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Since the original demonstration that electrical activity
generated by ensembles of cortical neurons can be
employed directly to control a robotic manipulator,
research on brain–machine interfaces (BMIs) has experi-
enced an impressive growth. Today BMIs designed for
both experimental and clinical studies can translate raw
neuronal signals into motor commands that reproduce
arm reaching and hand grasping movements in artificial
actuators. Clearly, these developments hold promise for
the restoration of limb mobility in paralyzed subjects.
However, as we review here, before this goal can be
reached several bottlenecks have to be passed. These
include designing a fully implantable biocompatible
recording device, further developing real-time computa-
tional algorithms, introducing a method for providing
the brain with sensory feedback from the actuators, and
designing and building artificial prostheses that can be
controlled directly by brain-derived signals. By reaching
these milestones, future BMIs will be able to drive and
control revolutionary prostheses that feel and act like
the human arm.

Introduction
Less than a decade ago, hardly anyone could have
predicted that attempts to build direct functional
interfaces between brains and artificial devices, such as
computers and robotic limbs, would have succeeded so
readily, and in the process would have led to the establish-
ment of a new area at the frontier of systems neuroscience.
Born as a highly multidisciplinary field, basic research on
brain–machine interfaces (BMIs) has moved at a stunning
pace since the first experimental demonstration in1999
that ensembles of cortical neurons could directly control a
robotic manipulator [1]. Since then, a continuous stream of
research papers has kindled an enormous interest in BMIs
among the scientific community and the lay public. This
interest stems from the considerable potential of this
technology for restoration of motor behaviors in severely
handicapped patients.

Indeed, BMIs have been primarily conceived as a poten-
tial new therapy to restore motor control in severely dis-
abled patients, particularly those suffering from
devastating conditions such as amyotrophic lateral
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sclerosis (ALS), spinal cord injury, stroke and cerebral
palsy. As this technology advances and the risks of invasive
brain recordings decrease, BMIs might also hold promise
for amputees. In addition to the systems controlling upper-
limb prostheses, BMIs dedicated to the restoration of
locomotion and speech are likely to emerge.

However, such stellar progress also breeds unrealistic
expectations that such a future is just around the corner.
Thus, the understandable eagerness in attaining the lofty
goal of helping severely disabled patients has to be carefully
calibrated by an objective analysis of the current state
and future directions of the field. Such analysis indicates
that, despite the optimism raised by a barrage of new
accomplishments, there are still many issues that preclude
straightforward translation of experimental BMIs into clin-
ical applications. Indeed, most of the invasive BMIs have
been tested only in experimental animals. Thus, despite
recent enthusiasm tomove emergent, and in some cases not
thoroughly tested, BMI-related technology into clinical
trials, much experimentation remains to be done before
BMIs can become a safe and efficient rehabilitation tool.

Here, we highlight some of the fundamental obstacles
faced by BMI research and propose a series of milestones
that can transform recent experimental advances into
viable clinical applications in the next 10–20 years. The
roadmap detailed here takes into account the recent his-
tory of the field, the factors that influenced its growth, and
a critical analysis of the published work.

Non-invasive BMIs
Figure 1 depicts a classification of the BMIs (or
brain–computer interfaces, BCIs) developed during the
past decade. The first feature that distinguishes BMIs is
whether they utilize invasive (i.e. intra-cranial) or
non-invasive methods of electrophysiological recordings.
Non-invasive systems primarily exploit electroencephalo-
grams (EEGs) to control computer cursors or other devices.
This approach has proved useful for helping paralyzed or
‘locked in’ patients develop ways of communication with
the external world [2–11]. However, despite having the
great advantage of not exposing the patient to the risks of
brain surgery, EEG-based techniques provide communica-
tion channels of limited capacity. Their typical transfer
rate is currently 5–25 bits s�1 [2,11]. Although such a
transfer rate might not be sufficient to control the move-
ments of an arm or leg prosthesis that hasmultiple degrees
of freedom, past and recent research in this field seems to
d. doi:10.1016/j.tins.2006.07.004
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Figure 1. Classification of brain–machine interfaces. Abbreviations: BMI, brain machine interface; EEG, electroencephalogram; LFP, local field potential; M1, primary motor

cortex; PP, posterior parietal cortex.
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indicate that EEG-based BMIs are likely to continue to
offer some practical solutions (e.g. cursor control, commu-
nication, computer operation and wheelchair control) for
patients in the future.

Original attempts to provide subjects with feedback
signals derived from their own brain activity were made
in the 1960s and 1970s. Primarily, these attempts were
aimed at enabling human subjects to gain voluntary con-
trol over brain rhythms. Nowlis and Kamiya claimed that,
after training with an EEG biofeedback, human subjects
acquired an ability to detect their own alpha rhythms [12],
and this claim was later scrutinized by Plotkin [13].
Sterman and colleagues came to similar conclusions by
utilizing the sensorimotor mu rhythm in cats [14] and
humans [15]. In addition, Black operantly conditioned dogs
to control their hippocampal theta rhythm [16]. Clearly,
the results of these pioneering experiments helped pave
the way for the introduction, a few years later, of EEG-
based BCIs.

Generally, EEG-based BCIs try to decipher the subject’s
voluntary intentions and decisions through measurements
of the combined electrical activity of massive neuronal
populations. As such, both the spatial and temporal reso-
lution of EEGs become limited owing to the overlapping
electrical activity generated by different cortical areas.
Furthermore, during the passive conductance of these
signals through brain tissue, bone and skin, resolution is
also lost owing to the low-pass filtering of the EEG signals.
www.sciencedirect.com
EEGs are also susceptible to electromyographic (EMG),
electrooculographic (EOG) and mechanical artifacts.

Despite these well-known shortcomings, EEG techni-
ques can detect modulations of brain activity that correlate
with visual stimuli, gaze angle, voluntary intentions and
cognitive states. These properties have led to development
of several classes of EEG-based systems, which differ
according to the cortical areas recorded, the features of
EEG signals extracted, and the sensorymodality providing
feedback to subjects. One class of BCIs makes use of visual
evoked potentials (VEPs). These BCIs detect the VEPs that
occur when subjects look at particular items on a computer
screen [17,18] or attend to them [19]. BCIs based on the
P300 evoked potential uncover the subjects’ choices by
distinguishing parietal cortex responses to the preferred
versus non-preferred stimuli [20–22]. Several BCI designs
continuously drive computer cursors. Both slow cortical
potentials, recorded over several cortical areas [23], and
faster mu (8–12 Hz) and beta (18–26 Hz) rhythms,
recorded over sensorimotor cortex [24–26], have been
exploited in such BCIs. For example, one such system
relies on event-related synchronization and desynchroni-
zation of the EEGs associated with motor imagery [25,27].

Training to operate EEG-based BCIs can take many
days [2]. Visual feedback is the essential part of such
training. Some BCI designs rely on the subjects’ ability
to develop control of their own brain activity using biofeed-
back, whereas others utilize classifier algorithms that
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recognize EEG patterns related to particular voluntary
intentions. Recently, adaptive algorithms that constantly
update the classifier parameters during training have been
implemented [26].

Several strategies have also been proposed to provide
feedback to users of EEG-based BCIs. For instance,
virtual-reality systems can provide a realistic feedback
that can be efficient for BCI training [28]. In a recent
demonstration of this approach, subjects navigated
through a virtual environment by imagining themselves
walking [29].

In an effort to improve the resolution of brain potentials
monitored by the BCIs, more invasive recording methods,
such as electrocorticograms (ECoGs) recorded by subdural
electrodes, have been introduced. ECoGs sample neuronal
activity from smaller cortical areas than conventional
EEGs. In addition, they contain higher-frequency gamma
rhythms (>30 Hz). Consequently, ECoG-based BCIs are
expected to have better accuracy and shorter training
times than BCIs based on EEGs [30].

EEG-based BCIs have been implemented as solutions
for patients suffering from various degrees of body paraly-
sis. These BCIs (in the case of patients with advanced ALS)
enable control of computer cursors, which the patients use
to communicate with the external world or to indicate their
intentions. The first successful and most well received
application of such an approach was based on the utiliza-
tion of slow cortical potentials to control a computer-aided
spelling system [3,31].

BCIs based on mu and beta rhythms have also been
tested in severely paralyzed people [32]. One study
reported that a tetraplegic patient, aided by a BCI that
detected beta waves in his sensorimotor cortex and
activated a functional electrical stimulation device,
learned to grasp objects using his paralyzed hand [33].
A motor imagery-based system [32], coupled to an
implanted neuroprosthesis system [34] (Freehand�)
has been used to help a partially paralyzed patient. In
addition, tetraplegic patients were able to gain some
degree of control of the P300-based BCI [21]. Off-line
analyses showed that P300 potentials can be used to
obtain information about stimulus selections made by
patients with ALS [22].

In addition to using EEGs, imaging techniques such as
functional magnetic resonance imaging (fMRI), have been
explored as a new source of brain-derived signals to drive
BCIs [35]. Although fMRI-based BCIs are not suitable for
everyday use and suffer from temporal delays of several
seconds, they have good spatial resolution and, most
importantly, can sample the activity of deep brain struc-
tures. Recently, fMRIwas used tomeasure brain activation
during the operation of a BCI based on slow cortical
potentials [4].

Myolectric systems that make use of voluntary activa-
tions of unaffected muscles in partially paralyzed subjects
and amputees [36–39], and use these signals to control
limb prostheses and exoskeletons, present an alternative
to the existing non-invasive BCIs. Currently, these sys-
tems are more practical for everyday situations than EEG-
based BCIs [11]. The details of their operation are beyond
the scope of this review.
www.sciencedirect.com
In summary, severely and partially paralyzed patients
can reacquire basic forms of communication and motor
control using EEG-based systems. Yet motor recovery
obtained using these systems has been limited, and no
clear breakthrough that could significantly enhance the
power of EEG-based BCIs in the near future has been
reported in the literature [11]. This by no means reduces
the clinical utility of such systems. Some of them have
improved the quality of life of patients, such as the BCI for
spelling [3]. But if the goal of a BMI is to restore move-
ments with multiple degrees of freedom through the con-
trol of an artificial prosthesis, the message from published
evidence is clear: this task will require recording of high-
resolution signals from the brain, and this can be done
using invasive approaches.

Invasive BMIs
Invasive BMI approaches are based on recordings from
ensembles of single brain cells (also known as single units)
or on the activity of multiple neurons (also known as
multi-units). These approaches have their roots in the
pioneering studies conducted by Fetz and colleagues in
the 1960s and 1970s [40–45]. In these experiments,
monkeys learned to control the activity of their cortical
neurons voluntarily, aided by biofeedback indicating the
firing rate of single neurons. A few years after these
experiments, Edward Schmidt raised the possibility that
voluntary motor commands could be extracted from raw
cortical neural activity and used to control a prosthetic
device designed to restore motor functions in severely
paralyzed patients [46].

Largely owing to technical difficulties associated with
obtaining the needed cortical signals and implementing
real-time interfaces quickly enough, thorough experimen-
tal testing of Schmidt’s proposition took almost two dec-
ades to be accomplished. These bottlenecks were passed
because of a series of experimental and technological
breakthroughs that led to a new electrophysiological meth-
odology for chronic, multi-site, multi-electrode recordings
[47–51]. The BMI approach that relies on long-term record-
ings from large populations of neurons (100–400 units)
evolved from experiments carried out in 1995 [47]. After
the introduction of such an approach, a series of studies
demonstrated that neuronal readout of tactile stimuli
could be uncovered using pattern-recognition algorithms,
such as artificial neural networks [52,53]. These develop-
ments paved the way for the first experiment in which
neuronal population activity recorded in behaving rats
enacted movements of a robotic device that had a single
degree of freedom [1]. Soon after this first demonstration, a
similar BMI approach was shown to work in New World
[54] and rhesus monkeys [55–58]. As a result of these
experimental efforts, in less than six years several labora-
tories reported BMIs that reproduced primate arm reach-
ing [1,54–58] and the combination of reaching and grasping
movements [57], using either computer cursors or robotic
manipulators as actuators.

During the past three years, most of the published
studies on BMIs have been conducted in behaving rhesus
monkeys. There are several important differences
that distinguish these BMIs (Figure 1). These include:
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the number of cortical implants (e.g. uni-site or multi-site
recordings); the cortical location of implants (e.g. frontal or
parietal cortex, or both); the type of neural signal recorded
(local field potentials versus single-unit or multi-unit sig-
nals); and the size of the neural sample. With the exception
of the BMIs used at Duke University (http://www.
duke.edu/), all BMIs tested in monkeys have relied on
single cortical site recordings either of local field potentials
[59–62] or of small samples (<30) of neurons or multi-units
[55,56,63]. Most of these small-sample, single-area BMIs
utilized neural signals recorded in the primary motor
cortex [55,56], although one group has focused on BMIs
that processed neural signals recorded in the posterior
parietal cortex [64]. At Duke University, a BMI strategy
has recently been implemented based on single-unit
recordings made during intra-operative placement of
deep-brain stimulators in Parkinsonian patients [65].

Principles of BMI operation
Invasive BMIs rely on the physiological properties of indi-
vidual cortical and subcortical neurons (or pools of neu-
rons) that modulate their activity in association with
movements. First documented four decades ago by Evarts
[66–68], such modulations are highly variable, from neu-
ron to neuron and from trial to trial [69–72]. Thus, as much
as neighboring neuronsmight display highly distinct firing
modulation patterns during the execution of a particular
movement, single-neuron firing can vary substantially
from one trial to the next, despite the fact that the overt
movements remain virtually identical. Yet averaging
across many trials reveals fairly consistent firing patterns.
By the same token, averaging across large populations of
neurons significantly reduces the variability of signals
derived from single neurons [54,69].

Extracting motor control signals from the firing patterns
of populations of neurons and using these control signals
to reproduce motor behaviors in artificial actuators are the
two key operations that a clinically viable BMI should
perform flawlessly [51,73]. To be accepted by patients,
BMI devices will also have to act in the same way and feel
the same as the subjects’ own limbs.Recent findings suggest
that this taskmight be accomplished by creating conditions
under which the brain undergoes experience-dependent
plasticity and assimilates the prosthetic limb as if it were
part of the subject’s own body.Until recently, such plasticity
was achieved using visual feedback. However, a more
efficient way to assimilate the prosthetic limb in the brain
representation could be to use multiple artificial feedback
signals, derived from pressure and position sensors placed
on the prosthetic limb. These feedback signals would
effectively train the brain to incorporate the properties
of the artificial limb into the tuning characteristic of
neurons located in cortical and subcortical areas that
maintain representations of the subject’s body. We predict
that such plasticity will result in sensory and motor areas
of the brain representing the prosthetic device.

A proposed roadmap for the future of BMI research
To achieve the ambitious goal of creating a clinically useful
invasive BMI for restoring upper-limb mobility, one has to
pass the following key bottlenecks:
www.sciencedirect.com
� O
y

btaining stable, very long-term recordings (i.e. over
ears) of large populations of neurons (i.e. hundreds

to thousands) from multiple brain areas. This task
encourages development of a new generation of
biocompatible 3D electrode matrices that yield
thousands of channels of recordings while producing
little tissue damage at implantation and minimal
inflammatory reaction thereafter.
� D
eveloping computationally efficient algorithms,
that can be incorporated into the BMI software, for
translating neuronal activity into high-precision
command signals capable of controlling an artificial
actuator that has multiple degrees of freedom.
� L
earning how to use brain plasticity to incorporate
prosthetic devices into the body representation. This
will make the prosthetic feel like the subject’s own
limb.
� I
mplementing a new generation of upper-limb
prosthetics, capable of accepting brain-derived
control signals to perform movements with multiple
degrees of freedom.
We now discuss some potential avenues for addressing
the first three of these major challenges. A thorough
discussion of the fourth challenge (i.e. engineering a new
generation of prosthetic arms) is beyond the scope of this
review.
Long-term recordings of neuronal activity from multiple

brain areas

Although recording from single neurons is the first choice
of neurophysiologists, multi-unit signals that comprise
activity of a few neurons can also be efficiently used in
BMI control [57]. In addition, several reports have sug-
gested using local field potentials [59–62]. It is conceivable
that, in future, advanced neuroprosthetic devices will use
hybrid solutions in which a combination of several types of
neural signals are recorded and processed. Here, however,
we focus on using single-unit and multi-unit signals as the
primary input to a BMI. This choice raises a fundamental
question: how many neurons does a BMI need to sample to
produce effective motor outputs?

This question, first raised several years ago [51,73],
remains a matter of debate. Some groups [55,56,63] have
strongly claimed that recordings from a small number of
neurons can be sufficient for good performance of a BMI.
Selected populations of highly tuned neurons can indeed
accurately predict movement parameters [74]. However,
highly tuned neurons are rare in a typical random sample
of cortical cells. Given that the neuronal yield of all chronic
recording techniques is produced by random sampling of
neurons, it is unrealistic to expect that a large fraction of
these cells will be highly tuned to a particular motor
variable. Moreover, it would be even more unrealistic to
expect that a small neuronal sample would represent
several variables of interest. Therefore, large samples of
recorded neurons are preferable, at the very least to enable
selection of a sufficient number of highly tuned neurons.
Besides, the reason for relying on large neuronal popula-
tions goes far beyond the issue of selecting the best per-
forming cells. Both the accuracy [54,57,70] and the
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reliability [69] of predictions improve considerably with
the number of simultaneously recorded neurons, because
motor information seems to be represented in the cortex in
a highly distributed way. Thus, as the neuronal sample
increases in size, errors related to individual neuron firing
variability decrease significantly [69]. So looking into the
future, it seems unlikely that invasive BMIs based on a
small group of neurons will be capable of continuously
reproducing in artificial limbs the range of fine movements
normally performed by the human arm and hand.

Currently, chronically implanted microwire arrays offer
the best compromise between safety, recording longevity
and neuronal yield required to operate BMIs [48,51,
54,57,58,73]. It is clear that this methodology will continue
to be applied in experimental settings, but several signifi-
cant improvements are required before it becomes fully
applicable for long-term (months to years) chronic clinical
applications in humans. First and foremost, the broad and
challenging issue of biological compatibility [75–80] has
to be properly addressed and solved. Second, fully
implantable technologies using wireless headstages for
amplification of neuronal signals have to be implemented
to reduce the risks of infection introduced by the use of
cables that connect brain implants to external hardware.

Current microelectrode designs typically enable good
quality recordings to be made for several months. In
certain cases and species, these recordings can last for
several years [81]. However, recording quality often dete-
riorates, probably owing to a process of electrode encapsu-
lation by fibrous tissue and cell death in the vicinity of the
electrode [77]. Some authors have proposed that electrodes
that contain neurotrophic medium [82–85], or are coated
with factors that promote neuronal growth (e.g. nerve
growth factor, brain-derived neurotrophic factor or lami-
nin) and various anti-inflammatory compounds (e.g. dex-
amethazone) [77,86–91], might be a way to cope with
encapsulation. Currently, it is unclear whether these
approaches will be useful.

Efforts to resolve the biocompatibility issues will prob-
ably have to be pursued in parallel with the development of
new 3D electrode matrices, which should aim to increase
the average yield to thousands of neuronal signals per
implanted probe. Current alternatives to such microwires
(e.g. the Utah probe [92], which implements arrays of rigid,
single-ended electrodes) have yet to prove their adequacy
to support the haste in which this technology was moved
into clinical applications. Judging from the published evi-
dence, such arrays are best suited to sample neuronal
activity from flat surfaces of cortical gyri in animal experi-
ments. However, this designmight not be suitable for long-
term use in human patients. In addition to issues of how
electrodes are inserted into the cortex, the inability to
sample from deep cortical layers, and many unanswered
biocompatibility questions, the reliability of the recording
system utilized by currently available probes is also com-
promised by the continuous stress of a daily routine that
involves external cables and plugging and unplugging of
external head-stages. These operations carry a risk of
causing tissue damage, bleeding and brain infection.
Such a risk of failure, which might be tolerable in animal
experiments, is unwanted in practical applications
www.sciencedirect.com
for humans. Cyberkinetics Neurotechnology Systems
(http://www.cyberkineticsinc.com/content/index.jsp) has
recently started clinical trials in severely paralyzed
patients of a BCI based on a probe developed at the
University of Utah (http://www.utah.edu/). Because no
peer-reviewed publication has appeared related to this
work, the exact outcome of this study remains unknown.

From these considerations, it is clear that the issues
related to the long-term functionality of implantablemicro-
electrodes, and to the development of fully implantable
electronic devices for amplification of a large number of
neuronal signals and their wireless transmission to the
actuator, are the major technological challenges that will
determine the success or failure of future clinical applica-
tions of BMI technology. These technological developments
are necessary not only to increase the practical usefulness
of the BMI (more neurons mean better stability and accu-
racy) but also to ensure that risks to patient health are
minimized. Auspiciously, telemetry transmission methods
[93–97] for effective wireless transmission of multi-
channel neuronal signals have already started to appear
in the literature [98,99]. These solutions are currently
being tested in animal experiments.

Many new ideas of how to improve neuronal recordings
have been proposed recently. These range from ceramic-
based multi-electrode arrays [100] to nanotechnology
probes that access the brain through the vascular system
[101]. In this latter design, probes record neuronal activity
without compromising brain parenchyma. Undoubtedly,
much more testing will be needed to conclude which of
these ideas are viable.

Developing algorithms for translating neuronal activity
into command signals for artificial actuators
Currently, neuroscientists are far from obtaining a clear
understanding of how motor and cognitive information is
processed by the populations of neurons that form large
brain circuits. Rate encoding, temporal encoding and popu-
lation encoding principles have been suggested, and var-
ious experimental paradigms, including BMIs, have been
developed to test the validity of these concepts. However,
precise knowledge of computations performed by brain
circuits is not crucial for the construction of clinically
relevant BMIs. Mostly, BMI platforms take advantage of
the well known correlation between discharges of cortical
neurons and motor parameters of interest, and perform a
reverse operation: they predict motor parameters from
patterns of neuronal firing. Generally, predictions of motor
parameters do not signify a causal relationship between
the neuronal activity and the generation of movements.
One type of correlation between neuronal activity and
movement is known as directional tuning [102,103], and
correlations of neuronal activity with kinematic [104–106]
and kinetic [107–109] parameters of movements have also
been described.

Although a wealth of linear and nonlinear algorithms
for translating neuronal activity into commands to artifi-
cial actuators have been suggested [1,54,56,57,70,110–
116], relatively simple multiple linear regression models
have proved to be efficient in many practical BMI designs
[54,55,57,58,65,117]. In these models, predicted motor
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parameters are derived from the weighted sums of
neuronal rates of firing, measured at different time points
in the past. The number of regressors in the model and the
time window used for predictions can be optimized for each
concrete BMI application [70,74,117]. Linear methods,
such as population vector predictions, can incorporate
adaptive algorithms that continuously update the model
parameters while the subject trains [56].

Basic research using the BMI paradigm has lent sup-
port to some fundamental principles of neural information
coding. For example, studies in which several independent
linear models were run in parallel revealed that several
motor parameters, such as arm position, velocity, accel-
eration and hand gripping force, could be predicted simul-
taneously by separate combinations of the activity of the
same original pool of neurons [57]. This finding supports
the notion that multiple motor parameters are processed
by overlapping neuronal ensembles. As a corollary, a single
cortical neuron can contribute to several predictions
simultaneously.

The choice of motor parameters extracted in future
clinical BMIs will depend on the main rehabilitation or
therapeutic goals of these applications. For example, an
experimental BMI for reaching and grasping [57] predicted
hand velocity and gripping force that matched the char-
acteristics of a robotic arm equipped with a gripper. In the
near future, this design could lead to the implementation of
neuroprosthetic devices that help quadriplegic or ‘locked
in’ patients to reach and grasp objects in the surrounding
space. We can also envisage that BMIs that synthesize
speech, based on neuronal signals recorded in intact
speech-related regions, could one day help patients suffer-
ing from aphasia due to cortical strokes recover their
ability to communicate.

Future clinical applications might also take advantage
of BMIs that predict EMG signals [117]. The main benefit
of this design comparedwith aBMI that predicts kinematic
parameters is that the signals of individual muscles can
control biologically-inspired devices, which would produce
a whole range of actuator stiffness. This is an important
property needed for a future generation of prosthetic limbs
that should be able to manipulate objects with different
physical characteristics. Another powerful future applica-
tion for BMIs that decode EMGs is the construction of
brain–muscle interfaces that directly stimulate the mus-
cles of paralyzed patients and thereby restore mobility by
using the patient’s own musculoskeletal apparatus
[37,118,119]. Such BMIs are likely to be much more accep-
table to patients, particularly because the hardware
needed for amplification, transmission and processing of
brain-derived control signals, and the muscle stimulators
driven by these neural signals, such as the BION [120], can
be entirely encased in the patient’s body. In the future, it is
conceivable that such BMIs could merge the current corti-
cally driven paradigm with methods and new technologies
developed in the field of functional electrical stimulation.

Early BMI designs focused on decoding motor para-
meters from neuronal activity [1,54–56,117]. More
recently, it was suggested that BMIs that decode cognitive
signals, for example those that decode intended reach
direction during the delay periods preceding movement
www.sciencedirect.com
execution [64,121–123], could also be efficient. Although
this idea is very attractive, a BMI based exclusively on
cognitive signals cannot execute continuous control of
movement parameters. Instead, it decodes higher-order
characteristics of movements, such as reach direction or
characteristics of objects being grasped, and delegates
lower-order details of motor execution to the actuator
controller. Recently, we have proposed that a hybrid
BMI, based on a shared control mode of operation [124],
can improve the accuracy with which the prosthetic imple-
ments the voluntary intentions of the subject. A shared-
control mode of operation would be achieved by a combina-
tion of high-order brain-derived signals, conveying the
subject’s voluntary intentions, and low-level artificial
‘reflex-like’ circuits, designed to improve the precision with
which prosthetic limb movements are generated.

In the future, BMIs that take advantage of the higher-
order neuronal representations of movement-related
variables will also emerge. These BMIs will probably
derive information from representations of movement
sequences [125,126], reference frames [127–130],
potential movement targets [131] and simultaneous
encoding of multiple spatial variables, such as movement
direction, orientation of selective spatial attention, and
gaze angle [132,133]. Utilization of this wide array of
information will endow BMIs with a much more flexible
control of prosthetic limbs.

In the same context, we also believe that future BMIs
will take advantage of new insights on how neural circuits
encode temporal characteristics of movements. Recent
studies [134–137] have indicated that a rather distributed
representation of temporal information might exist in the
brain. Recordings obtained from primary motor and pre-
motor cortical ensembles while monkeys performed self-
timed button presses [138] enabled prediction of both the
time that had elapsed since themonkey pressed the button
and the time until the button would be released. Because
any motor behavior has a temporal structure, and because
episodes of movement execution are typically intermingled
with periods of immobility during which movements are
being prepared, a BMI that decodes behavioral time will be
able to inhibit movements of the actuator during waiting
periods and release the actuator at appropriate times.
These operations will be based on the voluntary intentions
of the user.

Making use of brain plasticity to incorporate prosthetic
devices into the body representation
Controlling an artificial actuator through a BMI can be
thought of as a process somewhat similar to the operation
required by subjects to operate tools – a capacity that is
inherent only in higher primates such as chimpanzees and
humans [139]. Almost 100 years ago [140], Head and
Holmes suggested that the ‘body schema’– that is, the
internal brain representations of one’s body – could extend
itself to include a wielded tool. This idea was validated by
the experimental demonstration that cortical neurons
extend their visual receptive fields along the length of a
rake used by monkeys to retrieve distant objects [141].
Psychophysics experiments also support the notion that
tool usage leads to remapping of the ‘body schema’ in
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humans [142,143]. Accordingly, a recent neuroimaging
study [144] described specific activations of the right
ventral premotor cortex during manipulation of a myo-
electric prosthetic hand. Altogether, these results suggest
that long-term usage of an artificial actuator directly
controlled by brain activity might lead to substantial
cortical and subcortical remapping. As such, this process
might elicit the vivid perceptual experience that the arti-
ficial actuator becomes an extension of the subject’s body
rather than a mere tool. This suggestion is supported by
the report of primary sensorimotor cortex activation dur-
ing perceived voluntary movements of phantom limbs in
amputees [145].

Perhaps themost stunning demonstration of tool assim-
ilation by animals was observed when both rats and pri-
mates learned to operate an actuator through a BMI,
without the need to move their own limbs [1,56–58]. In
these experiments, decoding algorithms were initially
trained to predict limb movements of animals from the
activity of neuronal populations. Remarkably, after these
animals started to control the actuator directly using their
neuronal activity, their limbs eventually stopped moving,
while the animals continued to control the actuator by
generating proper modulations of their cortical neurons.
Interestingly, during these episodes neuronal tuning to
movements of the subject’s own limbs decreased while the
animals continued to control the artificial actuator by their
brain activity [58]. The most parsimonious interpretation
of this finding is that the brain was capable of undergoing a
gradual assimilation of the actuator within the samemaps
that represented the body [57,58]. Neuronal mechanisms
mediating such plasticity are far from being understood.
Figure 2. A BMI with multiple feedback loops being developed at the Duke University

manipulator that reaches and grasps different objects. The manipulator is equipped wit

the control computer (right), which processes them and converts to microstimulation p

feedback information (red loop). A series of microstimulation pulses is illustrated in the

to commands to the actuator, via the control computer and multiple decoding algorithm

the position of several markers mounted on the arm (green loop). We hypothesize that

actuator into the representation of the body in the brain. Figure designed by Nathan F

www.sciencedirect.com
However, it is fair to state that there is a growing
consensus in the literature that continuous BMI
operations in primates lead to physiological changes in
neuronal tuning, which include changes in preferred
direction and direction tuning strength of neurons
[56–58]. In addition, broad changes in pair-wise neuronal
correlation can be detected after BMIs are switched to
operate fully under brain-control mode [57,58].

Along with these physiological adaptations of
neuronal firing patterns, behavioral performance
improves as animals learn to operate BMIs effectively
[56–58]. Initial training to operate a BMI is character-
ized by an increase in neuronal firing rate variance,
which cannot be simply explained by changes in limb
or actuator movements [146]. As the quality of BMI
control improves, initial elevation of neuronal firing
variability subsides. Plastic changes in neuronal firing
patterns during BMI control, leading to the physiological
incorporation of the artificial actuator properties into
neuronal space, could account for these changes in firing
rate variance. This interpretation is in accord with the
theory of optimal feedback control [147–149]. According
to this theory, a motor system acts as a stochastic feed-
back controller that optimizes only those motor para-
meters that are necessary to achieve the goals of a
particular task. During the brain-control mode of opera-
tion of a BMI, the goals of a motor task are achieved only
by direct brain control of an artificial actuator. Thus, in
terms of optimal feedback control theory, neuronal
ensembles should adapt their physiological tuning prop-
erties to represent better the goal-related variables of
the task performed by the BMI.
Center for Neuroengineering. A rhesus macaque is operating an artificial robotic

h touch, proximity and position sensors. Signals from the sensors are delivered to

ulses delivered to the sensory areas in the brain of the monkey, to provide it with

inset on the left. Neuronal activity is recorded in multiple brain areas and translated

s (blue loop). Arm position is monitored using an optical tracking system that tracks

continuous operation of this interface would lead to incorporation of the external

itzsimmons.



Figure 3. How a fully-implantable BMI could restore limb mobility in paralyzed

subjects or amputees. Although the details of this system have to be worked out

through future research, it is clear that the BMI for human clinical applications

should be encased in the patient’s body as much as possible. Wireless telemetry

offers a viable solution for this purpose. The prosthesis not only should have the

functionality of the human arm in terms of power and accuracy of the actuators,

but also should be equipped with the sensors of touch and position from which

signals can be transmitted back to the subject’s brain.
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Making the prosthetic feel like the subject’s own limb
using microstimulation of cortical sensory areas
Peripheral tactile and proprioceptive signals contribute to
the normal operation of one’s limbs and the perception that
they are part of the body [142,143]. For a neuroprosthesis
to behave and feel as a natural appendage of the subject’s
body, it will have to be instrumented with various sensors
that can provide multiple channels of ‘sensory’ information
back to the subject’s brain. In most current BMI designs,
animal subjects receive sensory information from the
actuator through visual feedback [55–58]. Predictions of
motor parameters are less stable in the absence of visual
feedback [70] than when it is present [55–58].

Curiously, the use of tactile and proprioceptive-like
feedback in BMI research remains largely unexplored.
Recently, in collaboration with John Chapin, we have
started to explore the intriguing possibility of delivering
such sensory feedback information, generated in the actua-
tor, to the brain through the use of multi-channel micro-
stimulation of somatosensory cortical areas (Figure 2).
Previous studies have shown that monkeys sense micro-
stimulation patterns and can use them to guide their
behavioral responses [150,151]. In a recent long-term
study, owl monkeys could learn to guide their reaching
movements by decoding vibratory stimuli applied to their
arms [152]. Next, instead of vibratory stimulation, match-
ing patterns of microstimulation were applied through the
electrodes implanted in the primary somatosensory cortex
[153]. Monkeys were still able to interpret correctly the
www.sciencedirect.com
instructions provided by cortical microstimulation, and
their behavioral performance eventually surpassed the
level of performance observed when the vibratory stimulus
was applied to their skin. These results suggest that
cortical microstimulation might become a useful way to
deliver long-term feedback from prosthetic limbs con-
trolled by a BMI, and might contribute to the development
of a completely new generation of neuroprosthetic devices
for restoring various motor behaviors in severely impaired
patients.
Concluding remarks
Our vision of neuroprosthetic developments that might
emerge in the next 10–20 years includes a fully implan-
table recording system that wirelessly transmits multiple
streams of electrical signals, derived from thousands of
neurons, to a BMI capable of decoding spatial and temporal
characteristics of movements and intermittent periods of
immobility, in addition to cognitive characteristics of the
intended actions (Figure 3). This BMI would utilize a
combination of high-order motor commands, derived from
cortical and subcortical neuronal activity, and peripheral
low-level control signals, derived from artificial ‘reflex-like’
control loops. Such a shared-control mode of BMI operation
would either command an actuator with multiple degrees
of freedom or directly stimulate multiple peripheral nerves
and muscles through implantable stimulators. Highly
instrumented artificial actuators, containing arrays of
touch and position sensors, would generate multiple
streams of sensory feedback signals that could be directly
delivered to cortical and/or subcortical somatosensory
areas of the subject’s brain, through spatiotemporal pat-
terns of multi-channel microstimulation. Such closed-loop,
hybrid BMIs would get one step closer to the dream of
restoring a large repertoire of motor functions to a multi-
tude of patients who currently have very few options for
regaining their mobility.
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