
Modeling and Reasoning about Success, Failure, and
Intent of Multi-Agent Activities

Adam Sadilek
University of Rochester

sadilek@cs.rochester.edu

Henry Kautz
University of Rochester
kautz@cs.rochester.edu

ABSTRACT
Recent research has shown that surprisingly rich models of
human activity can be learned from GPS (positional) data.
However, most effort to date has concentrated on modeling
single individuals or statistical properties of groups of in-
dividuals. We, in contrast, take on the task of understand-
ing human interactions, attempted interactions, and inten-
tions from noisy sensor data in a multi-agent setting. We
use a real-world game of capture the flag to illustrate our ap-
proach in a well-defined domain. Our evaluation shows that
given a model of successfully performed multi-agent activ-
ities, along with a set of examples of failed attempts at the
same activities, our system can automatically learn an aug-
mented model that is capable of recognizing success, failure,
as well as goals of people’s actions with high accuracy. Fi-
nally, we demonstrate that explicitly modeling unsuccessful
attempts boosts performance on other important recognition
tasks.

Author Keywords Multi-agent activity recognition, statis-
tical relational learning, structure learning.

ACM Classification Keywords I.2.4 [Knowledge Repre-
sentation Formalisms and Methods (F.4.1)]: Relation sys-
tems.

General Terms Algorithms, Human Factors, Experimenta-
tion.

MOTIVATION
Our society is founded on the interplay of human relation-
ships and interactions. Since every person is tightly embed-
ded in our social structure, the vast majority of human be-
havior can be fully understood only in the context of actions
of other—related—people. Being able to recognize people’s
activities and reason about their behavior is a necessary pre-
condition for having intelligent and helpful machines that
are aware of “what is going on” in the human-machine as
well as human-human relationships.

Furthermore, reasoning about human intentions is an essen-
tial element of context-awareness, since if we can recognize
what a person (or a group of people) wants to do, we can
proactively try to help them (or—in adversarial situations—
hinder them). Intent is notoriously problematic to quantify
(e.g., [1]), but we show that the notion is precisely and nat-
urally captured in the process of learning the structure of
unsuccessfully attempted activities. We all know perhaps

Copyright is held by the author/owner(s). UbiComp10, September 26–29,
2010, Copenhagen, Denmark. ACM 978-1-60558-843-8/10/09.

too well that a successful action is often preceded—and un-
fortunately sometimes also followed—by multiple failed at-
tempts. Therefore, reasoning about attempts typically entails
high practical utility, but not just for their relatively high fre-
quency. Consider, for example, a task of real-time analysis
of a security video system. There, detecting that a person or
a group of people (again, relations) intend to steal something
is much more important and useful than recognizing that a
theft has taken (or even is taking) place, because then it is
certainly too late to entirely prevent the incident and it may
also be too late or harder to merely stop it. We believe that
recognition of attempts in people’s activities is a severely
underrepresented topic in artificial intelligence that needs to
be explored more since it opens a new realm of interesting
possibilities.

RELATED WORK
More and more evidence is emerging from social networks
research showing that when we want to model behavior of
a person, the single best predictor is often the behavior of
people in her social network (e.g., [5]). However, previous
work heavily focused on nonrelational reasoning and activ-
ity recognition [4, 2]. A number of researchers in machine
vision have worked on the problem of recognizing events in
videos of sporting events, such as impressive recent work on
learning models of baseball plays [3]. Most work in that area
has focused on recognizing individual actions (e.g., catch-
ing and throwing), and the state of the art is just beginning
to consider relational actions (e.g., the ball is thrown from
player A to player B).

In our previous work on multi-agent activity recognition, we
show that while it may be impossible to directly detect an
activity due to sensor noise, the occurrence of the activity
can still be deduced by its impact on both the past and future
behaviors of the individuals it involves [7]. However, that
model recognizes only single and statically defined activity.
In order to build a truly useful reasoning system, we need to
consider not only relationships among people, but also rela-
tionships among activities themselves. Here we improve our
earlier approach in several directions: We extend the num-
ber of activities in the recognition repertoire of the system;
we automatically extract people’s intentions from their ac-
tions; and we show how the system adapts itself and learns
to recognize failed attempts at activities and in turn uses the
newly acquired knowledge to label both failed and success-
ful events. To our knowledge, there exists no prior work on
explicit modeling and recognition of attempted activities or
on learning the intended purpose of an activity in a multi-



agent setting.

CAPTURE THE FLAG DOMAIN
Our main test domain is the game of capture the flag (CTF).
We collected a CTF dataset by having people play four rounds
of the game on a university campus. Each player carried a
consumer-grade GPS device that logged its position (plus
noise) every second (Fig. 1). There are two teams—each
consisting of seven players. The goal is to enter the oppo-
nent’s flag area. Players can be captured only while on en-
emy territory by being tagged by the enemy. Upon being
captured, they must remain in place until freed (tagged by a
teammate) or the game ends. The games involve many com-
petitive and cooperative activities, but here we focus only
on capturing and freeing. The visualization of the games is
available from the first author’s website.

If we are to reliably recognize events that happen in these
games in the presence of severe noise, we need to consider
not only each player individually but also the relationships
among them over extended periods of time (possibly the
whole length of the game). Consider the task of inferring
the individual and joint activities and intentions of the CTF
players from their GPS traces. For example, suppose the
GPS data shows Player A running toward a stationary team-
mate Player B, then moving away. What occurred? Possibly
Player A has just “freed” Player B, but GPS error has hidden
the fact that Player A actually reached B. Another possibil-
ity is that Player A had the intention of freeing Player B, but
was scared off by an opponent at the last second. Yet another
possibility is that no freeing occurred or was even intended,
because Player B had not been previously captured.

Understanding a game thus consists of inferring a complex
set of interactions among the various players as well as play-
ers’ intentions. The conclusions drawn about what occurs at
one point in time affect and are affected by inferences about
past and future events. In the example just given, recog-
nizing that Player B is moving in the future reinforces the
conclusion that Player A is freeing Player B, while failing to
recognize a past event of Player B being captured decreases
confidence in that conclusion. The game of CTF also il-
lustrates that understanding a situation is as much or more
about recognizing attempts and intentions as about recogniz-
ing successfully executed actions. For example, in course
of a 15 minute game, only a handful of capture or freeing
events occur. However, there are dozens of cases where one
player unsuccessfully tries to capture an opponent or to free
a teammate. A description of a game that was restricted to
what actually occurred would be only a pale reflection of the
original.

Although the CTF domain doesn’t capture all the intricacies
of life, it contains many complex, interesting, and yet well-
defined (multi-agent) activities. Moreover, it is based on ex-
tensive real-world GPS data (total of 40,000 data points).
Thus most of the problems that we are addressing here clearly
have direct analogs in everyday-life situations that ubiqui-
tous computing needs to address—imagine people going about
their daily lives in a city instead of CTF players, and their
own smart phones instead of GPS loggers.

Figure 1. A snapshot of a game of capture the flag prior data denoising.

BACKGROUND: MARKOV LOGIC
We cast our model of CTF in Markov logic (ML), a statistical-
relational language that provides an elegant combination of
probabilistic reasoning with expressive, relatively natural,
and compact but strictly true or false formulas of first-order
logic (FOL) [6]. The basic elements of Markov logic are
(a) FOL formulas (e.g., all dogs are animals: ∀x dog(x) ⇒
animal(x)); and (b) weights assigned to each formula. The
relative importance of a formula is proportional to its weight.
For example, [∀x animal(x)⇒ cat(x)]·8.3 means that if we
know that x is an animal, with some well-defined probabil-
ity (captured in the weight of 8.3) x is also a cat. Thus, the
formulas allow us to express complex attributes, structure,
and relationships while the weights present a way to model
any such finite domain in a probabilistic way.

METHODOLOGY
We investigate the following research questions in a multi-
agent setting:

Q1. Can models of attempted activities be automatically learned
(induced) from models of successfully performed actions?

Q2. Does modeling attempts of activities improve performance
of recognizing the activities themselves?

In this section, we describe three major components of our
approach that, when put together, allow us to answer Q1 and
Q2. In short, we first manually augment the model of cap-
turing activities in CTF presented in [7] so that it recognizes
freeing events as well. This constitutes our “seed” theory
that our system then automatically extends in order to learn
the structure of failed attempts at captures and freeings and
the relationships among them and their successful counter-
parts. Finally, we use the augmented theory to recognize a
richer set of multi-agent activities and extract their respec-



tive intended goals.

Adding Freeing Recognition
We augment the original model described in [7] by simply
adding two additional rules:
1. If players a and b are allies, both are on enemy territory,

b is currently captured, a is not, and they are close to each
other, then a probably frees b.

2. At any given time, a player is either captured or free.

In the actual implementation, these rules are written in Markov
logic. For example rule 2 becomes

∀a, t :
[
isFree(a, t) XOR isCaptured(a, t)

]
· ∞.

Learning a Model of Failed Attempts
Next, the system executes the following algorithm in order
to induce new ML formulas and learn a new set of weights.
The algorithm produces a new model (ML theory) that rec-
ognizes both successfully performed capturing and freeing
events as well as instances where the players attempted those
activities but failed. Intuitively, the algorithm implements
top-down learning to generate a seed hypothesis and then
applies bottom-up (data-driven) learning to prune the seed
theory, whereby the training data (user-provided examples
of failed attempts) guides our search for formulas to remove.

Algorithm 1 : Extend a ML theory to model successful as
well as failed activities.
Input: A: set of activities

T : ML theory that models successful instances of activities in A
S: set of examples of successful activities
F : set of examples of failed activities

Output: T ′′: augmented ML theory with learned weights that models
both successful and attempted activities in A
I: intended goals of the activities

1: T 2 ⇐ liftToSecondOrderML(T , A)
2: T ′ ⇐ instantiate(T 2, A)
3: (T ′′, I)⇐ findIncompatibleFormulas(F , T ′)
4: learnWeights(S, F , T ′′)
5: return T ′′, I

In step 1 of the algorithm, we first variabilize the predicate
names of the activities (capturing and freeing). This process
is called lifting to second-order ML and allows our system
to automatically introduce new activities, instead of work-
ing with a fixed set of pre-defined ones. In step 2, the system
instantiates these predicate variables thereby introducing a
new set of ML formulas, some of which model successful
capturing and freeing, some model attempted capturing and
freeing, and the rest do not capture anything of interest and
will be pruned out in the following step. We use a standard
Boolean satisfiability solver (miniSAT) to find the right for-
mulas to remove from our model. Our system achieves that
by testing which subsets of the formulas are compatible with
the examples (S ∪ F ) in step 3. This step also extracts the
intended goal for each activity in A by resolving the incom-
patibilities between the theory and the training examples. In
step 4, we learn new weights within the augmented model
T ′′ as described in [7]. Our system also displays the conse-
quences of each refinement of the model as a set of annotated
animations so that the user can easily follow the learning
procedure.

1.00	  

0.71	  

0.78	  

0.93	  

1.00	  

0.06	  

0.13	  

0.04	  

0.75	  

1.00	  

0.97	  

1.00	  

0.25	  

1.00	  

0.97	  

0.92	  

0.86	  

0.83	  

0.86	  

0.96	  

0.40	  

0.11	  

0.23	  

0.08	  

0.00	   0.10	   0.20	   0.30	   0.40	   0.50	   0.60	   0.70	   0.80	   0.90	   1.00	  

FF	  (4)	  

AF	  (5)	  

FC	  (65)	  

AC	  (13)	  

FF	  (4)	  

AF	  (5)	  

FC	  (65)	  

AC	  (13)	  

U
ni
fie

d	  
Ba

se
lin
e	  

F1	  

Recall	  

Precision	  

Figure 2. Performance of the baseline and unified models. In parenthe-
ses are the numbers of respective events in the dataset.

EXPERIMENTS AND RESULTS
To answer our research question Q1, we apply the theory
augmentation process (Algorithm 1) on the CTF seed the-
ory described in [7], augmented with freeing recognition as
explained above. This induces a new set of formulas that
capture the structure of attempted activities and ties them to-
gether with the existing formulas in the theory.

In the process of pruning formulas, Algorithm 1 correctly
discovers that whether a player remains stationary or not is
the key distinction between a successful and failed captur-
ing (since players who were not actually captured can still
move). This discovery is not hidden in the internal struc-
ture of the model, but is explicitly output in the language of
Markov logic. Analogous process yields a fitting separation
between failed and successful freeings. Namely, our model
learns that an unsuccessfully freed player remains station-
ary. Note that in practice, the difference between success
and failure in performing an activity directly constitutes the
purpose of the activity and consequently the intent of the ac-
tors.

Next we use this newly learned unified model to recognize
all four activities of interest: actual and failed capturing (AC
and FC respectively), and actual and failed freeing (AF, FF).
We compare the performance of our unified model to an al-
ternative (baseline) method that labels all four activities in
the following way. There are two separate stages. First we
denoise (snap) the GPS data by creating an occupancy map
of the game area as described in [7], and afterward we label
the instances of the four activities. The following labeling
rule is applied. We loop over the whole data set and look
for instances where a pair of players a and b were snapped
(in the first step) to either the same cell or to two adjacent
cells at time t, they are enemies, b is not captured already,
and a is on its home territory while b is not. If b moves (is
snapped to a different cell at a later time) without having an
ally nearby, we output failedCapturing(a,b,t), otherwise we
output capturing(a,b,t). The labeling rule for freeing is de-
fined analogously and all four events are tied together. The
unified model is executed as described in section “Methods”
above and is evaluated using four-fold cross-validation (al-



0.50	  

0.71	  

0.80	  

0.93	  

1.00	  

1.00	  

0.92	  

1.00	  

0.67	  

0.83	  

0.86	  

0.96	  

0.00	   0.20	   0.40	   0.60	   0.80	   1.00	  

AF	  

AF-‐F	  

AC	  

AC-‐F	  

F1	  

Recall	  

Precision	  

Figure 3. Considering unsuccessfully attempted activities boosts per-
formance on standard activity recognition.

ways training on three games and testing against the fourth).

Fig. 2 compares both models in terms of precision, recall,
and F1 score. We see that the baseline model has, in gen-
eral, a respectable recall but it produces a large number of
false positives for all activities besides failed freeing, which
has the opposite problem of having low recall. The false
positives stem from the fact that the algorithm is “greedy”
in that it typically labels a situation where several players
appear close to each other for certain period of time as a se-
quence of many captures and subsequent frees even though
none of them actually occurred. The unified model gives sig-
nificantly better results because it takes full advantage of the
structure of the game in a probabilistic fashion.

Note that we did not put in any knowledge about the un-
successfully attempted activities into the model. We only
provided examples of game situations where those attempts
occur and the system augmented itself and subsequently la-
beled all four activities. Thus, we see that we can indeed
extend preexisting models in an automated fashion so that
the unified model is capable of recognizing not only individ-
ual activities, but also both success and failure in people’s
behavior.

To address question Q2, we want to see how much does the
recognition of attempted activities help in modeling the suc-
cessful actions (the latter being the standard activity recog-
nition problem). Therefore, we remove the module respon-
sible for learning the failed attempts from our model and
compare this stripped-down version, which considers only
successful capturing and freeing, to the full-fledged unified
model. Fig. 3 summarizes the results. We see that actual
capturing with failure recognition model (AC-F) performs
significantly better than the plain model of actual capturing
(AC), and similarly for actual freeing with failure detection
(AF-F) versus just actual freeing (AF).

CONCLUSIONS
Understanding activities that involve multiple interacting in-
dividuals is an important component of context-aware sys-
tems. This applies even in domains that are not primarily
human-centered, because people are the “final judges” of the
performance of any system. In this work, we make first steps
toward explicit modeling of success and failure exhibited in

complex activities. We show that given a model of success-
fully performed activities, along with a set of examples of
failed attempts at the same activities, our system can auto-
matically learn a generalized and augmented model that is
capable of recognizing both the successful actions as well
as mere attempts within a multi-agent domain. Additionally,
we show that success, failure, and the intended goal of an
activity are intimately tied together and having a model for
successful events allows us to naturally learn models of the
other two important aspects of life.

We evaluate our model and show that it achieves high recog-
nition accuracy on real-world data. Furthermore, we demon-
strate that explicitly modeling unsuccessful attempts boosts
performance on other recognition tasks. Our system can
function in both off-line and on-line (processing streaming
data) modes and scales well both in terms of the number of
data points considered and the extent of the geographic area.
Additionally, our system makes it easy even for nonscientists
to analyze the internal structure of the models.

FUTURE WORK
We are currently extending our model to handle not only
explicit GPS traces, but also be able to infer the location of
people who do not broadcast their GPS coordinates. The
basic idea is, again, to leverage the structure of relationships
among people. The vast majority of us participate in on-line
social networks and typically some of our friends there do
publish their location. We thus view the GPS-enabled people
as noisy location sensors and use the network interactions
and dynamics to estimate the location of the rest of the users.
At present, we are testing this approach on public tweets.

REFERENCES
1. D. A. Baldwin and J. A. Baird. Discerning intentions in

dynamic human action. Trends in Cognitive Sciences,
5(4):171 – 178, 2001.

2. N. Eagle and A. Pentland. Reality mining: sensing
complex social systems. Personal and Ubiquitous
Computing, 10(4), 2006.

3. A. Gupta, P. Srinivasan, J. Shi, and L. S. Davis.
Understanding videos, constructing plots: Learning a
visually grounded storyline model from annotated
videos. 2009.

4. L. Liao, D. Fox, and H. Kautz. Learning and inferring
transportation routines. In Proceedings of the Nineteenth
National Conference on Artificial Intelligence, 2004.

5. A. S. Pentland. Honest Signals: How They Shape Our
World. The MIT Press, 2008.

6. M. Richardson and P. Domingos. Markov logic
networks. Mach. Learn., 62(1-2):107–136, 2006.

7. A. Sadilek and H. Kautz. Recognizing Multi-Agent
Activities from GPS Data. Twenty-Fourth AAAI
Conference on Artificial Intelligence, 2010.


	Motivation
	Related Work
	Capture The Flag Domain
	Background: Markov Logic 
	Methodology
	Adding Freeing Recognition
	Learning a Model of Failed Attempts

	Experiments and Results
	Conclusions
	Future Work
	REFERENCES 

