Simplex

CSC 282

let v be any vertex of the feasible region
while there is a neighbor v^{\prime} of v with better objective value: set $v=v^{\prime}$

$$
\begin{align*}
\max x_{1}+6 x_{2} & +13 x_{3} \\
x_{1} & \leq 200 \tag{1}\\
x_{2} & \leq 300 \tag{2}\\
x_{1}+x_{2}+x_{3} & \leq 400 \tag{3}\\
x_{2}+3 x_{3} & \leq 600 \tag{4}\\
x_{1} & \geq 0 \tag{5}\\
x_{2} & \geq 0 \tag{6}\\
x_{3} & \geq 0 \tag{7}
\end{align*}
$$

Each vertex is specified by a set of n inequalities.
Two vertices are neighbors if they have Defining inequalities $n-1$ defining inequalities in common. for A and C ?

Case 1: Vertex is Origin

$\max 2 x_{1}+5 x_{2}$

- Origin is optimal iff all $\mathrm{c}_{\mathrm{i}} \leq 0$
- Otherwise:

$$
\begin{align*}
2 x_{1}-x_{2} & \leq 4 \tag{1}\\
x_{1}+2 x_{2} & \leq 9 \tag{2}\\
-x_{1}+x_{2} & \leq 3 \tag{3}\\
x_{1} & \geq 0 \tag{4}\\
x_{2} & \geq 0 \tag{5}
\end{align*}
$$

- Release some tight constraint X_{i}

Increase x_{2} until it "runs into" constraint 3 stopping at $\mathrm{x}_{2}=3$

- Increase x_{i} until some other inequality becomes tight

Case 2: Vertex is not the origin

- If not at the origin: transform coordinates so that the vertex is the origin
- New coordinate system \mathbf{y} is a linear transformation of \mathbf{x}
- New objective function becomes $\max \mathrm{C}_{u}+\mathrm{K}^{\top} \mathrm{y}$
- c_{u} is the value of the objective function at original vertex u
- k is the transformed cost vector

Initial LP:

$$
\begin{align*}
\max & 2 x_{1}+5 x_{2} \\
2 x_{1}-x_{2} & \leq 4 \tag{1}\\
x_{1}+2 x_{2} & \leq 9 \tag{2}\\
-x_{1}+x_{2} & \leq 3 \tag{3}\\
x_{1} & \geq 0 \tag{4}\\
x_{2} & \geq 0 \tag{5}
\end{align*}
$$

Current vertex: $\{(4),(5)\}$ (origin). Objective value: 0 .

Move: increase x_{2}.
(5) is released, (3) becomes tight. Stop at $x_{2}=3$.

New vertex $\{(4),(3)\}$ has local coordinates $\left(y_{1}, y_{2}\right)$:

$$
y_{1}=x_{1}, \quad y_{2}=3+x_{1}-x_{2}
$$

Rewritten LP:

$$
\begin{align*}
\max 15 & +7 y_{1}-5 y_{2} \\
y_{1}+y_{2} & \leq 7 \tag{1}\\
3 y_{1}-2 y_{2} & \leq 3 \tag{2}\\
y_{2} & \geq 0 \tag{3}\\
y_{1} & \geq 0 \tag{4}\\
-y_{1}+y_{2} & \leq 3 \tag{5}
\end{align*}
$$

Current vertex: $\{(4),(3)\}$.
Objective value: 15 .
Move: increase y_{1}.
(4) is released, (2) becomes tight. Stop at $y_{1}=1$.

New vertex $\{(2),(3)\}$ has local coordinates $\left(z_{1}, z_{2}\right)$:

$$
z_{1}=3-3 y_{1}+2 y_{2}, \quad z_{2}=y_{2}
$$

Rewritten LP:

$$
\begin{align*}
& \max 22-\frac{7}{3} z_{1}-\frac{1}{3} z_{2} \\
&-\frac{1}{3} z_{1}+\frac{5}{3} z_{2} \leq 6 \tag{1}\\
& z_{1} \geq 0 \tag{2}\\
& z_{2} \geq 0 \tag{3}\\
& \frac{1}{3} z_{1}-\frac{2}{3} z_{2} \leq 1 \tag{4}\\
& \frac{1}{3} z_{1}+\frac{1}{3} z_{2} \leq 4 \tag{5}
\end{align*}
$$

Current vertex: $\{(2$, , (3) \}.
Objective value: 22 .
Optimal: all $c_{i}<0$.
Solve (2), (3) (in original LP) to get optimal solution $\left(x_{1}, x_{2}\right)=(1,4)$.

Running Time of Simplex

- n variables, m constraints
- Each iteration is $\mathrm{O}(\mathrm{mn})$
- Calculating objective value: O(n)
- Checking if a neighbor is feasible:
- Naive approach $\mathrm{O}\left(\mathrm{mn}^{4}\right)$
- Incremental algorithm amortized cost $\mathrm{O}(\mathrm{mn})$
- Moving to a neighbor: $O(1)$
- Worst case number of iterations $\binom{m+n}{n}$ exponential

Circuit Evaluation

- Given Boolean circuit and its inputs, compute the output
- Can be encoded as an LP
- Shows that LP is "Pcomplete" - as hard as any program in P

Circuit Satisfiability

- Given Boolean circuit, is there some set of inputs that makes the output 1?
- Cannot be encoded as an LP
- Can be encoded as an integer program
- Shows that integer programming is "NP-
 complete" - as hard as any program in NP

