs. instructing by giving correct actions 
Pure evaluative feedback depends totally on the action taken. Pure 
instructive feedback depends not at all on the action taken.  
Supervised learning is instructive; optimization is evaluative 
Associative vs. Nonassociative: 

Associative: inputs mapped to outputs; learn the best output 
for each input 
Nonassociative: “learn” (find) one best output 

n-armed bandit (at least how we treat it) is: 
Nonassociative 
Evaluative feedback
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The n-Armed Bandit Problem

Choose repeatedly from one of n actions; each 
choice is called a play 
After each play    , you get a reward   , where

)a(Qa|rE t
*

tt =
ta tr

These are unknown action values 
Distribution of      depends only on  rt at

Objective is to maximize the reward in the long term, 
e.g., over 1000 plays

To solve the n-armed bandit problem, 
you must explore a variety of actions 

and then exploit the best of them.
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The Exploration/Exploitation Dilemma

Suppose you form estimates 
!
!
The greedy action at t is 
!
!
!
!
You can’t exploit all the time; you can’t explore all the 
time 
You can never stop exploring; but you should always 
reduce exploring

Qt(a) ≈Q
*(a) action value estimates

at* = argmaxa Qt(a)

at = at
* ⇒ exploitation

at ≠ at* ⇒ exploration
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Action-Value Methods

Methods that adapt action-value estimates and 
nothing else, e.g.:  suppose by the t-th play, action     
had been chosen      times, producing rewards                       
then 
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ε-Greedy Action Selection

Greedy action selection: 
!
!

ε-Greedy:

)a(Qmaxargaa ta

*
tt ==

at*  with probability 1 − ε
random action with probability ε{at =

… the simplest way to try to balance exploration and 
exploitation
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10-Armed Testbed

n = 10 possible actions 
Each           is chosen randomly from a normal  
distribution:  
each      is also normal:  
1000 plays 
repeat the whole thing 2000 times (with reselecting          ) 
and average the results 
Evaluative versus instructive feedback
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ε-Greedy Methods on the 10-Armed Testbed
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Softmax Action Selection

Softmax action selection methods grade action probs. 
by estimated values. 

The most common softmax uses a Gibbs, or 
Boltzmann, distribution: 
 
Choose action a on play t with probability 
 
 
 
 
 
 
where τ is the “computational temperature”
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Learning for control from 
multiple demonstrations	


Andrew Ng (Stanford U)

We consider the problem of learning to follow a 
desired trajectory when given a small number of 
demonstrations from a sub-optimal expert.  We 
present an algorithm that (i) extracts the desired 
trajectory from the sub-optimal expert's 
demonstrations and (ii) learns a local model suitable 
for control along the learned trajectory.  We apply 
our algorithm to the problem of autonomous 
helicopter flight. In all cases, the autonomous 
helicopter's performance exceeds that of our 
expert helicopter pilot's demonstrations.






