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Abstract

There is an increasing need for the development of sup-
portive technology for elderly people living indepen-
dently in their own homes, as the percentage of elderly
people grows. A crucial issue is resolving conflict-
ing goals of providing a technology-assisted safer en-
vironment and maintaining the users’ privacy. We ad-
dress the issue of recognizing ordinary household activ-
ities of daily living (ADLs) by combining multi-view
computer-vision based silhouette mosaic and radio-
frequency identification (RFID)-based direct sensors.
Multiple sites in our smart home testbed are covered
by synchronized cameras with different imaging reso-
lutions. Training behavior models without costly man-
ual labeling is achieved by using RFID sensing. A
hierarchical recognition scheme is proposed for build-
ing a dynamic Bayesian network (DBN) that encom-
passes various sensing modalities. Advantages of the
proposed approach include robust segmentation of ob-
jects, view-independent tracking and representation of
objects and persons in 3D space, efficient handling of
occlusion, and the recognition of human activity with-
out exposing the actual appearance of the inhabitants.
Experimental evaluation shows that recognition accu-
racy using multi-view silhouette mosaic representation
is comparable with the baseline recognition accuracy
using RFID-based sensors.

Introduction and Research Motivation
There is an increasing need for the development of support-
ive technology for elderly people living independently in
their own homes, as the percentage of the elderly popula-
tion grows. Computer-based recognition of human activities
in daily living (ADLs) has gained increasing interest from
computer science and medical researchers as the projected
care-giving cost is expected to increase dramatically. We
have built the Laboratory for Assisted Cognition Environ-
ments (LACE) to prototype human activity recognition sys-
tems that employ a variety sensors. In this paper, we address
the task of recognizing ADLs in a privacy-preserving man-
ner in next-generation smart homes, and present our ongoing
research on Assisted Cognition for daily living.
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Our system uses multiple cameras and a wearable RFID
reader. The cameras provide multi-scale and multi-view
synchronized data, which enables robust visual recognition
in the face of occlusions and both large and small scale mo-
tions. A short-range, bracelet form factor, RFID reader de-
veloped at Intel Research Seattle (iBracelet) remotely trans-
mits time-stamped RFID readings to the vision system’s
computer. RFID tags are attached to various objects in-
cluding furniture, appliances, and utensils around the smart
home. Although we currently use commercial-quality cam-
eras and a high-end frame grabber to integrate the video
feeds, the decreasing cost of video cameras and the increas-
ing power of multicore personal computers will make it fea-
sible in the near future to deploy our proposed system with
inexpensive cameras and an ordinary desktop computer.

Previous approaches to recognizing ADLs have depended
upon users wearing sensors (RFID and/or accelerometers)
or using a single camera vision system (Abowd et al. 2007;
Mihailidis et al. 2007). Recently, (Wu et al. 2007) employed
a combination of vision and RFID. The system was able to
learn object appearance models using RFID tag information
instead of manual labeling. The system is, however, limited
by a single camera view, which entails view dependency of
the processing. The system also did not attempt to model
or learn the motion information involved in performing the
ADLs. We propose a multi-sensor based activity recognition
system that uses multiple cameras and RFID in a richer way.

Understanding human activity can be approached from
different levels of detail: for example, a body transition-
ing across a room at a coarse level, versus hand motions
manipulating objects at a detailed level. Our multi-camera
based vision system covers various indoor areas in different
viewing resolutions from different perspectives. RFID tags
and reader(s) detect without false positives the nearby ob-
jects that are handled by the user. The advantages of such
a synergistic integration of vision and RFID include robust
segmentation of objects, view-independent tracking and rep-
resentation of objects and persons in 3D space, efficient han-
dling of occlusion, efficient learning of temporal boundary
of activities without human intervention, and the recognition
of human activity at both a coarse and fine level.
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Figure 1: The overall system architecture of the Multi-scale
multi-perspective vision system.

System Architecture Overview
Fig. 1 shows the overall system architecture. The clear
modules compose the basic single-view system, while the
hashed modules compose the multi-view functionality. Ac-
tivity analysis is performed with the features transformed
from the input modules. The planar homography module
locates persons for activity analysis. The dashed enclosing
boxes indicate that the silhouette and motion-map genera-
tion processes could be performed at hardware level with
infrared or near-infrared cameras to ensure the privacy.

In multi-view mode, the foreground image is redundantly
captured to represent the three-dimensional extension of the
foreground objects. Using multiple views not only increases
robustness, but also supports simple and accurate estimation
of view-invariant features such as object location and size.

Multiple View Scene Modeling
Contrary to single camera systems, our multi-camera system
provides view-independent recognition of ADLs. Our vision
system is composed of two wide field-of-view (FOV) cam-
eras and two narrow FOV cameras, all synchronized. The
two wide FOV cameras monitor the whole testbed and local-
ize persons’ positions in the 3D space based on a calibration-
free homography mapping. The two narrow FOV cameras
focus on more detailed human activities of interest (e.g.,
cooking activities at the kitchen countertop area in our ex-
periments).

Currently, four cameras are used (Fig. 2) to capture the
scene from different perspectives. Two wide-FOV cameras
(in darker color) form the approximately orthogonal viewing
axes to capture the overall space (views 1 and 2 in Fig. 3),
while the two narrow-FOV cameras (in lighter color) form
the approximately orthogonal viewing axes to capture more
details of certain focus zones such as the kitchen (views 3
and 4 in Fig. 3.) The four synchronized views are overlaid
with a virtual grid to compute scene statistics such as pixel
counts in each grid cell. Both the track and body-level anal-
ysis can be used for the activity analysis depending upon the
analysis tasks. In this paper, we focus on multi-view silhou-
ette mosaic representations of detected foreground objects
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Figure 2: Multi-camera configuration. Two wide-FOV cam-
eras (in darker color) and two narrow-FOV cameras (in
lighter color) form the approximately orthogonal viewing
axes, respectively.
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Figure 3: Distortion-compensated multi-view images 1 to 4
of the ADLs experiment in which a person performs the pre-
pare cereal activity. The virtual grid is overlayed to compute
scene statistics.

for privacy-preserving recognition of activities.
In Fig. 1, dynamic contextual control with optional user

involvement can be incorporated with activity analysis, and
provides constraints to other processing modules as feed-
back. The top-down feedback flows in the system are
marked as red arrows.

Appearance-Based Segmentation and Tracking
ADLs may involve multiple objects moving simultaneously,
which can create challenges for a vision system — for ex-
ample, changing backgrounds and object occlusion.

We adopt a dynamic background model using K-means
clustering (Kim et al. 2005). The background model is up-
dated with a memory decay factor to adapt to the changes in
the background, and foreground-background segmentation
is achieved at each pixel.

Representation of Scene Statistics
Figs. 3 and 4 show the process of representing scene statis-
tics. We denote the m-th camera image and its foreground



Figure 4: Binary foreground maps corresponding to the
multi-view images in Fig. 3. The whole image forms the
super foreground map Γt. Black areas represent effective
foreground regions (i.e., inverted for visualization only.)

map at time t as I t
m and F t

m, respectively, (m ∈ {1, 2, 3, 4},
See Fig. 3). A super image ϑt and its associated super fore-
ground map Γt are obtained by juxtaposing the individual
images It

1, . . . , I
t
4 and F t

1 , . . . , F t
4 , respectively. Therefore if

It
m is of size W ×H pixels, ϑt and Γt are of size 2W ×2H .

(In our implementation, image width W = 640 pixels and
image height H = 480 pixels.)

A virtual grid overlays the super foreground map Γ t

(Fig. 4) for decimation as follows. Each of the grid cells with
cell size of S × S pixels (S = 40 pixels) counts the number
of foreground pixels (in Fig. 4) within its cell boundary and
divides the number with the cell area as follows.

δt
i,j =

∑
� foreground pixels

S2
(1)

Therefore, δt
i,j forms the value of a super pixel representing

the ratio of foreground occupancy in the cell, ranging [0, 1]:

δt
i,j ∈ [0, 1] ∈ R (2)

In our current implementation, the original 2W × 2H(=
1280× 960) super foreground map Γt is converted to 2W

S ×
2H
S (= 32 × 24) occupancy map Ot which contains super

pixel values δt
i,j , i ∈ {1, . . . , 32}, j ∈ {1, . . . , 24}. We

concatenate all the super pixels δ t
i,j across Ot into a vector

format, Δt:
Δt = [δt

1,1, . . . , δ
t
32,24]

T (3)

where the dimensionality of Δt is 768 (= 32 × 24) in our
experiments.

Therefore, the entire foreground silhouettes from the four
simultaneous camera views at time t (e.g., Fig. 4) are repre-
sented as a single point in the 768-dimensional vector space.
Consecutive frames of a given video sequence are mapped
as sample points in this vector space as depicted in Fig. 5.

Our conjecture is that two sample points, Δt1 and Δt2

from nearby frames (i.e., |t2−t1| � τ ) involved in the same

768-D vector spaceOccupancy map sequence Clustering

Figure 5: Transformation from the sequence of occu-
pancy map O (color coded for visualization) to the high-
dimensional vector space to the cluster labels.

activity will be grouped together, whereas the sample points
from distant portions of the video sequence (i.e., |t2− t1| �
τ ) involved in different activities will get separated in this
vector space. The proper threshold value τ can be learned
from training data.

Clouds of adjacent sample points can be grouped into
clusters by standard clustering algorithms such as K-means
clustering or expectation-maximization (EM) based Gaus-
sian mixture modeling (Duda, Hart, and Stork 2001). Note
that each element of vector Δt was normalized into the
range of [0, 1]. We adopt the Linde-Buzo-Gray Vector
Quantization algorithm (Sayood 1996), an efficient variant
of K-means clustering, to cluster the high-dimensional vec-
tor space representation of the video data into M clusters.
(We will show experimental results with different values of
M from 32 to 128.)

In this approach, the long-term video sequence that in-
volves multiple sequential activities is therefore succinctly
represented as the transition of cluster labels across the M
clusters as depicted in Fig. 5. The evolution patterns of
cluster label transitions in different activities in daily liv-
ing will be learned by using hidden Markov models in an
unsupervised manner with expectation-maximization (EM)
learning.

RFID for Training Activity Segments
Proper parsing of the temporal sequence of feature streams
for activity recognition is still an open research question.
Traditional approaches are based on manual segmentation or
on a moving window of fixed duration. Such approaches are
not effective for natural activities that may vary in duration.

We are using RFID sensing for segmenting and labeling
ADLs training data. Intel Research Seattle developed and
supplied our lab with an RFID reader in the form of bracelet.
It has a detection range of about 10–15 centimeters. As
the person’s hand approaches an RFID tagged object, the
bracelet detects the tag and wirelessly transmits the time-
stamped ID information to the PC-based activity recognition
system. In our current configuration, the ID transmission is
repeated every second until the person’s hand leaves the ob-
ject.

The combination of vision and RFID was pioneered by
Wu et al. (Wu et al. 2007) to train object appearance models
without laborious manual labeling efforts. The RFID labels
were used only to infer object use. A single detailed-view



Table 1: Activity class descriptions.

1. Walk around (WA) 2. Sit and watch TV (ST)
Enter the scene Bring remote control
Walk Sit on couch

Turn on / watch TV

3. Prepare utensil (PU) 6. Store utensil (SU)
Open / close cupboard Open / close cupboard
Bring utensil Return utensil
(dish, cup, bowl) Return flatware

Bring flatware Open / close drawer
(spoon, knife, and fork)

Open / close drawer

4. Prepare cereal (PC) 5. Drink water (DW)
Open cupboard Open refrigerator
Bring a cereal box Bring water jar
Pour cereal in the bowl Pour water in a cup
Pour milk in the bowl Drink water in the cup
Eat cereal with spoon

camera was used in their system, and no tracking of objects
or human body was considered. Our work expands upon
their approach by incorporating human body model and ob-
ject models, and building a DBN that models the interaction
of the person and objects. RFID sensing in our system is
used for learning the temporal segmentation of salient mo-
tions in video.

Activity Recognition Modeling
Activities in daily living occur in certain contexts. Such con-
texts may include short-range history of preceding activities,
as well as a global and long-range information such as an in-
dividual’s health conditions, the time of day, the time since
the last occurrence of a regularly repeated activity (e.g., toi-
leting), etc. Activities may be observed at a coarse level,
such as moving across multiple rooms during a day, as well
as at a fine level, such as detailed cooking behavior in a
kitchen. Our goal is to encompass both levels of analysis by
developing an integrated hierarchical activity model. More
specifically, our initial experiments include the six coarse-
level activity classes described in Table 1.

Note that each of the six coarse-level activities is com-
posed of a series of fine-level unit actions. Activity classes
1 and 2 occur in the living room space of our smart home
testbed, and are monitored by the two wide FOV cameras
covering the entire space, while activities 3 through 6 oc-
curs in the kitchen room space and are monitored by the two
narrow FOV cameras monitoring the kitchen area.

Activity Model
Some of the activity classes (i.e., coarse-level activities 1
and 2) in Table 1 have very different characteristics from
other activity classes (i.e., detailed-level activities 3 through
6) in terms of interaction styles with different objects in the
environments and available evidence from salient imaging
features. Different environments such as living room vs.
kitchen involve different objects such as couch/TV vs. uten-
sil/food, respectively. In such structured environments, hu-

A1 A2

O1 O2

S1 D1 R1 S2 D2 R2

Figure 7: Hierarchical composition of dynamic Bayesian
networks for recognizing ADLs. (Subscript denotes time.)

man behavior is constrained by the existing setup of objects.
This constraint makes it easily to capture reliable visual ev-
idence from stationary cameras. Furthermore, Multi-view
cameras can capture rich evidence from different perspec-
tives.

We use the foreground map obtained by background sub-
traction as the scene statistics that describe scene changes
from the learned background scene. We use the motion map
obtained by frame differencing as the object statistics that
represents the local motion of objects in the foreground map.
The RFID signals are used as the reference evidence of ob-
ject touch, which is regarded as the baseline performance in
our experiments.

We are developing graphical models for recognizing
ADLs by incorporating the interdependency of the multiple
nodes shown in Fig. 7. We incorporate the observations from
scene statistics (Si), object statistics (Di), and RFID labels
(Ri) to build a hierarchical classifier for ADLs as shown in
Fig. 7. The hidden node regarding object manipulation (O t)
determine the observation states of evidence from the sil-
houette image profile (St), frame-difference image profile
(Dt), and RFID signal profile (Rt). We include a higher-
level hidden node for activity (At) that determines the object
manipulation in node (Ot). The activity layer represents the
transition between different activity classes.

The DBN model is specified by the following pa-
rameters: the prior distribution P (A1), the observation
model P (O1|A1) and P (Ot+1|Ot, At+1), the state transi-
tion model P (At+1|At), and the output models P (St|Ot),
P (Dt|Ot) and P (Rt|Ot).

The tree structure of the DBN model enables efficient de-
composition of the DBN into multiple HMMs as substruc-
tures as follows; The individual substructure involving the
node sets {Ot, St}, {Ot, Dt}, and {Ot, Rt}, respectively,
forms independent hidden Markov models. The clear node
Ot is hidden node in the substructure HMMs and the respec-
tive gray nodes are observation nodes in the corresponds
HMMs. We use standard Baum-Welch and Viterbi algo-
rithms (Rabiner 1989) to train the individual HMMs. The
number of hidden node states (|Ot|) we tested are 1 and 3
(NH = 1 or 3), and the number of observation node states
(|St|) and (|Dt|) varied between 32, 64 and 128 (MH =
32, 64, or 128) depending on the number of cameras used
as input for single- vs. multi-view based recognition perfor-
mances (See Experiments section). The number of RFID ob-
servation node states (|Rt|) was fixed to 30 due to the fixed
number of RFID tags used in the experiments.
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Figure 6: Example frames for each activity in Table 1. (a) Walk around, (b) sit and watch TV, (c) prepare utensil, (d) store
utensil, (e)(f) prepare cereal, and (g)(h) drink water, respectively. Notice that some activities may look very similar at certain
moments during the sequences. Raw frames: (a)-(h), background subtraction: (i)-(p), frame-differenced motion maps: (q)-(x).



Figure 8: A participant’s five epoches of RFID labels. (x-
axis: associated video frame index, y-axis: RFID label in-
dices.)

Parameters beside P (St|Ot), P (Dt|Ot) and P (Rt|Ot)
can easily specified by a human expert or automatically
learned from data using EM algorithm (Wu et al. 2007). The
merit of converting the HMMs into a DBN by including the
activity node At is that the activity node provides additional
control of the network behavior by regulating arbitrary tran-
sitions between sporadic jumps between different activities.
The inference algorithm changes from the Viterbi algorithm
for the HMMs to the junction tree algorithm for the DBN.

Experiments
We are currently investigating the six activity classes occur-
ring in the smart home testbed as shown in Fig. 2. K persons
(K = 5) participated twice in the experiments in separate
sessions to conduct the activities from 1 through 6 in a se-
quential manner, which defines an epoch. In total, 5 epochs
(i.e., repetitions) per each of the 6 activity classes per each
of the 10 trials (i.e., 5 persons × 2 sessions) were collected.
Participants were free to choose different sub-sequences of
the fine-level actions in each of the 6 coarse-level activity
classes. The persons wore the RFID reader on their right
wrists, which detected the nearby objects’ RFID labels in
a sequential manner as shown in Fig. 8. The five chunks
of RFID patterns corresponding to the epochs were used to
segment video sequences.

Table 2, Tables 3- 4, and Table 5 show the confusion ma-
trices of recognition activity using RFID, scene statistics,
and object statistics, respectively. The rows and columns of
the tables denote the true and the recognized classes, respec-
tively. The leave-one-out cross validation scheme uses four
epochs for training and the remaining one epoch for test-
ing in a round-robin manner. In each cell, the numbers with
larger font denote the average accuracy, and the superscript
numbers with smaller font denote the standard deviation of
the five average accuracy measures. The lower right cell of
each sub-table shows the average of the recall rates in the
corresponding sub-table.

Comparing Tables 2 and 4 shows that RFID-based recog-
nition accuracy is higher for kitchen activities (activity
classes 3 - 6 in Table 1), while vision-based recognition ac-
curacy is higher for living room activities (activity classes 1
and 2.) The cells of low accuracy with large standard de-

viation (shown in light gray) are complementary between
the two sensing modalities as follows: living-room activi-
ties (e.g., Walk around) are better recognized with evidence
from scene statistics, while cooking activities (e.g., Prepare
cereal and Drink water) are better recognized with the evi-
dence from RFID sequences. This result is consistent with
the environmental configuration of the testbed; the kitchen
area contains many occluding objects with RFID tag and the
living area is an open space with fewer RFID tags, which are
sparsely distributed.

Comparison of Table 3 and the first Sub-table in Table
4 shows the advantage of using multiple cameras for input
observation over a single camera. The multi-view approach
enhances the overall accuracy from 74 % to 80%, and signif-
icantly reduces the variance of the recognition accuracy. The
robustness is enhanced as indicated by the reduced number
of nonzero off-diagonal cells.

Comparing the two Sub-tables in Table 4 shows that the
more complex model increases the recognition accuracy
from 80% to 83%. The small difference may imply that
the two models have already converged. Further improving
the recognition accuracy may require the fusion of multiple
observation streams as input, which is part of our ongoing
investigation.

The most difficult class of activity in the recognition task
is Drink water (DW), as indicated by the low recall rates
in Tables 3 and 4. This activity often gets confused with
Prepare cereal (PC), because the two activities are not well-
distinguishable by their silhouettes.

Table 5 shows the significant increase of the recognition
accuracy of the Drink water (DW) class from 46 % to 72 %
by using the frame-differenced motion maps (e.g., in Fig. 6
(q)-(x)) as input observation. Unlike the background sub-
traction, the motion maps obtained by frame differencing
effectively captures the moving parts within the silhouette.

In summary, the experimental evaluation shows the fol-
lowing findings:

• Multi-view vision enhances recognition accuracy and ro-
bustness of recognition of ADLs.

• Different input modalities capture different aspect of ac-
tivity.

• Complex model improves the recognition accuracy
slightly.

• Data fusion by an integrated model is desirable.

The physical world including the human body is basically
a 3-dimensional space. The sensitivity analysis shown in
Tables 2 - 5 in terms of the standard deviations of recog-
nition accuracy supports the following argument: the quasi-
orthogonal configuration of the multiple cameras better rep-
resents the scene structure than a single camera does, by
providing redundancy and removing ambiguity due to oc-
clusion between objects. With this redundancy, our multi-
view vision system achieves reasonable performance rates
(compared to the RFID-based system) with very coarse vi-
sual representation in terms of silhouette mosaic or motion
blur as input evidence.



Table 2: Recognition of ADLs using RFID labels. (NH = 1, MH = 30) (Legends in Table 1). The numbers of larger font in
each cell denote the average accuracy, and the superscript numbers denote the standard deviation (i.e., not exponent.)

RFID WA ST PU PC DW SU recal
WA 0.700.22 0.300.22 0.70
ST 0.860.09 0.140.09 0.86
PU 0.880.08 0.020.04 0.100.07 0.88
PC 0.020.04 0.880.11 0.040.05 0.060.05 0.88
DW 0.020.04 0.120.16 0.780.16 0.080.11 0.78
SU 0.020.04 0.980.04 0.98
precision 0.95 0.74 0.86 0.85 0.95 0.80 0.85

Table 3: Single-view based recognition of ADLs. Occupancy maps O from the single-view foreground silhouettes (e.g., Fig. 6
(i)-(p)) were used as input observation. (NH = 1, MH = 32).

Cam-1 WA ST PU PC DW SU recall
WA 1.000.00 1.00
ST 0.060.05 0.940.05 0.94
PU 0.760.05 0.240.05 0.76
PC 0.240.15 0.560.22 0.160.13 0.040.05 0.56
DW 0.120.16 0.360.19 0.520.18 0.52
SU 0.240.11 0.040.05 0.720.11 0.72
precision 0.94 1.00 0.56 0.61 0.72 0.72 0.75
Cam-2 WA ST PU PC DW SU recall
WA 1.000.00 1.00
ST 0.040.05 0.960.05 0.96
PU 0.600.07 0.020.04 0.380.08 0.60
PC 0.840.15 0.120.13 0.040.05 0.84
DW 0.580.22 0.420.22 0.42
SU 0.220.04 0.020.04 0.760.09 0.76
precision 0.96 1.00 0.73 0.59 0.72 0.64 0.76
Cam-3 WA ST PU PC DW SU recall
WA 0.640.13 0.340.17 0.020.04 0.64
ST 0.060.05 0.940.05 0.94
PU 0.880.08 0.120.08 0.88
PC 0.020.04 0.780.18 0.180.19 0.020.04 0.78
DW 0.020.04 0.480.13 0.500.12 0.50
SU 0.040.09 0.960.09 0.96
precision 0.91 0.73 0.90 0.62 0.74 0.87 0.78
Cam-4 WA ST PU PC DW SU recall
WA 0.540.34 0.440.36 0.020.04 0.54
ST 0.320.41 0.680.41 0.68
PU 0.900.10 0.100.10 0.90
PC 0.020.04 0.660.13 0.280.08 0.040.05 0.66
DW 0.020.04 0.460.11 0.520.08 0.52
SU 0.120.08 0.880.08 0.88
precision 0.63 0.61 0.83 0.59 0.65 0.86 0.70

Conclusion

We have presented our ongoing research on privacy-
preserving recognition of activities in daily living. Our
approach uses a distributed multi-view vision system and
RFID reader/tags for view independence and robustness in
obtaining evidence for scene statistics, object statistics, and
RFID labels. RFID-based evidence better indicates cook-
ing activities involving multiple utensils, while multi-view
vision-based evidence better indicates living-room activities

in large space. Overall, the RFID-based recognition accu-
racy is comparable to the multi-view based recognition ac-
curacy that uses coarse silhouette mosaic or even coarser
representation by frame-differenced images. The comple-
mentary nature of the two sensing modalities provides useful
integration for better recognition of activities in daily living.
We have presented the basic performance evaluations for
each of the sensing methods. The multi-view vision system
achieves reliable performance in recognition accuracy from



Table 4: Multi-view based recognition of ADLs. Occupancy maps O from foreground silhouettes (e.g., Fig. 6 (i)-(p)) were used
as input observation. Different HMM complexities were compared between 1-state HMMs: (NH = 1, MH = 32) vs. 3-state
HMMs : (NH = 3, MH = 128).

1-state HMMs WA ST PU PC DW SU recall
WA 0.840.13 0.140.15 0.020.04 0.84
ST 0.040.05 0.960.05 0.96
PU 0.940.09 0.060.09 0.94
PC 0.020.04 0.680.04 0.300.00 0.68
DW 0.500.10 0.500.10 0.50
SU 0.100.07 0.900.07 0.90
precision 0.95 0.87 0.87 0.58 0.63 0.94 0.80
3-state HMMs WA ST PU PC DW SU recall
WA 1.000.00 1.00
ST 0.020.04 0.980.04 0.98
PU 0.940.05 0.060.05 0.94
PC 0.080.08 0.680.13 0.080.08 0.160.15 0.68
DW 0.020.04 0.420.11 0.420.04 0.140.11 0.42
SU 0.060.09 0.940.09 0.94
precision 0.98 1.00 0.85 0.62 0.84 0.72 0.83

Table 5: Recognition of ADLs using occupancy maps from frame-differenced motion maps (e.g., Fig. 6 (q)-(x)) as the input
observation. (NH = 1, MH = 32)

WA ST PU PC DW SU recall
WA 0.920.04 0.060.05 0.020.04 0.92
ST 0.080.08 0.920.08 0.92
PU 0.940.05 0.060.05 0.94
PC 0.660.11 0.320.08 0.020.04 0.66
DW 0.280.11 0.720.11 0.72
SU 0.060.05 0.940.05 0.94
precision 0.92 0.94 0.92 0.70 0.69 0.92 0.85

privacy-preserving simple profiles such as silhouette mosaic
and frame differenced motion maps. To be truly privacy pre-
serving, the process of obtaining the silhouette would need
to be performed at the camera module such as thermal or
near infrared cameras. Our approach is directly applicable to
those cameras without significant modification. The current
system assumes that the situation involves a single person,
which would be the most critical situation in practice. But
this bar of constraint would sometimes need to be raised. We
are currently developing more robust algorithms for multi-
object tracking to obtain better object statistics, and intend
to investigate more efficient graphical models.
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