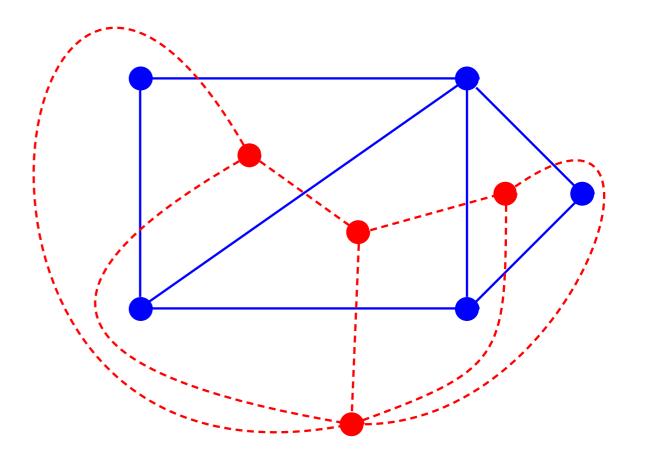
Duality

CSC 282

Duality

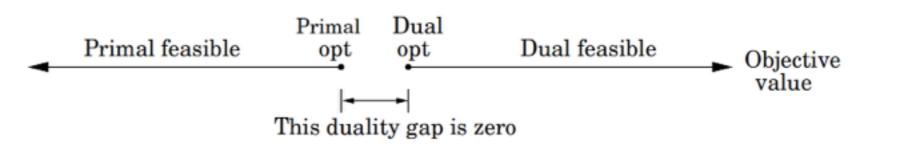
- Change of representation by exchanging parts of one type with parts of another part
- Example: Dual of a planar graph: exchange vertices and faces



Duality in Linear Programming

- Exchange variables and constraints
- Exchange maximization and minimization
- Exchange constraints and objective function
- Feasible solutions to original problem coincide with feasible solutions to the dual at the point of optimality

Figure 7.9 By design, dual feasible values \geq primal feasible values. The duality theorem tells us that moreover their optima coincide.



Intuition

- The primal (original) problem asks us to maximize some linear expression
- We can find a linear combination of the constraints that puts an upper bound on that expression
- The best (tightest) such upper bound is exactly at the optima of the primal problem

Example

 $x_1 + 6x_2 \leq$

 $(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$

Matrix Form

A linear function like $x_1 + 6x_2$ can be written as the dot product of two vectors

$$\mathbf{c} = \begin{pmatrix} 1 \\ 6 \end{pmatrix}$$
 and $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$,

denoted $\mathbf{c} \cdot \mathbf{x}$ or $\mathbf{c}^T \mathbf{x}$. Similarly, linear constraints can be compiled into matrix-vector form:

$$\begin{array}{rcccc} x_1 & \leq & 200 \\ x_2 & \leq & 300 \\ x_1 + x_2 & \leq & 400 \end{array} \implies & \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}}_{\mathbf{A}} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} & \leq & \underbrace{\begin{pmatrix} 200 \\ 300 \\ 400 \end{pmatrix}}_{\mathbf{b}}.$$

Primal LP:

Dual LP:

max
$$\mathbf{c}^T \mathbf{x}$$
min $\mathbf{y}^T \mathbf{b}$ $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ $\mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T$ $\mathbf{x} \geq 0$ $\mathbf{y} \geq 0$

solve_lp dual1.lp

Why Care About Duality?

- Dual problem might be easier to solve than primal
- If solver cannot be run all the way to completion
 - Primal provides a lower bound on best solution
 - Dual provides an upper bound on best solution
- Strong duality: for LP, if you can find any pair of feasible solutions for the primal and dual with the same objective value, you are done!
- Duals can be defined for harder classes of problems, e.g. mixedinteger programming
 - But in general only weak duality holds

Problems