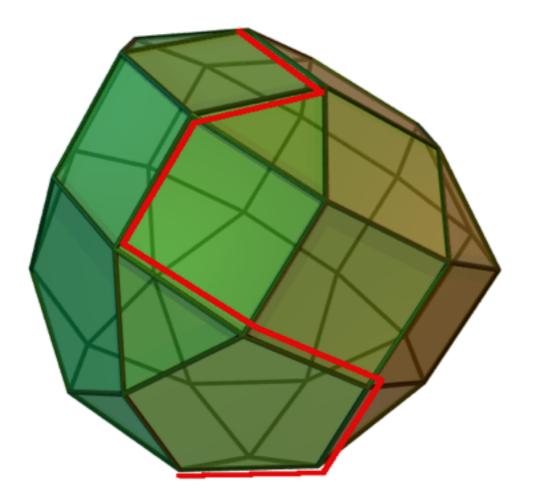
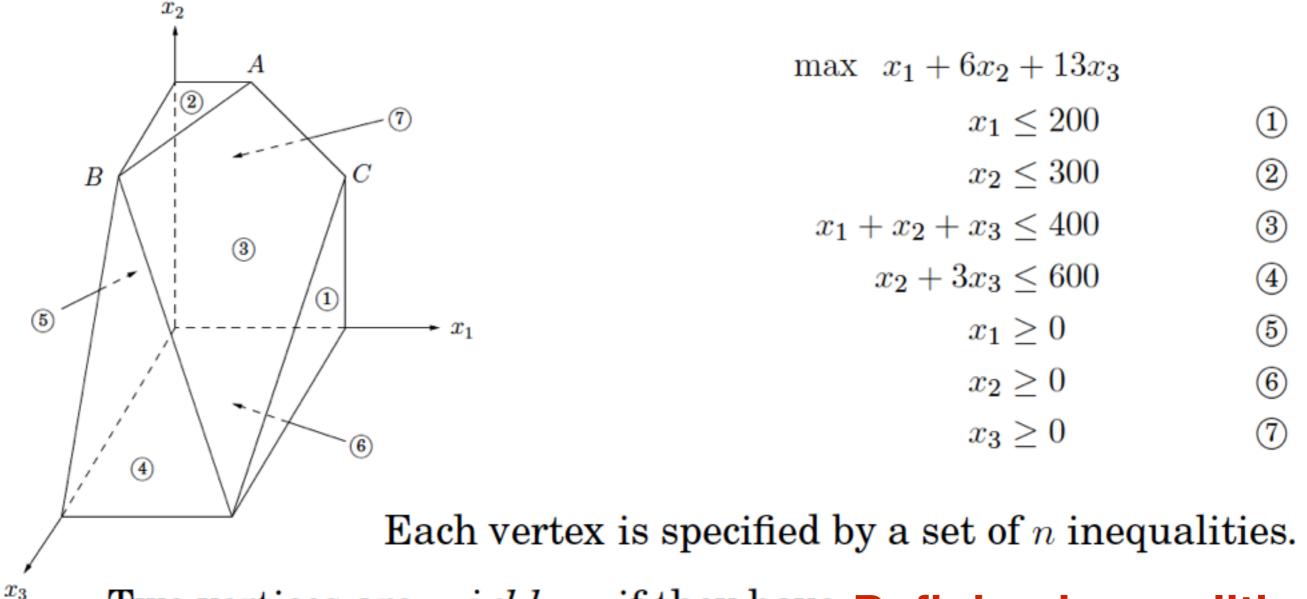
Simplex

CSC 282



let v be any vertex of the feasible region while there is a neighbor v^\prime of v with better objective value: set $v=v^\prime$



Two vertices are *neighbors* if they have **Defining inequalities** n - 1 defining inequalities in common. for A and C?

Case 1: Vertex is Origin

- Origin is optimal iff all $c_i \leq 0$
- Otherwise:
 - Release some tight constraint x_i
 - Increase x_i until some other inequality becomes tight

 $\max 2x_1 + 5x_2$

- $2x_1 x_2 \leq 4 \quad (1)$
- $x_1 + 2x_2 \leq 9 \qquad (2)$

Increase x₂ until it "runs into" constraint 3 stopping at x₂=3

Case 2: Vertex is not the origin

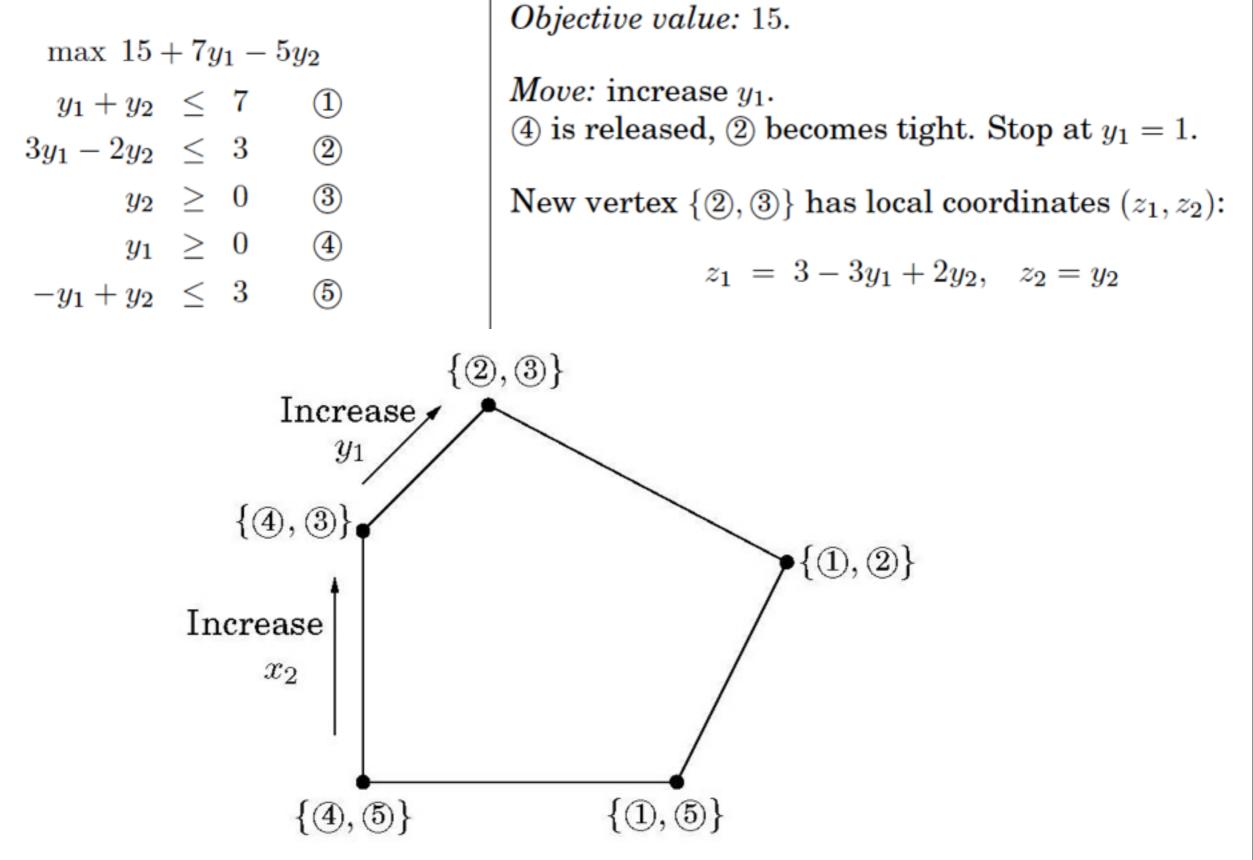
- If not at the origin: transform coordinates so that the vertex is the origin
- New coordinate system y is a linear transformation of x
- New objective function becomes max c_u + k^Ty
 - c_u is the value of the objective function at original vertex u
 - k is the transformed cost vector

Initial LP:

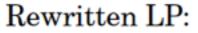
Objective value: 0. max $2x_1 + 5x_2$ *Move:* increase x_2 . $2x_1 - x_2 \leq 4$ 1 (5) is released, (3) becomes tight. Stop at $x_2 = 3$. $x_1 + 2x_2 \leq 9$ 2 $-x_1 + x_2 \leq 3$ ③ New vertex $\{(4), (3)\}$ has local coordinates (y_1, y_2) : $x_1 \geq 0$ (4) $y_1 = x_1, \quad y_2 = 3 + x_1 - x_2$ $x_2 \geq 0$ 5 $\{2,3\}$ Increase 🖌 y_1 $\{(4), (3)\}$ $\{(1,2)\}$ Increase x_2 $\{(1,5)\}$ $\{(4), (5)\}$

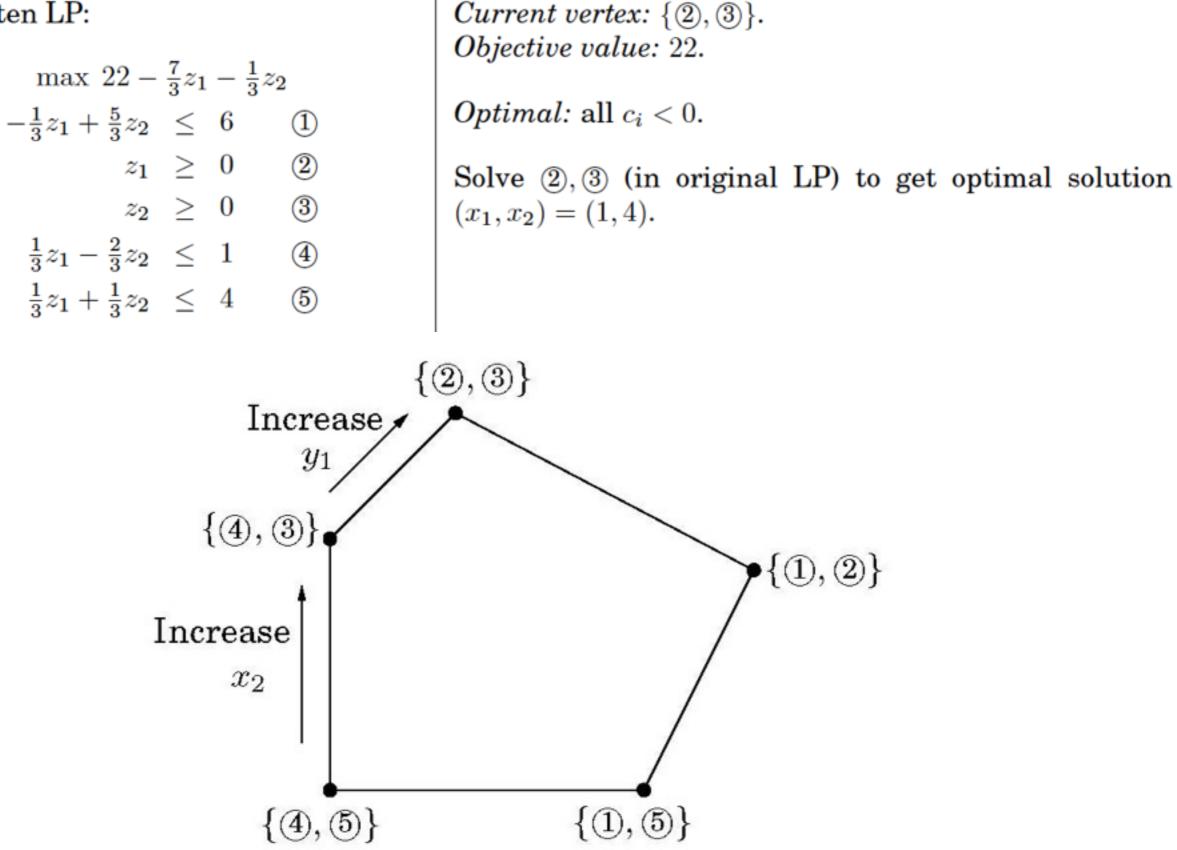
Current vertex: $\{4, 5\}$ (origin).

Rewritten LP:



Current vertex: $\{4, 3\}$ *.*





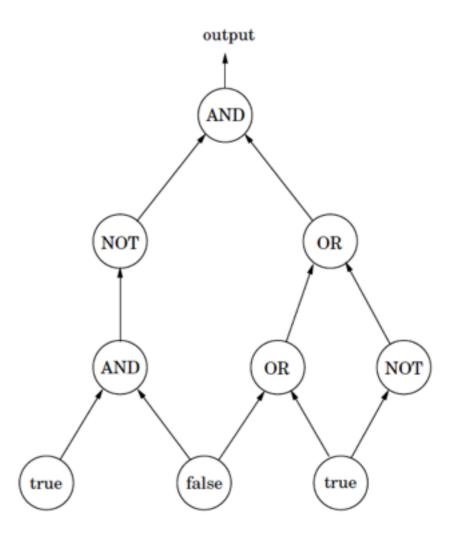
Running Time of Simplex

- n variables, m constraints
- Each iteration is O(mn)
 - Calculating objective value: O(n)
 - Checking if a neighbor is feasible:
 - Naive approach O(mn⁴)
 - Incremental algorithm amortized cost O(mn)
 - Moving to a neighbor: O(1)
- Worst case number of iterations

exponential

Circuit Evaluation

- Given Boolean circuit and its inputs, compute the output
- Can be encoded as an LP
- Shows that LP is "Pcomplete" - as hard as any program in P



Circuit Satisfiability

- Given Boolean circuit, is there some set of inputs that makes the output 1?
- Cannot be encoded as an LP
- Can be encoded as an integer program
- Shows that integer programming is "NPcomplete" - as hard as any program in NP

