
Deconstructing Planning as Satisfiability

Henry Kautz
Department of Computer Science & Engineering

University of Washington
Seattle, WA 98195

Introduction
The idea of encoding planning as satisfiability was proposed
in 1992 as a method for generating interesting SAT prob-
lems, but did not appear to be a practical approach to plan-
ning (Kautz & Selman 1992). This changed in 1996, when
Satplan was shown to be competitive with current planning
technology, leading to a mini-explosion of interest in the ap-
proach (Kautz & Selman 1996). Within a few years, how-
ever, heuristic search planning appeared to be vastly supe-
rior to planning as satisfiability, and many researchers wrote
off the earlier success of the approach as a fluke. It was
therefore rather surprising when Satplan won first place for
optimal STRIPS planning in the 2004 ICAPS planning com-
petition (Edelkamp et al. 2004). This talk will attempt to
deconstruct the reasons for Satplan’s successes and failures,
and discuss ways the approach might be extended to han-
dle “open” domains, metric constraints, and domain sym-
metries.

A Brief History of Satplan
The original Satplan “system” was actually a set of conven-
tions for encoding STRIPS-style linear planning problems in
propositional axiom schemas (Kautz & Selman 1992). The
key technical advance in 1996 was introducing so-called par-
allel encodings, where several non-interfering actions could
occur at the same time step (Kautz, McAllester, & Selman
1996). The first complete implementation of Satplan that
took STRIPS notation as input was the MEDIC system of
Ernst et al. (1997). The next year saw the release of Black-
box (Kautz & Selman 1998), which also performed “mutex
propagation”, a form of local-consistency reasoning intro-
duced by Graphplan (Blum & Furst 1995), before generating
each encoding. In the 1998 International Planning Compe-
tition, Blackbox’s performance was comparable to the best
entrants, which were by and large variations of Graphplan.
However, in the 2000 IPC, Blackbox’s performance was
abysmal. Planning was dominated by Graphplan-style and
state-space style heuristic search. No version of Satplan en-
tered the 2002 competition.

A new implementation, Satplan04, was entered in the
2004 IPC (and in the 2006 competition, which is ongoing

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

at the time this is written). In the track for optimal proposi-
tional (i.e., non-metric) planning, Satplan was the winner by
a wide margin (Edelkamp et al. 2004). It was judged to be
the fastest and most robust planner in five domains, and the
2nd best in two domains. The best any other system did was
placing 2nd in two domains.

Deconstructing Satplan’s Success
Satplan04 did not include any new kinds of plan encodings
or pre-processing. In fact, due to lack of time, the version
that entered the competition did not even include the mutex
propagation routine that was so crucial to blackbox’s perfor-
mance. The dramatic comeback for Satplan can be attributed
to two factors: first, satisfiability solvers have steadily in-
creased in power; and second, the optimal planning prob-
lems in the 2004, unlike nearly all of the problems in the
previous competitions, were intrinsically hard.

Improvements in SAT Solvers
Table 1 illustrates the steady improvement in SAT solvers
from 1997 to present on a series of optimal planning prob-
lems from IPC-4. Sato (Zhang 1997) and satz (Li & An-
bulagan 1997) were state-of-the-art solvers in 1998. zChaff
(Moskewicz et al. 2001) established the standard for true
“industrial strength” SAT solving, and introduced novel
data structures that could efficiently manage millions of
learned (cached) clauses. Jerusat (Nadel 2002) improved on
zChaff’s branching and backtracking strategies, and won the
the 2004 SAT competition industrial benchmark category.

It is remarkable that the two most recent systems, MiniSat
(Eén & Sörensson 2003) and Siege (Ryan 2004), can solve
problems with with 0.25 million variables in less than 30
seconds. Furthermore, while Siege is a proprietary, highly
optimized system, the comparably fast system, MiniSat, is
a straightforward, open-source implementation of the best
recent published SAT techniques.

Intrinsically Hard Planning Problems
While the general STRIP planning problem is formally hard,
particular planning domains may be solvable in low poly-
nomial time. It is certainly the case that many kinds of
day-to-day planning domains can be solved exactly and ef-
ficiently by both people and machines. Efficient domain-
specific planning algorithms could be learned, evolved, or



wff vars clauses sato satz zChaff jerusat MiniSat siege
1997 1997 2001 2002 2003 2004

p05 3,656 31,089 13.23 0.61 0.01 0.01 0.02 0.01
p15 10,671 143,838 x 4.85 0.05 0.13 0.09 0.03
p18 34,325 750,269 x x 13.92 6.59 2.55 4.85
p20 40,304 894,643 x x 14.75 10.35 10.03 8.68
p28 249,738 13,849,105 x x 846.72 79.59 27.80 12.74

Table 1: Comparison of SAT solvers on optimal planning problems from the Airport domain of IPC-4. Time in seconds for
solving the final formula of optimal length on an Intel Xeon 2.8 GHz processor. Encodings were generated by Satplan04 using
the “action-based” encoding. x = solver segfaulted or failed to solve the problem in 24 hours.

programmed. Furthermore, planning domains that might ap-
pear at first blush to be hard can be easy under a relaxed so-
lution criteria. For example, although finding shortest plans
in the blocks world is NP-hard, finding plans that are no
more than twice as long as optimal is polynomial. Again,
planning problems with relaxed solution criteria frequently
occur in everyday life, and are solved with little conscious
effort.

What is the point, then, of domain independent planning?
One can argue that it is precisely to solve problems that
do not admit a polynomial time solution. Planning is what
we do when evolution, experience, and algorithmic analysis
fails. On a more down to earth note, commercial applica-
tions of planning usually involve solving intrinsically hard
problems.

The planning problems in the IPC competitions prior to
2004 were by and large easy to solve by heuristic forward-
chaining search; in fact, it was possible to prove that many
of the domains could be solved optimally with only a poly-
nomial number of backtracks (Hoffmann 2002). By con-
trast, many of the 2005 IPC planning domains were de-
liberately designed to reflect real-world planning problems
(Hoffmann et al. 2004) and were not (at least obviously)
PTIME-solvable.

It is also possible to transform planning domains where
feasible (non-optimal) planning is easy but optimal planning
is hard to ones where feasible planning is also hard (Huang
2002). Such instances are useful for comparing planning
algorithms without the complexity of taking solution quality
into consideration.

Leveraging Plan Structure
What, then, distinguishes planning from pure satisfiability
testing, or any other combinatorial search problem? The
distinguishing feature is the regular structure of all planning
problems; for example: the way that the evolution of each
fluent over time is represented by sequence of propositions,
and the way in which propositions representing actions are
linked by clauses to those representing preconditions and ef-
fects. Further structure is generated by operator schemas:
the set of propositions that result from instantiating an opera-
tor with different parameters connect to other propositions in
a similar pattern. These patterns of structure can be viewed
as various kinds of symmetries in the encoded problem.

Symmetry detection has been an important theme of

much work in constraint satisfaction, satisfiability test-
ing and planning (Joslin & Roy 1997; Shlyakhter 2001;
Fox & Long 1999). While much of this work has con-
centrated on automatically detecting symmetries, it is often
more straightforward and practical to provide the author of
a planning domain with an easy way to state high-level sym-
metries (Beame, Agarwal, & Kautz 2003; Sabharwal 2005).
In many domains either approach to exploiting symmetric
structure (which in fact may both be employed) can lead to
orders of magnitude speed-up.

Beyond SAT
The basic idea of encoding a classical planning problem as
Boolean satisfiability can be generalized to encode more
complex forms of planning to satisfiability problems in
languages that are higher in the computational complex-
ity hierarchy. For example, conditional planning in non-
deterministic domains can be encoding as evaluating the
truth of a quantified Boolean formula (QBF) (Rintanen
1999). Probabilistic planning can be encoded as stochastic
satisfiability, an extension of QBF that includes a “random
choice” quantifier (Majercik & Littman 1999).

Many planning problems involve reasoning about metric
quantities, such as resources and metric time. One way to
handle metric information is to compile a planning prob-
lem to both a Boolean formula and a set of linear inequal-
ities, where the each inequality is associated with a par-
ticular proposition (Wolfman & Weld 1999; Shin & Davis
2005). An alternative approach would be to encode met-
ric constraints as Boolean arithmetic in clausal form. Al-
though such an approach may seem prima facie impractical,
compiling metric constraints as SAT actually works well for
some kinds of verification problems (Seshia 2005). Given
the close connections between planning and verification, in-
vestigating the approach for metric planning appears worth-
while.

Currently the most fundamental limitation of the planning
as satisfiability approach is the need to instantiate the entire
propositional formula before attempting to solve it. If the
domains contains many objects and predicates with multi-
ple arguments, the instantiated formula may far exceed the
memory limits of any current machine. Fully lifted (first-
order resolution based) satisfiability testing is quite imprac-
tical. It may be fruitful, however, to explore the space of
“slightly lifted” approaches. In particular, the fact that in



the solution to most planning problem nearly all predicates
are false and nearly all clauses are trivially satisfied suggests
that instantiation of positive predicates can be interleaved
with search.

References
Beame, P.; Agarwal, A.; and Kautz, H. 2003. Using prob-
lem structure for efficient clause learning. In Proceedings
of the Sixth International Conference on Theory and Appli-
cations of Satisfiability Testing (SAT 2003), 159–166.
Blum, A., and Furst, M. 1995. Fast planning through
planning graph analysis. In Proceedings of the 14th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
95), 1636–1642.
Edelkamp, S.; Hoffmann, J.; Littman, M.; and Younes,
H. 2004. The 2004 international planning competi-
tion. http://ls5-www.cs.uni-dortmund.de/ edelkamp/ipc-
4/main.html.
Eén, N., and Sörensson, N. 2003. An extensible sat-solver.
In Proceedings of the Sixth International Conference on
Theory and Applications of Satisfiability Testing.
Ernst, M.; Millstein, T. D.; and Weld, D. S. 1997. Au-
tomatic SAT-compilation of planning problems. In IJCAI,
1169–1177.
Fox, M., and Long, D. 1999. The detection and exploita-
tion of symmetry in planning problems. In IJCAI, 956–961.
Hoffmann, J.; Edelkamp, S.; Englert, R.; Liporace, F.;
Thiébaux, S.; and Trü, S. 2004. Towards realistic bench-
marks for planning: the domains used in the classical part
of ipc-4.
Hoffmann, J. 2002. Local search topology in planning
benchmarks: A theoretical analysis. In Proceedings of
the 6th International Conference on Artificial Intelligence
Planning and Scheduling.
Huang, Y.-C. 2002. Learning control knowledge for plan-
ning. PhD Thesis, Cornell University.
Joslin, D., and Roy, A. 1997. Exploiting symmetry in lifted
CSPs. In AAAI/IAAI, 197–202.
Kautz, H., and Selman, B. 1992. Planning as satisfiabil-
ity. In Proceedings of the 10th European Conference on
Artificial Intelligence, 359–363. Wiley.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
Proceedings of the 13th National Conference on Artificial
Intelligence (AAAI-96), 1194–1201. AAAI Press. (Best
Paper Award).
Kautz, H., and Selman, B. 1998. Blackbox: A new ap-
proach to the application of theorem proving to problem
solving. In AIPS-98 Workshop on Planning as Combinato-
rial Search, 58–60.
Kautz, H.; McAllester, D.; and Selman, B. 1996. Encoding
plans in propositional logic. In Proceedings of the 4th In-
ternational Conference on Knowledge Representation and
Reasoning (KR-96), 374–385. Morgan Kaufmann.

Li, C. M., and Anbulagan. 1997. Heuristics based on
unit propagation for satisfiability problems. In Proceed-
ings of the International Joint Conference on Artificial In-
telligence, 366–371.
Majercik, S. M., and Littman, M. L. 1999. Contingent
planning under uncertainty via stochastic satisfiability. In
AAAI/IAAI, 549–556.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.;
and Malik, S. 2001. Chaff: Engineering an Efficient SAT
Solver. In Proceedings of the 38th Design Automation
Conference (DAC’01).
Nadel, A. 2002. Backtrack search algorithms for propo-
sitional logic satisfiability: Review and innovations. Mas-
ter’s Thesis, Hebrew Univesity.
Rintanen, J. 1999. Constructing conditional plans by a
theorem-prover. Journal of Artificial Intelligence Research
10:323–352.
Ryan, L. O. 2004. Efficient algorithms for clause learning
sat solvers. Masters Thesis, Simon Fraser University.
Sabharwal, A. 2005. Symchaff: A structure-aware satisfi-
ability solver. In Proceedings of the 20th National Confer-
ence on Artificial Intelligence (AAAI), 467–474.
Seshia, S. A. 2005. Adaptive eager boolean encoding for
arithmetic reasoning in verification.
Shin, J.-A., and Davis, E. 2005. Processes and continu-
ous change in a sat-based planner. Artificial Intelligence
166:194–253.
Shlyakhter, I. 2001. Generating effective symmetry-
breaking predicates for search problems. In Proceedings
of the Workshop on Theory and Applications of Satisfiabil-
ity Testing.
Wolfman, S. A., and Weld, D. S. 1999. The lpsat engine
and its application to resource planning. In Proceedings of
the 16th International Joint Conference on Artificial Intel-
ligence, 310–315.
Zhang, H. 1997. Sato: An efficient propositional prover. In
Proceedings of the International Conference on Automated
Deduction, 272–275.


