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1 Introduction

Our society is founded on the interplay of human relationships and interactions.
Since every person is tightly embedded in our social structure, the vast majority of
human behavior can be fully understood only in the context of the actions of others.
Thus, not surprisingly, more and more evidence is emerging from social networks
research showing that when we want to model behavior of a person, the single best
predictor is often the behavior of people in her social network. For instance, behav-
ioral patterns of people taking taxis, rating movies, choosing a cell phone provider,
or sharing music are best explained and predicted by the habits of related people,
rather than by all the “single person” attributes such as age, race, or education (Bell,
Koren, & Volinsky, 2007; Pentland, 2008).

In contrast to these observations, most research effort on activity recognition
to date has concentrated on modeling single individuals (Bui, 2003; Liao, Fox,
& Kautz, 2004, 2005), or statistical properties of aggregate groups of individu-
als (Abowd, Atkeson, Hong, Long, Kooper, & Pinkerton, 1997; Horvitz, Apacible,
Sarin, & Liao, 2005), or combinations of both (Eagle & Pentland, 2006). Notable ex-
ceptions to this “isolated individuals” approach include Kamar and Horvitz (2009)
and Gupta, Srinivasan, Shi, and Davis (2009), where simple relationships among
people are just starting to be explicitly considered and leveraged. For instance, Eagle
and Pentland (2006) elegantly model the location of individuals from multi-modal
sensory data, but their approach is oblivious to the explicit effects of one’s friends,
relatives, etc. on one’s behavior. The isolated individuals approximations are often
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made for the sake of tractability and representational convenience. While consider-
ing individuals independently of each other is sufficient for some constrained tasks,
in many interesting domains it discards a wealth of important information or results
in an inefficient and unnatural data representation. On the other hand, decompos-
ing a domain into a set of entities (representing for instance people, objects in their
environment, or activities) that are linked by various relationships (e.g., is-a, has-a,
is-involved-in) is a natural and clear way of representing data.

To address the shortcomings of nonrelational behavior modeling, we introduce
the capture the flag domain (described below), and argue for a statistical-relational
approach to learning models of multi-agent behavior from raw GPS data. The CTF
dataset is on one hand quite complex and recorded by real-world sensors, but at the
same time it is well-defined (as per the rules of the game), thereby allowing for an
unambiguous evaluation of the results.

Being able to recognize people’s activities and reason about their behavior is a
necessary precondition for having intelligent and helpful machines that are aware of
“what is going on” in the human-machine as well as human-human relationships.
There are many exciting practical applications of activity recognition that have the
potential to fundamentally change people’s lives. For example, cognitive assistants
that help people and teams be more productive, or provide support to (groups of) dis-
abled individuals, or efficiently summarize a long complex event to a busy person
without leaving out essential information. Other important applications include in-
telligent navigation, traffic prediction, optimal traffic lights timing, and mass transit
scheduling. All these applications and a myriad of others build on top of multi-agent
activity recognition and therefore require it as a necessary stepping stone. Further-
more, as a consequence of the anthropocentrism of our technology, modeling hu-
man behavior plays—perhaps surprisingly—a significant role even in applications
that do not directly involve people (e.g., unmanned space probes).

Furthermore, reasoning about human intentions is an essential element of activity
recognition, since if we can recognize what a person (or a group of people) wants to
do, we can proactively try to help them (or—in adversarial situations—hinder them).
Intent is notoriously problematic to quantify (e.g., Baldwin and Baird (2001)), but
we show that in the capture the flag domain, the notion is naturally captured in
the process of learning the structure of failed activities. We all know perhaps too
well that a successful action is often preceded—and unfortunately sometimes also
followed—by multiple failed attempts. Therefore, reasoning about attempts typi-
cally entails high practical utility, but not just for their relatively high frequency.
Consider, for example, a task of real-time analysis of a security video system. There,
detecting that a person or a group of people (again, relations) intend to steal some-
thing is much more important and useful than recognizing that a theft has taken
(or even is taking) place, because then it is certainly too late to entirely prevent the
incident and it may also be too late or harder to merely stop it. We believe that
recognition of attempts in people’s activities is a severely underrepresented topic in
artificial intelligence that needs to be explored more since it opens a new realm of
interesting possibilities.



Before we delve into the details of our approach in Sections 5 and 6, we briefly
introduce the CTF dataset (Section 2), highlight the main contributions of our work
(Section 3), and review background material (Section 4). We discuss related work,
conclude, and outline future work in Sections 7, 8 and 9 respectively.

2 Capture The Flag Domain

Imagine two teams—seven players each—playing capture the flag (CTF) on a uni-
versity campus, where each player carries a consumer-grade global positioning sys-
tem (GPS) that logs its location (plus noise) every second (see Figure 1). The pri-
mary goal is to enter the opponent’s flag area. Players can be captured only while
on enemy territory by being tagged by the enemy. Upon being captured, they must
remain in place until freed (tagged by a teammate) or the game ends. The games in-
volve many competitive and cooperative activities, but here we focus on (both suc-
cessful and attempted) capturing and freeing. Visualization of the games is available
from the first author’s website.

We collected four games of CTF on a portion of the University of Rochester
campus (about 23 acres) with Columbus V-900 GPS loggers (one per player) with
1 GB memory card each that were set to a sampling rate of 1 Hz. The durations of
the games ranged approximately from 4 to 15 minutes.

Our work is not primarily motivated by the problem of annotating strategy games,
although there are obvious applications of our results to sports and combat situa-
tions. We are, more generally, exploring relational learning and inference methods
for recognizing multi-agent activities from location data. We accept the fact that the
GPS data at our disposal is inherently unreliable and ambiguous for any one indi-
vidual. We therefore focus on methods that jointly and simultaneously localize and
recognize the high-level activities of groups of individuals.

Although the CTF domain doesn’t capture all the intricacies of life, it contains
many complex, interesting, and yet well-defined (multi-agent) activities. Moreover,
it is based on extensive real-world GPS data (total of 40,000+ data points). Thus
most of the problems that we are addressing here clearly have direct analogs in
everyday-life situations that ubiquitous computing needs to address—imagine peo-
ple going about their daily lives in a city instead of CTF players, and their own smart
phones instead of GPS loggers.

One of the main challenges we have to overcome if we are to successfully model
CTF is the severe noise present in the data. Accuracy of the GPS data varies from
1 to more than 10 meters. In open areas, readings are typically off by 3 meters, but
the discrepancy is much higher in locations with tall buildings (which are present
within the game area) or other obstructions. Compare the scale of the error with the
granularity of the activities we concern ourselves with: both capturing and freeing
involves players that are within reaching distance (less than 1 meter) apart. There-
fore, the signal to noise ratio in this domain is daunting.



Fig. 1 A snapshot of a game of capture the flag that shows most of the game area. Players are rep-
resented by pins with letters. In our version of CTF, the two “flags” are stationary and are shown as
white circles near the top and the bottom of the figure. The horizontal road in the middle of the im-
age is the territory boundary. The data is shown prior to any denoising or corrections for map errors.
Videos of the games are available at http://www.cs.rochester.edu/u/sadilek/



The error has a systematic component as well as a significant stochastic com-
ponent. Errors between devices are poorly correlated, because subtle differences
between players, such as the angle at which the device sits in the player’s pocket,
can dramatically affect accuracy. Moreover, since we consider multi-agent scenar-
ios, the errors in individual players’ readings can add up, thereby creating a large
discrepancy between the reality and the recorded dataset. Because players can move
freely through open areas, we cannot reduce the data error by assuming that the play-
ers move along road or walkways, as is done in much work on GPS-based activity
recognition (e.g., Liao et al. (2004)). Finally, traditional techniques for denoising
GPS data, such as Kalman filtering, are of little help, due to the low data rate (1
sample per second) relative to the small amount of time required for a player to
completely change her speed or direction.

If we are to reliably recognize events that happen in these games in the presence
of such severe noise, we need to consider not only each player, but also the rela-
tionships among them and their actions over extended periods of time (possibly the
whole length of the game). Consider a concrete task of inferring the individual and
joint activities and intentions of the CTF players from their GPS traces. For exam-
ple, suppose the GPS data shows player A running toward a stationary teammate B,
then moving away. What occurred? Possibly player A has just “freed” player B, but
GPS error has hidden the fact that player A actually reached B. Another possibility
is that player A had the intention of freeing player B, but was scared off by an op-
ponent at the last second. Yet another possibility is that no freeing occurred nor was
even intended, because player B had not been previously captured.

Understanding a game thus consists of inferring a complex set of interactions
among the various players as well as the players’ intentions. The conclusions drawn
about what occurs at one point in time affect and are affected by inferences about
past and future events. In the example just given, recognizing that player B is mov-
ing in the future reinforces the conclusion that player A is freeing player B, while
failing to recognize a past event of player B being captured decreases confidence
in that conclusion. The game of CTF also illustrates that understanding a situation
is as much or more about recognizing attempts and intentions as about recognizing
successfully executed actions. For example, in course of a 15 minute game, only
a handful of capture or freeing events occur. However, there are dozens of cases
where one player unsuccessfully tries to capture an opponent or to free a teammate.
A description of a game that was restricted to what actually occurred would be only
a pale reflection of the original.

As a concrete example, consider a real game situation illustrated in Figure 2.
There we see three snapshots of a game projected over a map of the campus before
any modification of the GPS data. The game time is shown on each snapshot. Players
D, F, and G are allies and are currently on their home territory near their flag,
whereas players L and M are their enemies. In the first snapshot, players L and M
head for the opponent’s flag but then—in the second frame—they are intercepted by
G. At this point it is unclear what is happening because of the substantial error in the
GPS data—the three players appear to be very close to each other, but in actuality
they could have been 20 or more meters apart. However, once we see the third



Fig. 2 Three snapshots of a game situation where both successful and failed capturing occur.
This example also illustrates the need for an approach that exploits both the relational and the
far reaching temporal structure of our domain. (See text for explanation.)

snapshot (note that tens of seconds have passed) we realize that player G actually
captured only player M and didn’t capture L since G is evidently still chasing L.
The fact that player M remains stationary coupled with the fact that neither D nor
F attempt to capture him suggests that M has indeed been captured. We show that
it is possible to infer occurrences of capturing events even for complex situations
like these whereas limited approaches largely fail. However, we need to be able to
recognize not just individual events, we also need to discover new activities, identify
their respective goals, and also distinguish between events based on whether their
outcomes are favorable or negative. For instance, in the second frame, player G tries
to capture both L and M. Although he succeeded in the former case, he failed in the
latter.

Many different kinds of cooperative and competitive multi-agent activities occur
in the games. The lowest-level joint activities are based on location and movement,
and include “approaching” and “being at the same location.” Note, that noise in the
GPS data often makes it difficult or impossible to directly detect these simple activ-
ities. At the next level come competitive multi-agent activities including capturing
and attacking; cooperative activities include freeing; and there are activities, such
as chasing and guarding, that may belong to either category or to both categories.
There are also more abstract tactical activities, such as making a sacrifice, and over-
all strategies, such as playing defensively. In this paper, we concentrate on activities
at the first two levels.

3 Our Contributions

The main contributions of this paper are as follows. We first present a novel method
that simultaneously denoises positional data and learns a model of multi-agent ac-
tivities that occur there. We subsequently evaluate the model on the CTF dataset and
show that it achieves high accuracy in recognizing complex game events.

However, creating a model by manually writing down new rules or editing exist-
ing axioms is laborious and prone to introduction of errors or unnecessarily com-



plex theories. Thus, we would like to automate this process by learning (or induc-
ing) new axioms from training data. For people, it is much easier to provide or
validate concrete examples than to directly modify a model. This leads us to our
second contribution: We show how to automatically augment a preexisting model
of (joint) activities so that it is capable of not only recognizing successful actions,
but also identifies failed attempts at the same types of activities. This line of work
also demonstrates that explicitly modeling attempted interactions in a unified way
improves overall model performance.

As our third contribution, we demonstrate that the difference (defined below)
between the newly learned definitions of a failed activity and the original definition
of the corresponding successful activity directly corresponds to the goal of the given
activity. For instance, as per the rules of the capture the flag game, a captured player
cannot move until freed. When our system induces the definition of failed capture,
the new theory does not contain such a constraint on the movement of the almost-
captured player, thereby allowing him to move freely.

Finally, we show that interesting game segments and key players can be effi-
ciently identified in an automated fashion. Our kernel-based convolution detects
novel and dynamic sequences of events, and exhibits a strong agreement with hu-
man judgement about the game situations at hand.

4 Background

The cores of our models described below are implemented in Markov logic (ML),
a statistical-relational language. In this section, we provide a brief overview of ML,
which extends finite first-order logic (FOL) to a probabilistic setting. For a more
detailed (and excellent) treatment of FOL, ML, and inductive logic programming
see (Shoenfield, 1967), (Domingos, Kok, Lowd, Poon, Richardson, & Singla, 2008),
and (De Raedt & Kersting, 2008) respectively.

In order to compare the Markov logic based models to alternative approaches,
we consider a dynamic Bayesian network (DBN) model in the experiments below
as one of our baselines. We therefore review relevant aspects of DBNs in this section
as well.

4.1 Markov Logic

Given the inherent uncertainty involved in reasoning about real-world activities as
observed through noisy sensor readings, we looked for a methodology that would
provide an elegant combination of probabilistic reasoning with the expressive, rela-
tively natural, and compact but unfortunately strictly true or false formulas of first-
order logic. And that is exactly what Markov logic provides and thus allows us to
elegantly model complex finite relational non-i.i.d. domains. A Markov logic net-



work (MLN) consists of a set of constants C and of a set of pairs 〈Fi,wi〉 such
that each FOL formula Fi has a weight wi ∈ R associated with it. Optionally, each
weight can be further scaled by a real-valued function of a subset of the variables
that appear in the corresponding formula. Markov logic networks that contain such
functions are called hybrid MLNs (Wang & Domingos, 2008).

A MLN can be viewed as a template for a Markov network (MN) as follows:
the MN contains one node for each possible ground atom of MLN. The value of
the node is 0 if the corresponding atom is false and 1 otherwise. Two nodes are
connected by an edge if the corresponding atoms appear in the same formula. Thus,
the MN has a distinct clique corresponding to each grounding of each formula. By
F

g j
i we denote the j-th grounding of formula Fi. The MN also has a clique factor

fi, j for each F
g j
i such that

fi, j =

{
1 if F

g j
i is true

0 otherwise

Each weight wi intuitively represents the relative “importance” of satisfying (or
violating, if the weight is negative) the corresponding formula Fi. More formally,
the weight scales the difference in log-probability between a world that satisfies n
groundings of the corresponding formula and one that results in m true groundings
of the formula, all else being equal (cf. Equation 1). Thus the problem of satisfiabil-
ity is relaxed in MLNs. We no longer search for a satisfying truth assignment as in
traditional FOL. Instead, we are looking for a truth assignment that maximizes the
sum of the weights of all satisfied formulas.

The weights can be either specified by the knowledge base engineer or, as in
our approach, learned from training data. That is, we provide the learning algorithm
with labeled capture instances and pairs of raw and corresponding denoised trajec-
tories along with labeled instances of game events and it finds an optimal set of
weights that maximize the likelihood of the training data. Weight learning can be
done in either generative or discriminative fashion. Generative training maximizes
the joint probability of observed as well as hidden predicates, whereas discrimina-
tive learning directly maximizes the conditional likelihood of the hidden predicates
given the observed predicates. Since prior work demonstrated that Markov network
models learned discriminatively consistently outperform their generatively trained
counterparts (Singla & Domingos, 2005), we focus on discriminative learning in our
activity recognition domain.

Once the knowledge base with weights has been specified, we can ask questions
about the state of hidden atoms given the state of the observed atoms. Let X be
a vector of random variables (one random variable for each possible ground atom
in the MN) and let χ be the set of all possible instantiations of X . Then, each x ∈
χ represents a possible world. If (∀x ∈ χ)[Pr(X = x) > 0] holds, the probability
distribution over these worlds is defined by

Pr(X = x) =
1
Z

exp

(
∑

i
wini

(
x{i}
))

(1)



where ni(x{i}) is the number of true groundings of i-th formula with wi as its weight
in a world x and

Z = ∑
x∈χ

exp

(
∑

i
wini

(
x{i}
))

(2)

Equation 1 can be viewed as assigning a “score” to each possible world and
dividing each score by the sum of all scores over all possible worlds (the constant
Z) in order to normalize.

Maximum a posteriori (MAP) inference in Markov logic given the state of the
observed atoms reduces to finding a truth assignment for the hidden atoms such that
the weighed sum of satisfied clauses is maximal. Even though this problem is in
general #P-complete, we achieve reasonable run times by applying Cutting Plane
MAP Inference (CPI) (Riedel, 2008). CPI can be thought of as a meta solver that
incrementally grounds a Markov logic network, at each step creating a Markov net-
work that is subsequently solved by any applicable method—such as MaxWalkSAT
or via a reduction to an integer linear program. CPI refines the current solution by
searching for additional groundings that could contribute to the objective function.

Up to this point, we have focused on first-order Markov logic. In first-order ML,
each variable ranges over objects present the domain (e.g., apples, players, or cars).
On the other hand, in finite second-order Markov logic, we variabilize not only
objects but also predicates (relations) themselves (Kok & Domingos, 2007). Our
CTF model contains a predicate variable for each type of activity. For example, we
have one variable captureType whose domain is

{capturing, failedCapturing}

and analogously for freeing events. When grounding the second-order ML, we
ground all predicate variables as well as object variables.

Implementations of Markov logic include Alchemy1 and theBeast2. Our experi-
ments used a modified version of theBeast.

4.2 Dynamic Bayesian Networks

A Bayesian network (BN) is a directed probabilistic graphical model of data (Jor-
dan, 1998). Nodes in the graph represent random variables and edges represent con-
ditional dependencies (cf. Figure 4). For a BN with n nodes, the joint probability
distribution is given by

Pr(X1, . . . ,Xn) =
n

∏
i=1

Pr
(
Xi|Pa(Xi)

)
, (3)

1 http://alchemy.cs.washington.edu/
2 http://code.google.com/p/theBeast/



where Pa(Xi) denotes the parents of node Xi. In a typical setting, a subset of the
random variables is observed (we know their actual values), while the others are
hidden and their values need to be inferred.

A dynamic Bayesian network (DBN) is a BN that models sequential data. A DBN
is composed of slices—in our case each slice represents a one second time interval.
In order to specify a DBN, we either write down or learn intra- and inter-slice con-
ditional probability distributions (CPDs). The intra-slice CPDs typically constitute
the observation model while the inter-slice CPDs model transitions between hidden
states. For an extensive treatment of DBNs, see (Murphy, 2002).

There are a number of parameter learning and inference techniques for DBNs. To
match the Markov logic-based framework, in the experiments with the DBN model
presented below, we focus on a supervised learning scenario, where the hidden la-
bels are known at training time and therefore a maximum likelihood estimate can be
calculated directly.

We find a set of parameters (discrete probability distributions) θ that maximize
the log-likelihood of the training data. This is achieved by optimizing the following
objective function.

θ
? = argmax

θ

log
(
Pr
(
x1:t ,y1:t |θ)

)
, (4)

where x1:t and y1:t represent the sequence of observed and hidden values, respec-
tively, between times 1 and t, and θ ? is the set of optimal model parameters.
In our implementation, we represent probabilities and likelihoods with their log-
counterparts to avoid arithmetic underflow.

At testing time, we are interested in the most likely explanation of the observed
data. That is, we want to calculate the most likely assignment of states to all the
hidden nodes (i.e., Viterbi decoding of the DBN) given by

y?1:t = argmax
y1:t

log
(
Pr(y1:t |x1:t)

)
, (5)

where Pr(y1:t |x1:t) is the conditional probability of a sequence of hidden states y1:t
given a concrete sequence of observations x1:t between times 1 and t. We calculate
the Viterbi decoding efficiently using dynamic programming (Jordan, 1998).

5 Methodology

In this section, we describe the four major components of our approach. In short,
we first manually construct a model of captures and freeings in CTF and optimize
its parameters in a supervised learning framework (Section 5.1). This constitutes
our “seed” theory that is used for denoising raw location data and recognition of
successful multi-agent activities. We then show, in Section 5.2, how to automati-
cally extend the seed theory by inducing the structure and learning the importance
of failed captures and freeings as well as the relationships to their successful coun-



terparts. Third, in Section 5.3, we use the augmented theory to recognize this richer
set of multi-agent activities—both successful and failed attempts—and extract the
goals of the activities. Finally, in Section 5.4, we concentrate on our method for
detecting interesting game segments and key players.

Specifically, we investigate the following five research questions:

Q1. Can we reliably recognize complex multi-agent activities in the CTF dataset even
in the presence of severe noise?

Q2. Can models of attempted activities be automatically learned by leveraging exist-
ing models of successfully performed actions?

Q3. Does modeling both success and failure allow us to infer the respective goals of
the activities?

Q4. Does modeling failed attempts of activities improve the performance on recog-
nizing the activities themselves?

Q5. Can we accurately identify interesting game situations and key actors?

We now elaborate on each of the four components of our system in turn, and
subsequently discuss, in light of the experimental results and lessons learned, our
answers to the above research questions.

5.1 Recognition of Successful Activities

In this section, we present our unified framework for intelligent relational denois-
ing of the raw GPS data while simultaneously labeling instances of a player being
captured by an enemy or freed by an ally. Both the denoising and the labeling are
cast as a learning and inference problem in Markov logic. By denoising, we mean
modifying the raw GPS trajectories of the players such that the final trajectories sat-
isfy constraints imposed by the geometry of the game area, the motion model of the
players, as well as by the rules and the dynamics of the game. In this paper, we refer
to this trajectory modification as “snapping” since we tile the game area with 3 by 3
meter cells and snap each raw GPS reading to an appropriate cell. By creating cells
only in unobstructed space, we ensure the final trajectory is consistent with the map
of the area.

We begin by modeling the domain via a Markov logic theory, where we write the
logical formulas that express the structure of the model by hand, and learn an opti-
mal set of weights on the formulas from training data in a supervised discriminative
fashion (details on the experimental set-up are in Section 6). In the following two
subsections, we will show how to augment this seed Markov logic theory to recog-
nize a richer set of events and extract the goals of players’ multi-agent activities.

Thus, in order to perform data denoising and recognition of successful capturing
and freeing, we model the game as weighted formulas in Markov logic. Some of
the formulas are “hard,” in the sense that we are only interested in solutions that
satisfy all of them. Hard formulas capture basic physical constraints (e.g., a player
is only at one location at a time) and inviolable rules of the game (e.g., a captured



Hard Rules:

H1. Each raw GPS reading is snapped to exactly one cell.
H2. a. When player a frees player b, then both involved players must be snapped to a common cell

at that time.
b. A player can only be freed by a free ally.
c. A player can be freed only when he or she is currently captured.
d. Immediately after a freeing event, the freed player transitions to a free state.
e. A player can only be freed while on enemy territory.

H3. a. When player a captures player b, then both involved players must be snapped to a common
cell at that time.

b. A player can only be captured by a free enemy.
c. A player can be captured only if he or she is currently free.
d. Immediately after a capture event, the captured player transitions to a captured state.
e. A player can be captured only when standing on enemy territory.

H4. All players are free at the beginning of the game.
H5. At any given time, a player is either captured or free but not both.
H6. A player transitions from a captured state to a free state only via a freeing event.
H7. A player transitions from a free state to a captured state only via a capture event.
H8. If a player is captured then he or she must remain in the same location.

Soft Rules:
S1. Minimize the distance between the raw GPS reading and the snapped-to cell.
S2. Minimize projection variance, i.e., two consecutive “snappings” should be generally correlated.
S3. Maximize smoothness (both in terms of space and time) of the final player trajectories.
S4. If players a and b are enemies, a is on enemy territory and b is not, b is not captured already,

and they are close to each other, then a probably captures b.
S5. If players a and b are allies, both are on enemy territory, b is currently captured and a is not,

and they are close to each other, then a probably frees b.
S6. Capture events are generally rare, i.e., there are typically only a few captures within a game.
S7. Freeing events are also generally rare.

Fig. 3 Descriptions of the hard and soft rules for capture the flag.

player must stand still until freed or the game ends).3 The rest of the formulas are
“soft,” meaning there is a finite weight associated with each one. Some of the soft
constraints correspond to a traditional low-level data filter, expressing preferences
for smooth trajectories that are close to the raw GPS readings. Other soft constraints
capture high-level constraints concerning when individual and multi-agent activities
are likely to occur. For example, a soft constraint states that if a player encounters
an enemy on the enemy’s territory, the player is likely to be captured. The exact
weights on the soft constraints are learned from labeled data, as described below.

We distinguish two types of atoms in our models: observed (e.g., GPS(P1, 4,
43.13◦, −77.71◦) and hidden (e.g., freeing(P1, P8, 6)). The observed predicates

3 Cheating did not occur in our CTF games, but in principle could be accommodated by making
the rules highly-weighted soft constraints rather than hard constraints.



Predicate Type Meaning
capturing(a,b, t) hidden Player a is capturing b at time t.
enemies(a,b) observed Players a and b are enemies.
adjacent(c1,c2) observed Cells c1 and c2 are mutually adjacent, or c1 = c2.
failedCapturing(a,b, t) hidden Player a is unsuccessfully capturing b at time t.
failedFreeing(a,b, t) hidden Player a is unsuccessfully freeing b at time t.
freeing(a,b, t) hidden Player a is freeing b at time t.
isCaptured(a, t) hidden Player a is in captured state at time t.
isFailedCaptured(a, t) hidden At time t, player a is in a state that follows

an unsuccessful attempt at capturing a.
a in this state has the same capabilities as when free.

isFailedFree(a, t) hidden At time t, player a is in a state that follows
an unsuccessful attempt at freeing a.
a in this state has the same capabilities as when captured.

isFree(a, t) hidden Player a is in free state at time t
(isFree(a, t) ≡ ¬ isCaptured(a, t)).

onEnemyTer(a, t) observed Player a in on enemy territory at time t.
onHomeTer(a, t) observed Player a in on home territory at time t.
samePlace(a,b, t) hidden Players a and b are either snapped to a common cell

or to two adjacent cells at time t.
snap(a,c, t) hidden Player a is snapped to cell c at time t.

Table 1 Summary of the logical predicates our models use. Predicate names containing the
word “failed” are introduced by the Markov logic theory augmentation method described in Sec-
tion 5.2.1.

in the CTF domain are: GPS, enemies, adjacent, onHomeTer, and onEnemyTer;4

whereas capturing, freeing, isCaptured, isFree, samePlace, and snap are hidden. Ad-
ditionally, the set of hidden predicates is expanded by the structure learning algo-
rithm described below (see Table 1 for predicate semantics). In the training phase,
our learning algorithm has access to the known truth assignment to all atoms. In the
testing phase, it can still access the state of the observed atoms, but it has to infer
the assignment to the hidden atoms.

Figure 3 gives an English description of our hard and soft rules for the low-level
movement and player interactions within capture the flag. Corresponding formulas
in the language of ML are shown in Figures 5 and 6.

We compare our unified approach with four alternative models. The first two
models (baseline and baseline with states) are purely deterministic and they sepa-
rate the denoising of the GPS data and the labeling of game events. We implemented
both of them in Perl. They do not involve any training phase. The third alternative
model is a dynamic Bayesian network shown in Figure 4. Finally, we have two
models cast in Markov logic: the two-step ML model and the unified ML model it-
self. The unified model handles the denoising and labeling in a joint fashion whereas
the two-step approach first performs snapping given the geometric constraints and

4 While the noise in the GPS data introduces some ambiguity to the last two observed predicates,
we can still reliably generate them since the road that marks the boundary between territories
constitutes a neutral zone.



subsequently labels instances of capturing and freeing. The latter three models are
evaluated using four-fold cross-validation where in order to test on a given game,
we first train a model on the other three games.

All of our models can access the following observed data: raw GPS position of
each player at any time and indication whether they are on enemy or home territory,
location of each 3 by 3 meter cell, cell adjacency, and list of pairs of players that
are enemies. We tested all five models on the same observed data. The following
describes each model in more detail.

• Baseline Model (B)
This model has two separate stages. First we snap each reading to the nearest cell
and afterward we label the instances of player a capturing player b. The labeling
rule is simple: we loop over the whole discretized (via snapping) data set and
output capturing(a,b, t) every time we encounter a pair of players a and b such
that they were snapped (in the first step) to either the same cell or to two mutually
adjacent cells at time t, they are enemies, and a is on its home territory while b
is not. Freeing recognition is not considered in this simple model since we need
to have a notion of persisting player states (captured or free) in order to model
freeing in a meaningful way.

• Baseline Model with States (B+S)
This second model builds on top of the previous one by introducing a notion that
players have states. If player a captures player b at time t, b enters a captured state
(in logic, isCaptured(b, t + 1)). Then b remains in captured state until he moves
(is snapped to a different cell at a later time) or the game ends. As per rules of
CTF, a player who is in captured state cannot be captured again.
Thus, this model works just like the previous one except whenever it is about to
label a capturing event, it checks the states of the involved players and outputs
capturing(a,b, t) only if both a and b are not in captured state.
Freeing recognition is implemented in an analogous way to capturing recogni-
tion. Namely, every time a captured player b is about to transition to a free state,
we check if b has a free teammate a nearby (again, within the adjacent cells). If
that is the case, we output freeing(a,b, t).

• Dynamic Bayesian Network Model (DBN)
The dynamic Bayesian network model can be viewed as a probabilistic general-
ization of the above baseline model with states. The structure of the DBN model
for one player is shown in Figure 4. In each time slice, we have one hidden node
and four observed nodes, all of which represent binary random variables. We
want to infer the most likely state S for each player at any given time t over the
course of a game. The state is either free or captured and is hidden at testing time.
There are four observed random variables per time step that model player’s mo-
tion (M), presence or absence of at least one enemy (EN) and ally (AN) player
nearby, and finally player’s location on either home or enemy territory (ET ).
Each player is modeled by a separate DBN. Therefore, there are fourteen instan-
tiated DBNs for each game, but within any one game, all the DBNs share the
same set of parameters.
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Fig. 4 Two consecutive time slices of our dynamic Bayesian network for modeling the state of an
individual player P from observations. Shaded nodes represent observed random variables, unfilled
denote hidden variables. All random variables are binary. (ETt = 1 when P is on enemy territory
at time t, ENt = 1 when there is an enemy nearby at time t, ANt = 1 when there is an ally nearby
at time t, and finally Mt = 1 if P has moved between time t−1 and t. The value of hidden state St
is 1 if P is captured at time t and 0 when P is free.)

Note that the DBN model does not perform any GPS trajectory denoising itself.
To make a fair comparison with the Markov logic models, we use the denoising
component of the Markov logic theory using only constraints H1 and S1–S3 (in
Figure 3). This produces a denoised discretization of the data that is subsequently
fed into the DBN model. The random variables within the DBN that capture the
notion of player “movement” and players being “nearby” one another is defined
on the occupancy grid of the game area, just like in the two deterministic baseline
models. Namely, a player is said to be moving between time t and t +1 when he
or she is snapped to two different nonadjacent cells at those times. Similarly, two
players are nearby if they are snapped either to the same cell or to two adjacent
cells.

• Two-Step ML Model (2SML)
In the two-step approach, we have two separate theories in Markov logic. The
first theory is used to perform a preliminary snapping of each of the player tra-
jectories individually using constraints H1 and S1–S3 (in Figure 3). This theory
is identical to the one used in the discretization step in the DBN model above.
The second theory then takes this preliminary denoising as a list of observed
atoms in the form preliminarySnap(a,c, t) (meaning player a is snapped to cell
c at time t) and uses the remaining constraints to label instances of capturing
and freeing, while considering cell adjacency in the same manner as the previ-
ous three models. The two-step model constitutes a decomposition of the uni-
fied model (see below) and overall contains virtually the same formulas, except
2SML operates with an observed preliminarySnap predicate, whereas the unified



model contains a hidden snap predicate instead. Thus we omit elaborating on it
further here.

• Unified ML Model (UML)
In the unified approach, we express all the hard constraints H1–H8 and soft

constraints S1–S7 (Figure 3) in Markov logic as a single theory that jointly de-
noises the data and labels game events. Selected interesting formulas are shown
in Figure 6—their labels correspond to the listing in Figure 3. Note that formulas
S1–S3 contain real-valued functions d1, d2, and d3 respectively. d1 returns the
distance between agent a and cell c at time t. Similarly, d2 returns the dissimilar-
ity of the two consecutive “snapping vectors”5 given agent a’s position at time
t and t + 1 and the location of the centers of two cells c1 and c2. Finally, since
people prefer to move in straight lines, function d3 quantifies the lack of smooth-
ness of any three consecutive segments of the trajectory. Since wp, ws, and wt are
all assigned negative values during training, formulas S1–S3 effectively softly
enforce the corresponding geometric constraints.
The presence of functions d1 through d3 renders formulas S1–S3 hybrid formu-
las. This means that at inference time, the instantiated logical part of each formula
evaluates to either 1 (true) or 0 (false), which is in turn multiplied by the product
of corresponding function value and formula weight.

We will see how we train, test, and evaluate these four models, and how they
perform on the multi-agent activity recognition task in Section 6. Next, we turn to
our supervised learning method for augmenting the unified ML model in order to
recognize both successful and failed attempts at multi-agent activities.

5.2 Learning Models of Failed Attempts

In the work described above, we manually designed the structure of a Markov logic
network that models the capture the flag domain and allows us to jointly denoise
the raw GPS data and recognize instances of actual capturing and freeing. Now we
show how to automatically—in a supervised learning setting—extend this theory to
encompass and correctly label not only successful actions, but also failed attempts
at those interactions. That is, given the raw GPS data that represent the CTF games,
we want our new model to label instances where player a captures (or frees) player
b as successful captures (successful frees) and instances where player a almost cap-
tures (or frees) player b as failed captures (failed frees). For instance, by “failed
capturing” we mean an instance of players’ interactions where—up to a point—it
appeared that a is capturing b, but when we carefully consider the events that (po-
tentially) preceded it as well as the impacts of the supposed capture on the future
unfolding of the game, we conclude that it is a false alarm and no capture actually

5 The initial point of each snapping (projection) vector is a raw GPS reading and the terminal point
is the center of the cell we snap that reading to.



Hard formulas:

∀a, t ∃c : snap(a,c, t) (H1)

∀a,c,c′, t : (snap(a,c, t)∧ c 6= c′)⇒¬snap(a,c′, t)

∀a1,a2, t : freeing(a1,a2, t)⇒
(
samePlace(a1,a2, t)∧ isFree(a1, t)∧ (H2)

¬enemies(a1,a2)∧ isCaptured(a2, t)∧ isFree(a2, t +1)∧
onEnemyTer(a1, t)∧onEnemyTer(a2, t)

)
∀a1,a2, t : capturing(a1,a2, t)⇒

(
samePlace(a1,a2, t)∧ isFree(a1, t)∧ (H3)

enemies(a1,a2)∧ isFree(a2, t)∧ isCaptured(a2, t +1)∧
onHomeTer(a1, t)∧onEnemyTer(a2, t)

)
∀a1,a2, t : samePlace(a1,a2, t)⇒

(
∃c1,c2 : snap(a1,c1, t)∧ snap(a2,c2, t)∧ adjacent(c1,c2)

)
∀a, t : (t = 0)⇒ isFree(a, t) (H4)

∀a, t : isCaptured(a, t)⊕ isFree(a, t) (H5)

∀a, t : (isFree(a, t)∧ isCaptured(a, t +1))⇒ (∃=1a1 : capturing(a1,a, t)) (H6)

∀a, t : (isCaptured(a, t)∧ isFree(a, t +1))⇒ (∃=1a1 : freeing(a1,a, t)) (H7)

∀a, t,c : (isCaptured(a, t)∧ isCaptured(a, t +1)∧ snap(a,c, t))⇒ snap(a,c, t +1) (H8)

Fig. 5 Our hard formulas in Markov logic. See corresponding rules in Figure 3 for an English
description and Table 1 for explanation of the predicates. In our implementation, the actual rules
are written in the syntax used by theBeast, a Markov logic toolkit. (∃=1 denotes unique existential
quantification, ⊕ designates exclusive or.)

occurred. In other words, the conditions for a capture were right, but later on, there
was a pivotal moment that foiled the capturing agent’s attempt.

For both activities (capturing and freeing), our model jointly finds an optimal
separation between success and failure. Note that since we cast our model in second-
order Markov logic, we do not learn, e.g., an isolated rule that separates successful
freeing from a failed attempt at freeing. Rather—since capturing and freeing events
(both actual and failed) are related and thus labeling an activity as, say, “successful
capturing” has far-reaching impact on our past, present, and future labeling—we
learn the separations in a joint and unified way. Namely, both the structure (logical
form) and importance (weight) of each formula in our theory is considered with all
its consequences and influence on other axioms in the theory. Our system thus finds
an optimal balance between success and failure in capturing and freeing activities
with respect to the training data.



Soft formulas:

∀a,c, t :
[
snap(a,c, t)

]
·d1(a,c, t) ·wp (S1)

∀a,c1,c2, t :
[
snap(a,c1, t)∧ snap(a,c2, t +1)

]
·d2(a,c1,c2, t) ·ws (S2)

∀a,c1,c2,c3, t :
[
snap(a,c1, t)∧ snap(a,c2, t +1)∧ snap(a,c3, t +2)

]
·d3(a,c1,c2,c3, t) ·wt (S3)

∀a1,a2, t : [(enemies(a1,a2)∧onHomeTer(a1, t)∧ (S4)

onEnemyTer(a2, t)∧ isFree(a2, t)∧
samePlace(a1,a2, t))⇒ capturing(a1,a2, t)] ·wc

∀a1,a2, t : [(¬enemies(a1,a2)∧onEnemyTer(a1, t)∧ (S5)

onEnemyTer(a2, t)∧ samePlace(a1,a2, t)∧ isFree(a1, t)

∧ isCaptured(a2, t))⇒ freeing(a1,a2, t)] ·w f

∀a,c, t :
[
capturing(a,c, t)

]
·wcb (S6)

∀a,c, t : [freeing(a,c, t)] ·w f b (S7)

Fig. 6 Soft formulas in Markov logic. See corresponding rules in Figure 3 for an English descrip-
tion. Each soft formula is written as a traditional quantified finite first-order logic formula (e.g.,
∀a,c, t :

[
snap(a,c, t)

]
), followed by an optional function (e.g., d1(a,c, t)), followed by the weight

of the formula (e.g., wp). This syntax denotes that at inference time, the instantiated logical part
of each formula evaluates to either 1 (true) or 0 (false), which is then effectively multiplied by the
product of corresponding function value and formula weight.

5.2.1 The Theory Augmentation Algorithm

In what follows, we will describe our Markov logic theory augmentation algorithm
(Algorithm 1). For clarity, we will explain how it works in concrete context of the
ML models of capture the flag we discussed in previous sections. However, the un-
derlying assumption that successful actions are in many ways similar to their failed
counterparts, and that minor—but crucial—deviations cause the failure to occur,
often hold beyond capture the flag. Therefore, the same algorithm is applicable to
other domains with different activities, as long as they are modeled in Markov logic.

At a high-level, the augmentation algorithm belongs to the family of structure
learning methods. Starting with a seed model of successful actions, it searches for
new formulas that can be added to the seed theory in order to jointly model both
successfully and unsuccessfully carried out actions. The declarative language bias—
essentially rules for exploring the hypothesis space of candidate structures—is de-
fined implicitly by the notion that for any given activity, the structure of unsuccessful
attempts is similar to the successful attempts. Therefore, the augmentation algoritm
goes through an “inflation” stage, where formulas in the seed theory are generalized,
followed by a refinement stage, where superfluous and incompatible formulas in the
inflated model are pruned away. The refinement step also optimizes the weights
within the newly induced theory. We will now discuss this process in more detail.



Algorithm 1 : Extend a ML theory to model successful as well as failed activities.
Input: A: set of activities

MS: ML theory that models successful instances of activities in A
S: set of examples of successful activities
F : set of examples of failed activities

Output: MS+F : augmented ML model with learned weights that models both successful and
attempted activities in A
I : intended goals of the activities

1: M 2
S ⇐ liftToSecondOrderML(MS, A)

2: M ′
S ⇐ instantiate(M 2

S , A)
3: I ⇐ findIncompatibleFormulas(F , M ′

S)
4: MS+F ⇐M ′

S \I
5: MS+F ⇐ learnWeights(S, F , MS+F )
6: MS+F ⇐ removeZeroWeightedFormulas(MS+F )
7: return MS+F , I

The input of our theory augmentation algorithm consists of an initial first-order
ML theory MS that models successful capturing and freeing (such as the unified
ML model defined in Section 5.1 that contains formulas shown in Figures 5 and
6), a set of activities of interest A, and a set of examples of successful (S) as well as
failed (F) captures and frees. MS does not need to have weights for its soft formulas
specified. In case they are missing, we will learn them from scratch in the final steps
of the augmentation algorithm. If the weights are specified, the final weight learning
step for MS+F can leverage them to estimate the initial weight values. A can be
specified as a set of predicate names, e.g., {capturing, freeing}. Each example in
sets S and F describes a game segment and constitutes a complete truth assignment
to the appropriate literals instantiated from MS. Table 2 shows two toy examples of
sets S and F for three time steps. Since the goal is to learn a model of failed (and
successful) attempts in a supervised way, the example game segment in F contain
activities labeled with predicates failedCapturing() and failedFreeing().

If MS contains hybrid formulas (such our formulas S1–S3 in Figure 6), the
appropriate function definitions are provided as part of S and F as well. Each
definition consists of implicit mapping from input arguments to function val-
ues. For instance, function d1 in formula S1 quantifies the L2 distance between
the agent a and cell c at time t in the projected Mercator space: d1(a,c, t) =√
(a.gpsXt − c.gpsX)2 +(a.gpsYt − c.gpsY )2.
Our system goes through the following process in order to induce a new the-

ory MS+F that augments MS with a definition of failed attempts for each activity
already defined in MS.

First we lift MS to second-order Markov logic by variabilizing all predicates
that correspond to the activities of interest (step 1 of Algorithm 1). This yields a
lifted theory M 2

S . More concretely, in order to apply this technique in our domain,
we introduce new predicate variables captureType (whose domain is {capturing,
failedCapturing}), freeType (over {freeing, failedFreeing}), and stateType over

{isCaptured, isFailedCaptured, isFree, isFailedFree}.



Set S: Successful Capture Set F: Failed Capture
enemies(P1,P2) enemies(P4,P5)
enemies(P2,P1) enemies(P5,P4)

onEnemyTer(P5,1)
onEnemyTer(P2,2) onEnemyTer(P5,2)
onEnemyTer(P2,3) onEnemyTer(P5,3)
capturing(P1,P2,2) failedCapturing(P4,P5,2)
isFree(P1,1) isFree(P4,1)

isFailedCaptured(P4,1)
isFree(P1,2) isFree(P4,2)

isFailedCaptured(P4,2)
isFree(P1,3) isFree(P4,3)

isFailedCaptured(P4,3)
isFree(P2,1) isFree(P5,1)

isFailedCaptured(P5,1)
isFree(P2,2) isFree(P5,2)

isFailedCaptured(P5,2)
isCaptured(P2,3) isFree(P5,3)

isFailedCaptured(P5,3)
snap(P1,C5,1) snap(P4,C17,1)
snap(P1,C10,2) snap(P4,C34,2)
snap(P1,C10,3) snap(P4,C0,3)
snap(P2,C9,1) snap(P5,C6,1)
snap(P2,C10,2) snap(P5,C34,2)
snap(P2,C10,3) snap(P5,C7,3)
samePlace(P1,P2,2) samePlace(P4,P5,2)
samePlace(P2,P1,2) samePlace(P5,P4,2)
samePlace(P1,P2,3)
samePlace(P2,P1,3)

Table 2 Two examples of a logical representation of successful (S) as well as failed (F) capture
events that are input to Algorithm 1. The closed-world assumption is applied, therefore all atoms
not listed are assumed to be false. For clarity, we omit listing the adjacent() predicate.

For instance, variabilizing a first-order ML formula

freeing(a,b, t)⇒¬enemies(a,b)

yields a second-order ML formula

freeType(a,b, t)⇒¬enemies(a,b)

(note that freeType is now a variable). Instantiating back to first-order yields two
formulas

freeing(a,b, t)⇒¬enemies(a,b)

and
failedFreeing(a,b, t)⇒¬enemies(a,b).



As far as agents’ behavior is concerned, in the CTF domain, isCaptured is equiv-
alent to isFailedFree, and isFree is equivalent to isFailedCaptured. As we will soon
see, the theory augmentation process learns these equivalence classes and other re-
lationships between states from training examples by expanding and subsequently
refining formula H5 in Figure 5. While we could work with only the isCaptured
predicate and its negation to represent agents’ states, we feel that having explicit
failure states makes our discussion clearer. Furthermore, future work will need to
address hierarchies of activities, including their failures. In that context, a represen-
tation of explicit failure states may not only be convenient, but may be necessary.

Next, we instantiate all predicate variables in M 2
S to produce a new first-order

ML theory M ′
S that contains the original theory MS in its entirety plus new for-

mulas that correspond to failed captures and frees (step 2). Since events that are,
e.g., near-captures appear similar to actual successful captures, our hypothesis is
that we do not need to drastically modify the original “successful” formulas in or-
der to model the failed activities as well. In practice, the above process of lifting
and instantiating indeed results in a good seed theory. While we could emulate the
lifting and grounding steps with a scheme of copying formulas and renaming pred-
icates in the duplicates appropriately, we cast our approach in principled second-
order Markov logic, which ties our work more closely to previous research and re-
sults in a more extensible framework. Specifically, second-order Markov logic has
been successfully used in deep transfer learning (Davis & Domingos, 2009) and
predicate invention (Kok & Domingos, 2007). Therefore, an interesting direction
of future work is to combine our theory augmentation and refinement with transfer
and inductive learning—operating in second-order ML—to jointly induce models
of failed attempts of different activities in different domains, while starting with a
single model of only successful activities in the source domain.

Typical structure learning and inductive logic programming techniques start with
an initial (perhaps empty) theory and iteratively grow and refine it in order to find a
form that fits the training data well. In order to avoid searching the generally huge
space of hypotheses, a declarative bias is either specified by hand or mined from
the data. The declarative bias then restricts the set of possible refinements of the
formulas that the search algorithm can apply. Common restrictions include limiting
the formula length, and adding a new predicate to a formula only when it shares
at least one variable with some predicate already present in the formula. On the
other hand, in our approach, we first generate our seed theory by instantiating all
the activity-related predicate variables. To put it into context of structure learning,
we expand the input model in order to generate a large seed theory, and then apply
bottom-up (data-driven) learning to prune the seed theory, whereby the training data
guides our search for formulas to remove as well as for an optimal set of weights on
the remaining formulas. We conjecture that any failed attempt at an activity always
violates at least one constraint that holds for successful executions of the activity.
The experiments below support this conjecture.

The pruning is done in steps 3 and 4 of Algorithm 1. The function
findIncompatibleFormulas(F , M ′

S) returns a set of hard formulas in M ′
S that are

incompatible with the set of examples of failed interactions F . We say that a formula



c is compatible with respect to a set of examples F if F logically entails c (F |= c).
Conversely, if F does not entail c, we say that c is incompatible w.r.t. F .6 We explain
how to find incompatible formulas in the next section.

In step 4 of Algorithm 1, we simply remove all incompatible formulas (I ) from
the theory. At this point, we have our MS+F model, where hard formulas are guaran-
teed logically consistent with the examples of failed activities (because we removed
the incompatible hard formulas), as well as with the successful activities (because
they were logically consistent to start with). However, the soft formulas in MS+F
are missing properly updated weights (in Markov logic, the weight of each hard for-
mula is simply set to +∞). Therefore, we run Markov logic weight learning using
theBeast package (step 5).

Recall that theBeast implements the cutting plane meta solving scheme for in-
ference in Markov logic, where the ground ML network is reduced to an integer
linear program that is subsequently solved by the LpSolve ILP solver. We chose this
approach as opposed to, e.g., MaxWalkSAT that may find a solution that is merely
locally optimal, since the resulting run times are still relatively short (under an hour
even for training and testing even the most complex model). Weights are learned dis-
criminatively, where we directly model the posterior conditional probability of the
hidden predicates given the observed predicates. We set theBeast to optimize the
weights of the soft formulas via supervised on-line learning using margin infused
relaxed algorithm (MIRA) for weight updates while the loss function is computed
from the number of false positives and false negatives over the hidden atoms. Note
that if any of the soft formulas are truly irrelevant with respect to the training exam-
ples, they are not picked out by the findIncompatibleFormulas() function, but their
weights are set to zero (or very close to zero) in the weight learning step (line 5 in
Algorithm 1). These zero-weighted formulas are subsequently removed in the fol-
lowing step. Note that the weight learning process does not need to experience a
“cold” start, as an initial setting of weights can be inherited from the input theory
MS.

Finally, we return the learned theory MS+F , whose formulas are optimally
weighted with respect to all training examples. In the Experiments and Results sec-
tion below, we will use MS+F to recognize both successful and failed activities.
Algorithm 1 also returns the incompatible hard formulas I . We will see how I is
used to extract the intended goal of the activities in the Section 5.3, but first, let us
discuss step 3 of Algorithm 1 in more detail.

5.2.2 Consistency Check: Finding Incompatible Formulas

Now we turn to our method for finding incompatible formulas (summarized in Algo-
rithm 2). Since our method leverages satisfiability testing to determine consistency
between candidate theories and possible worlds (examples),7 Algorithm 2 can be

6 Since in our domain, each example is a complete truth assignment, testing entailment is equivalent
to checking if F ∪ c is logically consistent.
7 This is often referred to as the covers relation in inductive logic programming.



viewed as an instance of learning from interpretations—a learning setting in the
inductive logic programming literature (De Raedt, 2008).

Algorithm 2 (findIncompatibleFormulas). Find formulas in a ML theory that are
logically inconsistent with examples of execution of failed activities.
Input: F : a set of examples of failed activities

T : unrefined ML theory of successful and failed activities
Output: smallest set of formulas that appear in T and are unsatisfiable in the worlds in F

1: O⇐ extractObjects(F)
2: Thard⇐T \Tsoft
3: integer n⇐ 0
4: boolean result⇐ false
5: while result == false do
6: T c⇐Thard
7: remove a new n-tuple of formulas from T c

8: if for the current n, all n-tuples have been tested then
9: n⇐ n+1

10: end if
11: result⇐ testSAT(F , T c, O)
12: end while
13: return Thard \T c

As input, we take a set of examples of failed activities F and a seed theory T
(e.g., produced in step 2 of Algorithm 1). The output is the smallest set of hard
formulas that appear in T and are logically inconsistent with F . The algorithm
first extracts the set of all objects O that appear in F (step 1 in Algorithm 2),
while keeping track of the type of each object. For example, suppose there are
only two example worlds in F shown in Table 3. Then extractObjects(F) returns
{P1,P2,P7,P8,C3,C5,1,2}.

Example 1 Example 2
snap(P1,C5,1) snap(P7,C3,2)
snap(P2,C5,1) snap(P8,C3,2)
failedCapturing(P1,P2,1) failedFreeing(P2,P5,2)

Table 3 Two simple examples of a logical representation a failed capture event.

In step 2, we limit ourselves to only hard formulas when testing compatibility.
We do so since we can prove incompatibility only for hard formulas. Soft constraints
can be violated many times in the data and yet we may not want to eliminate them.
Instead, we want to merely adjust their weights, which is exactly what we do in
our approach. Therefore, Thard contains only hard formulas that appear in T . Next,
on lines 5 through 12, we check if the entire unmodified Thard is compatible (since
for n = 0, we do not remove any formulas). If it is compatible, we return an empty



set indicating that all the hard formulas in the original seed theory T are compati-
ble with the examples. If we detect incompatibility, we will need to remove some,
and perhaps even all, hard formulas in order to arrive at a logically consistent the-
ory. Therefore, we incrementally start removing n-tuples of formulas. That is, in
the subsequent |Thard| iterations of the while loop, we determine if we can restore
consistency by removing any one of the hard formulas in Thard. If we can, we return
the set Thard \ fi, where fi is the identified and removed incompatible formula. If
consistency cannot be restored by removing a single formula, we in turn begin con-
sidering pairs of formulas (n = 2), triples (n = 3), etc. until we find a pruned theory
T c that is consistent with all examples.

In general, we do need to consider n-tuples of formulas, rather than testing each
formula in isolation. Consider formula H2 in Figure 5, which can be split into seven
conjoined implications, each having two predicates. Induced formulas pertaining to
failed attempts at freeing will include ones that share a common antecedent that is
sometimes true, but their respective consequents are at the same time both false.
Here is a concrete instantiated example in propositional logic:

. . .

failedFreeing(P1,P2,34)⇒ isCaptured(P2,34)
failedFreeing(P4,P5,45)⇒ isFree(P5,46)
. . .

The training examples will include atoms such as

. . .

failedFreeing(P1,P2,34)
failedFreeing(P4,P5,45)
¬isFree(P5,46)
¬isCaptured(P2,34)
. . .

(Following the closed-world assumption, the two negated atoms would actually not
appear in the training data, but we explicitly include them in this example for clar-
ity.)

Now, removing either one of the formulas does not restore consistency of the
theory and the examples. We need to remove both offending formulas to find a so-
lution. Furthermore, attempting to find inconsistent formulas independently of each
other in general results in pruning the theory too drastically and the result strongly
depends on the order in which we choose to test formulas. This simple examples
illustrates how hard formulas interact and that they do need to be considered jointly.



We also note that some hard formulas model physical constraints or inviolable
rules of capture the flag, and therefore hold universally. Appropriately, these for-
mulas are not eliminated by Algorithm 2. As an example, consider formula H1 in
Figure 5, which asserts that each player occupies exactly one cell at any given time.
This formula is satisfied in games that include both successful and failed activities.
On the other hand, consider formula H8 in the same figure. It contains a captured
player to the cell he was captured in (following the “captured players cannot move”
rule of CTF). While this holds for successful capturing events, it does not necessar-
ily hold for failed attempts at capturing. Therefore, when rule H8 is expanded via
second-order ML, only some of the derived formulas are going to be consistent with
the observations.

Specifically, the candidate formula in Equation 6 will be pruned away, as it is
inconsistent with the training examples, i.e., players that were only nearly captured
continue to be free to move about. However, the remaining three variants of for-
mula H8 will not be pruned away. Equation 7 will always evaluate to true, since if
someone attempts to re-capture an already captured player a, a does indeed remain
stationary. Similarly, Equation 8 is also consistent with all the example CTF games
because if there is a failed attempt at capture immediately followed by a successful
capture, the captured player does remain in place from time t and beyond. Finally,
Equation 9 is compatible as well, since it is the original formula H8 that is consistent
with the observations.

∀a, t,c :
(
isFailedCaptured(a, t)∧isFailedCaptured(a, t+1)∧snap(a,c, t)

)
⇒ snap(a,c, t+1)

(6)

∀a, t,c :
(
isCaptured(a, t)∧isFailedCaptured(a, t+1)∧snap(a,c, t)

)
⇒ snap(a,c, t+1)

(7)

∀a, t,c :
(
isFailedCaptured(a, t)∧isCaptured(a, t+1)∧snap(a,c, t)

)
⇒ snap(a,c, t+1)

(8)

∀a, t,c :
(
isCaptured(a, t)∧ isCaptured(a, t +1)∧ snap(a,c, t)

)
⇒ snap(a,c, t +1)

(9)
The function testSAT() (line 11 in Algorithm 2) checks whether a given can-

didate theory T c is compatible with the examples F by the following process.
First, we ground T c using the objects in O, thereby creating a ground theory G .
For example, if T c = {p(x)⇒ q(x)} and O = {B,W}, the grounding would be
G = {p(B)⇒ q(B), p(W )⇒ q(W )}. Then we check if G ∪Fhidden is satisfiable us-
ing the miniSAT solver, where Fhidden is simply the set of hidden atoms that appear
in F . Intuitively, this corresponds to testing whether we can “plug in” the worlds in
F into T c while satisfying all the hard constraints. Though satisfiability is an NP-



complete problem, in practice testSAT() completes within tenths of a second even
for the largest problems in our CTF domain.

For instance, suppose Fhidden = {p(B),¬q(B)}. Then we test satisfiability of the
formula (

p(B)⇒ q(B)
)
∧
(

p(W )⇒ q(W )

)
∧ p(B)∧¬q(B).

In this case we cannot satisfy it since we are forced to set p(B) to true and q(B) to
false, which renders the first clause—and therefore the whole formula—false.

An alternative approach to pruning formulas via satisfiability testing, as we have
just described, would be to treat both types of formulas (hard and soft) in the in-
flated theory M ′

S as strictly soft formulas and learning a weight for each formula
from examples of both successful and failed game events. However, this introduces
several complications that negatively impact the system’s performance as well as
model clarity. First, the number of formulas in the inflated theory can be exponen-
tially larger than in the seed theory. While the instantiation of the second-order ML
representation can be quantified to limit this expansion, we still have worst-case ex-
ponential blow-up. By treating all formulas as soft ones, we now need to potentially
learn many more weights. This is especially problematic for activities that occur
rarely, as we may not have enough training data to properly learn those weights.
Eliminating the hard candidate formulas by proving them inconsistent dramatically
reduces the number of parameters we have to model. While satisfiability testing is
NP-complete, weight learning in Markov logic entails running inference multiple
times, which is itself a #P-complete problem.

The second reason for distinguishing between soft and hard formulas is the re-
sulting clarity and elegance of the final learned model MS+F . Even in situations
when we have enough training data to properly learn a large number of weights, we
run into overfitting problems, where neither the structure nor the parameters of the
model represent the domain in a natural way. Our experiments have shown that if we
skip the pruning stage (steps 3 and 4 in Algorithm 1), the model’s recognition per-
formance does not differ from that of a pruned model in a significant way (p-value
of 0.45). However, we end up with a large number of soft formulas with a mixture
of positive and negative weights that the learning algorithm carefully tuned and bal-
anced to fit the training data. They however bear little relationship to the concepts
in the underlying domain. Not only does this make it very hard for a human expert
to analyze the model, but it makes it even harder to modify the model.

For these reasons, softening all hard formulas is, in general, infeasible. An inter-
esting direction of future work will be to identify a small amount of key inconsistent
hard formulas to soften, while eliminating the rest of the inconsistent hard formu-
las. This however entails searching in a large space of candidate subsets of softened
formulas, where each iteration requires expensive re-learning of all weights.

Note that Algorithm 2 terminates as soon as it finds a compatible theory that
requires the smallest number of formula-removals. We also experimented with an
active learning component to our system, where we modify Algorithms 1 and 2 such
that they present several possible refinements of the theory to the user who then
selects the one that looks best. The proposed modifications are shown both at the



ML theory level with modified sections (formulas) highlighted as well as at the data
level where the program shows the inferred consequences of those modifications.
For each candidate modification, the corresponding consequences are displayed as
a collection of animations where each animation shows what the results of activity
recognition would be if we committed to that particular candidate theory. Note that
even people who do not have background in ML can interact with such a system
since the visualization is easy to understand. Interestingly, in the case of captures
and frees, the least modified theory that the “off-line” version of the algorithm finds
is also the best one and therefore there is no need to query the user. One can view
this as a differential variant of Occam’s razor. However, for different activities or
other domains, the active learning approach may be worth revisiting and we leave
its exploration for future work.

Finally, general structure learning techniques from statistical-relational AI and
from inductive logic programming are not applicable as a substitute for our theory
augmentation algorithm for several reasons. The main reason is that, for efficiency
reasons, existing techniques in the literature typically operate over a very restricted
set of formula templates. That is, they consider only Horn clauses, or only formulas
without an existential quantifier, or only formulas with at most k literals or with
at most l variables, and so on. This set of restrictions is part of the language bias
of any given approach. While in principle, structure learning is possible without a
language bias, one often has to carefully define one for the sake of tractability (see
the Section 7 for details). In our approach, the language bias is defined implicitly as
discussed in Section 5.2.1.

5.3 Extracting The Goal From Success and Failure

Recall that applying the theory augmentation process (Algorithm 1) on the CTF
seed theory of successful interactions (shown in Figures 5 and 6) induces a new set
of formulas that capture the structure of failed activities and ties them together with
the existing formulas in the seed theory.

The logically inconsistent formulas I that Algorithm 2 returns are ones that
are not satisfiable in the worlds with failed activities. At the same time, variants of
those formulas were consistent with the examples of successful actions occurring
in the games. Therefore, I represents the difference between a theory that models
only successful activities and the augmented theory of both successful and failed
actions, that has been derived from it. Intuitively, the difference between success
and failure can be viewed as the intended purpose of any given activity a rational
agent executes, and consequently as the goal the agent has in mind when he engages
in that particular activity. In Section 6, we will explore the goals extracted from the
CTF domain in this fashion.



5.4 Identifying Interesting Game Situations

Suppose we are interested in detecting segments of the games of capture the flag
that are in some sense interesting. People’s interests vary from person to person,
and even within any one person over time. Therefore, we focus on identifying game
segments that are novel, in the sense that the dynamics of the game suddenly change,
and a sequence of events takes place, which is dissimilar to what happened prior as
well as to what follows.

How can we automatically identify such moments from players’ location? More-
over, how can we pinpoint which particular players are the main participants in such
an interesting situation? Intuitively, we represent each second of a game in terms
of the amount of agreement among players’ velocity vectors. We then propose a
novelty detection process based on convolution with a special kernel.

We define the similarity between the velocity of player i and player j as their dot
product scaled by the current distance d between the two players:

φ (vi,v j) = e−d(i, j) (vi ·v j) . (10)

The dot product term takes into account the respective magnitudes of players’
velocity vectors, as well as the angle between them. The larger the magnitudes, and
the smaller the angle, the higher similarity score we assign. Since the players cannot
see what is happening in the game at large distances, neither can they communicate,
a correlation in motion of players far apart is almost certainly random. The expo-
nential term in Equation 10 imposes an exponential decay on the similarity score φ

as we increase the distance between the players (d(i, j)), thereby forcing the similar-
ity metric to focus on more localized correlation patterns. A high correlation in the
velocities of two players i and j means that the players are following a very similar
trajectory over the given period of time. In effect, our similarity measure φ tends to
be maximal for pairs of players, who are nearby each other, and who are moving at
a high-speed in the same direction.

We can now aggregate individual pair-wise similarities φ to represent the motion
of an entire team of players, and to contrast the behavior of one team against that of
the opposing team. As we outlined above, each second si of a game is represented
by a three element vector, that captures the agreement of players’ velocities within
team 1, the agreement of players’ velocities within team 2, and the agreement of
velocities of players across teams:

gsi =

(
∑

(i, j)∈T1
φ(vi,v j), ∑

(i, j)∈T2
φ(vi,v j), ∑

(i, j)∈OP
φ(vi,v j)

)
.

In the first and second element of gsi , we sum over all combinations of pairs of
players (7 choose 2) within team 1 (T1) and team 2 (T2), respectively. In the third
element, we sum over all combinations of opponent pairs (OP). This feature vector
is tailored for detecting dynamic segments of a game with a lot of “action,” however
the proposed technique is general and can be applied to detect other types of player
behavior as well, such as patrolling the home base, guarding a captured player etc.
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Fig. 7 Self-similarity matrix for an entire game of capture the flag. The hotter (more white) a given
pixel with coordinates (i, j) is, the less are game seconds gsi and gs j similar to each other.

Now we are ready to construct the self-similarity matrix S for game g, which
contains the similarity between all pairs of game seconds gsi . S is a square t by t
matrix, where t is the number of seconds in game g. Each element of S is the L2
norm between the two corresponding game seconds:

S(i, j) =‖ gsi −gs j ‖2 .

An example self-similarity matrix is shown in Figure 7. The hotter (more white)
a given pixel with coordinates (i, j) is, the less are game seconds gsi and gs j sim-
ilar to each other. Note that the diagonal elements S(i, i) are all zero (black). We
see short episodes of interesting activity (light colors) interleaved by monotonous
segments (dark color), where not much dynamics occurs. Especially dominant are
times around 150 seconds, then between 300 and 400 seconds, and finally near 800
seconds into the game. After that we observe moderately turbulent activity as the
game climaxes.



We can automatically extract interesting game segments by convolving a self-
similarity matrix with a “checkered” Gaussian kernel shown in Figure 8. Mathemat-
ically, we can express the kernel as

fc(i, j;σ) =

e−
i2+ j2

2σ2 if (i, j) lies in the first or third quadrant

−e−
i2+ j2

2σ2 otherwise
(11)

−1

0

1

Fig. 8 Illustration of the “checkered” Gaussian kernel we use for convolution during detection of
interesting game segments.

To illustrate the convolution process, consider the two three-dimensional figures
(8 and 9). Figure 9 visualizes the self-similarity matrix for the first 200 seconds of
a game. The higher (and also the more red) a given point is in the surface plot, the
more similar the corresponding seconds of the game are. Now imagine convolving
this matrix with the checkered Gaussian kernel from Figure 8 by sliding the kernel
along the matrix’s diagonal, while keeping the center of the kernel aligned with the
diagonal elements of the matrix. Every time the kernel is convolved with a time
window that contains an abrupt change from a high similarity to a low similarity,
such as when the kernel is centered at element (60,60) in the self-similarity matrix,



Fig. 9 A three dimensional visualization of the self-similarity matrix of the first 200 seconds of a
game of capture the flag.

it produces a large negative correlation score. Plateau regions, such as the beginning
of this particular game result in intermediate correlation, whereas regions containing
a transition from a low similarity to a high similarity produce a large positive score.
Formally, the convolution process can be written as

N(t) = ( fc ∗S)(t) =

L
2

∑
x=− L

2

L
2

∑
y=− L

2

fc(x,y)S(t + x, t + y), (12)



where L is the width as well as the height of the kernel fc, and the matrix S is
appropriately padded around its “edges” to allow convolution along the entire diag-
onal. The resulting function N(t) is often called the novelty function in the audio
processing literature and has been successfully applied, perhaps most notably, in
visualizing and classifying music (Foote, 2000; Paulus, Müller, & Klapuri, 2010).
In our experiments, we set σ = L

2 when generating the checkered kernel (cf. Equa-
tion 11), but we found that the actual value of σ has a small effect on the quality of
the results.

Figure 10 shows the novelty scores obtained by convolving the game represented
by the self-similarity matrix depicted in Figure 7 with kernels of various size. The
larger the area of the kernel, the more context it takes into account when calculat-
ing correlations. However, as we increase the size, we are more likely to overlook
brief, but significant changes in game dynamics. Additionally, the exact time of oc-
currence of an interesting segment becomes harder to identify, as the larger kernel
aggregates information from sizable areas of the self-similarity matrix. Nonethe-
less, as we see in Figure 10, our technique is quite robust over a wide range of
kernel sizes.
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Fig. 10 Novelty scores obtained by convolving the game represented by the self-similarity matrix
shown in Figure 7 with kernels of various size. The dashed line in each plot depicts one standard
deviation. Note that the score is very robust even as we vary the kernel size.



Now we can automatically identify interesting game situations by thresholding
the novelty score. We can also accurately pinpoint which players are the dominant
actors in each interesting game segment by examining their contributions to the
corresponding feature vectors gsi . In the experiments below, we will explore how
well do the high-activity game segments detected by our system align with human
judgement.

This concludes discussion of our models and methodology, and now we turn to
experimental evaluation of the framework presented above.

6 Experiments and Results

We evaluate our approach along the three major directions outlined in Section 5
(Methodology), while focusing on answering the five research questions formulated
ibidem. The structure of this section closely follows that of the Methodology section.

In a nutshell, we are first interested in how our Markov logic models perform on
the standard multi-agent activity recognition task—labeling successful activities—
and how their performance compares to the alternative models. Second, we examine
the augmented model that captures both successful and failed attempts at activities.
This is the model MS+F induced by Algorithm 1, which also lets us extract the
intended goal of the activities in question. Third, we compare the performance of
MS+F on the task of jointly recognizing all four activities with that of an alternative
model. Finally, we investigate to what extent the reasoning about failed attempts
does help in recognition of successfully executed activities, and how the interesting
game segment detection approach compares to the judgement of human experts.

All experiments are performed on our capture the flag dataset consisting of four
separate games. The dataset is summarized in Table 4, where for each game we
list the number of raw GPS readings and the number of instances of each activity
of interest. We evaluate the models via four-fold cross-validation, always training
on three games (if training is required for a model) and testing against the fourth.
For each experimental condition below, we report precision, recall, and F1 scores
attained by each respective model over the four cross-validation runs. We have pur-
posefully chosen to split the data so that each cross-validation fold directly corre-
sponds to a separate game of CTF for conceptual convenience and clarity. As we
discussed above, the events occurring in the games often have far-reaching conse-
quences. For example, most captured players are never freed by their allies. There-
fore, a capture at the beginning of a game typically profoundly influences the entire
rest of the game. For this reason, splitting the games randomly or even manually
would introduce unnecessary complications, as most of the segments would have
dependencies on other segments. By enforcing that each fold exactly corresponds
with a different game, we make each fold self-contained.

To quantify the statistical significance of the pair-wise differences between mod-
els, we use a generalized probabilistic interpretation of F1 score proposed by Goutte
and Gaussier (2005). Namely, we express F1 scores in terms of gamma variates



derived from models’ true positives, false positives, and false negatives (λ = 0.5,
h = 1.0, cf. Goutte and Gaussier (2005)). This approach makes it possible to com-
pare our results to future work that may apply alternative models on similar, but not
identical, datasets. A future comparison may, for instance, include additional games
or introduce random splits of the data. We note that standard statistical significance
tests cannot be applied in those situations. All p-values reported are one sided, as
we are interested if models’ performance significantly improves as their level of
sophistication increases.

#GPS #AC #FC #AF #FF
Game 1 13,412 2 15 2 1
Game 2 14,420 2 34 2 1
Game 3 3,472 6 12 0 2
Game 4 10,850 3 4 1 0
Total 42,154 13 65 5 4

Table 4 CTF dataset overview: #GPS is the total number of raw GPS readings, #AC and #FC is
the number actual (successful) and failed captures respectively, and analogously for freeings (#AF
and #FF).

6.1 Recognition of Successful Activities

Recall that for both our two-step (2SML) and unified (UML) Markov logic mod-
els, we specify the Markov logic formulas by hand and optimize the weights of the
soft formulas via supervised on-line learning. We run a modified version of the-
Beast software package to perform weight learning and MAP inference. theBeast
implements the cutting plane meta solving scheme for inference in Markov logic,
where the ground ML network is reduced to an integer linear program that is sub-
sequently solved by the LpSolve ILP solver. We chose this approach as opposed to,
e.g., MaxWalkSAT that can get “stuck” at a local optimum, since the resulting run
times are still relatively short (under an hour even for training and testing even the
most complex model).

At weight learning time, we use the margin infused relaxed algorithm (MIRA)
for weight updates while the loss function is computed from the number of false
positives and false negatives over the hidden atoms, as described in the Methodology
section. The discretization step for the dynamic Bayesian network model (DBN) is
implemented in Markov logic and is also executed in this fashion. The DBN model
is trained via maximum likelihood as described in Section 4.2. The two deterministic
baselines (B and B+S) do not require any training phase.

At inference time, we are interested in the most likely explanation of the data. In
Markov logic, maximum a posteriori inference reduces to finding a complete truth
assignment that satisfies all the hard constraints while maximizing the sum of the



weights of the satisfied soft formulas. At testing time, theBeast Markov logic solver
finds the most likely truth assignment to the hidden atoms as described above, and in
this section we are specifically interested in the values of the capturing and freeing
atoms.

In DBNs, the most likely explanation of the observations is equivalent to Viterbi
decoding. The DBN model assigns either free or captured state to each player for
every time step. We then label all transitions from free to captured state as capturing
and all transitions from captured to free as freeing. Note that the DBN model is
capable of determining which player is being freed or captured, but it does not model
which player does the freeing or capturing. In our evaluation, we give it the benefit
of the doubt and assume it always outputs the correct actor.

For all models, inference is done simultaneously over an entire game (on average,
about 10 minutes worth of data). Note that we do not restrict inference to a (small)
sliding time window. As the experiments described below show, many events in this
domain can only be definitely recognized long after they occur. For example, GPS
noise may make it impossible to determine whether a player has been captured at the
moment of encounter with an enemy, but as the player thereafter remains in place
for a long time, the possibility of his capture becomes certain.

Figures 11 and 12 summarize the performance of our models of successful cap-
turing and freeing in terms of precision, recall, and F1 score calculated over the
four cross-validation runs. For clarity, we present the results in two separate plots,
but each model was jointly labeling both capturing and freeing activities. We do not
consider the baseline model for freeing recognition as that activity makes little sense
without having a notion of player state (captured or free).

We see that the unified approach yields the best results for both activities. Let
us focus on capturing first (Figure 11). Overall, the unified model labels 11 out of
13 captures correctly—there are only two false negatives. In fact, these two capture
events are missed by all the models because they involve two enemies that appear
unusually far apart (about 12 meters) in the raw data. Even the unified approach fails
on this instance since the cost of adjusting the players’ trajectories—thereby losing
score due to violation of the geometry-based constraints—is not compensated for
by the potential gain from labeling an additional capture.

Note that even the two-step approach recognizes 10 out of 13 captures. As com-
pared to the unified model, it misses one additional instance in which the involved
players, being moderately far apart, are snapped to mutually nonadjacent cells. On
the other hand, the unified model does not fail in this situation because it is not lim-
ited by prior nonrelational snapping to a few nearby cells. However, the difference
between their performance on our dataset is not statistically significant even at the
0.05 level (p-value of 0.32).

Both deterministic baseline models (B and B+S) perform very poorly. Although
they yield a respectable recall, they produce an overwhelming amount of false posi-
tives. This shows that even relatively comprehensive pattern matching does not work
at all in this domain. Interestingly, the performance of the DBN model leaves much
to be desired as well, especially in terms of precision. While the DBN model is sig-
nificantly better than both baselines (p-value less than 5.9×10−5), it also achieves
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2SML = two-step Markov logic model, UML = unified Markov logic model)

0.13	  

0.22	  

1.00	   1.00	  

0.20	  

0.40	   0.40	  

0.60	  

0.15	  

0.29	  

0.57	  

0.75	  

0.00	  

0.20	  

0.40	  

0.60	  

0.80	  

1.00	  

B+S	   DBN	   2-‐SML	   UML	  

Freeing	  Recogni+on	  

Precision	  

Recall	  

F1	  

Fig. 12 Comparison of performance of our three models on freeing recognition while doing joint
inference over both capturing and freeing events. See Table 6 for statistical significance analysis
of the pairwise differences between models. (B+S = baseline model with states, 2SML = two-step
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significantly worse performance than both the Markov logic models (p-value less
than 0.0002; see Table 5).

Table 5 summarizes p-values of pairwise differences between models of actual
(i.e., successful) capturing. While the difference between the Markov logic-based
models (2SML and UML) are not statistically significant (p-value of 0.32), pairwise



B+S DBN 2SML UML
B 0.0192 3.6×10−6 5.1×10−7 2.9×10−7

B+S - 5.9×10−5 9.4×10−6 1.4×10−6

DBN - - 0.0002 8.0×10−5

2SML - - - 0.3230

Table 5 Summary of statistical significance (one sided p-values) of the pairwise differences be-
tween F1 scores for models of actual capturing. (B = baseline model, B+S = baseline model with
states, DBN = dynamic Bayesian network model, 2SML = two-step Markov logic model, UML =
unified Markov logic model)

DBN 2SML UML
B+S 0.2739 0.0733 0.0162
DBN - 0.1672 0.0497
2SML - - 0.2743

Table 6 Summary of statistical significance (one sided p-values) of the pairwise differences be-
tween F1 scores for models of actual freeing. (B+S = baseline model with states, DBN = dynamic
Bayesian network model, 2SML = two-step Markov logic model, UML = unified Markov logic
model)

differences in F1 scores between all other models are significant at the 0.02 level,
and most often even at much lower p-values.

Though the unified model still outperforms its alternatives in the case of freeing
recognition as well, its performance is further from ideal as compared to the capture
recognition case (Figure 12). It correctly identifies only 3 out of 5 freeing events
in the games, but does not produce any false positives. This is partly due to the de-
pendency of freeing on capturing. A failure of a model to recognize a capture pre-
cludes its recognition of a future freeing. Another reason is the extreme sparseness
of the freeing events (there are only five of them in 40,000+ datapoints). Finally,
in some instances players barely move after they had been freed. This may occur
for a number of reasons ranging from already occupying a strategic spot to simply
being tired. Such freeing instances are very challenging for any automated system,
and even people familiar with the game to recognize (several situations would have
been extremely hard to disambiguate if we didn’t have access to our notes about
data collection).

The two-step ML model does a slightly worse job than the unified model on
freeing recognition. It correctly identifies only 2 out of 5 freeings for the same rea-
sons as in the capturing recognition case. Similarly to models of actual captures,
the difference between the unified and two-step freeing models is not statistically
significant (p-value of 0.27).

Table 6 summarizes p-values of pairwise differences between models of actual
(i.e., successful) freeing. Here we see that only the difference between B+S and
UML models is statistically significant (p-value of 0.01), whereas the differences
between the rest of the model pairs are not statistically significant. Since there are
only five instances of successful freeing, the 2SML model does not perform signif-



icantly better than the B+S model at the 0.05 significance level (p-value of 0.07).
However, the UML model achieves better recognition results than even the DBN
model with high confidence (p-value less than 0.05). Therefore, we see that although
the 2SML model strictly dominates the non-Markov logic models when evaluated
on capturing recognition, we need the full power of the unified ML model to strictly
outperform the nonrelational alternatives for freeing. This suggests that as we move
to more complex and more interdependent activities, relational and unified modeling
approaches will be winning by larger and larger margins.

Even though the statistical significance tests suggest that 2SML is likely to give
similar results to UML, it is important to note that 2SML, by design, precludes
recognition of the activities in question in certain situations. Namely, as our experi-
ments demonstrate, when the players are snapped to cells that are too far apart, the
two-step model does not even consider those instances as candidates for labeling,
and inevitably fails at recognizing them. Therefore, one needs to look beyond the
p-values obtained when comparing the fully unified models to various alternatives.

As expected from the experiments with capturing recognition, both deterministic
baseline models perform very poorly on freeing recognition as well. Not only do
they produce an overwhelming amount of false positives, they also fail to recognize
most of the freeing events.

Thus, we see that the models cast in Markov logic perform significantly better
than both of the deterministic baseline models, and also better than the probabilis-
tic, but nonrelational, DBN model. We note that the DBN model has the potential to
be quite powerful and similar DBNs have been applied with great success in previ-
ous work on activity recognition from location data (Eagle & Pentland, 2006; Liao,
Patterson, Fox, & Kautz, 2007). It also has many similarities with the two-step ML
model. They both share the same denoising and discretization step, and they both op-
erate on the same observed data. The key difference is that the DBN model considers
players individually, whereas the two-step ML model performs joint reasoning.

Looking at the actual CTF game data, we see several concrete examples of how
this hurts DBN’s labeling accuracy. For instance, consider a situation where two al-
lies had been captured near each other. Performing inference about individual play-
ers in isolation allows the DBN model to infer that the two players effectively free
each other, even though in reality they are both captured and cannot do so. This oc-
curs because the DBN model is oblivious to the explicit states of one’s teammates
as well as opponents. Since capturing and freeing are interdependent, the oblivious-
ness of the DBN model to the state of the actors negatively impacts its recognition
performance for both activities. The example we just gave illustrates one type of
freeing false positives. The hallucinated freeings create opportunities that often lead
to false positives of captures, creating a vicious cycle. False negatives of freeing
(capturing) events often occur for players who the model incorrectly believes have
already been freed (captured) at a prior time.

Since the Markov logic based models are significantly better—with a high level
of confidence—than the alternatives that are not fully relational, the experiments
above validate our hypothesis that we need to exploit the rich relational and tempo-
ral structure of the domain in a probabilistic way and at the same time affirmatively



answer research question Q1 (Can we reliably recognize complex multi-agent activ-
ities in the CTF dataset even in the presence of severe noise?). Namely, we show
that although relatively powerful probabilistic models are not sufficient to achieve
high labeling accuracy, we can gain significant improvements by formulating the
recognition problem as learning and inference in Markov logic networks.

Now we turn to the evaluation of our method of learning models of both success
and failure in people’s activities.

6.2 Learned Formulas and Intentions

Applying the theory augmentation process (Algorithm 1) on the CTF seed theory
(shown in Figures 5 and 6) induces a new set of formulas that capture the structure
of failed activities and ties them together with the existing formulas in the theory.
We call this model MS+F . Figure 13 shows examples of new weighted formulas
modeling failed freeing and capturing attempts that appear in MS+F .

First, note that our system correctly carries over the basic preconditions of each
activity (contrast formulas S4 with S4′ and S5 with S5′ in Figures 6 and 13 re-
spectively). This allows it to reliably recognize both successful and failed actions
instead of, e.g., merely labeling all events that at some point in time appear to re-
semble a capture as near-capture. This re-use of preconditions directly follows from
the language bias of the theory augmentation algorithm.

Turning our attention to the learned hard formulas, we observe that the system
correctly induced equivalence classes of the states, and also derived their mutual
exclusion relationships (H5′). It furthermore tied the new failure states to their cor-
responding instantaneous interactions (H6′ and H7′).

Finally, the algorithm correctly discovers that the rule “If a player is captured
then he or she must remain in the same location” (H8, Figure 5) is the key distinc-
tion between a successful and failed capture (since players who were not actually
captured can still move). Therefore, it introduces an appropriate rule for the failed
captures (H8′, Figure 13) explicitly stating that failed capturing does not confine the
near-captured player to remain in stationary. An analogous process yields a fitting
separation between failed and successful freeings. Namely, our model learns that
an unsuccessfully freed player remains stationary. This learned difference between
success and failure in players’ actions directly corresponds to the goal of the activ-
ity and consequently the intent of rational actors. This difference is what our system
outputs as the intended goal of capturing activity (and analogously for freeing).

These experimental results provide an evidence for a resounding “yes” to both
Q2 ( Can models of attempted activities be automatically learned by leveraging
existing models of successfully performed actions?) and Q3 (Does modeling both
success and failure allow us to infer the respective goals of the activities?) within
the CTF domain.

We note that instead of applying our automated theory augmentation method, a
person could, in principle, manually formulate a Markov logic theory of successful



as well as failed activities by observing the games. After all, this is how we designed
the initial seed model of successful events. However, this process is extremely time
consuming, as one tends to omit encoding facts that to us, humans, seem self-evident
but need to be explicitly articulated for the machine (e.g., a single person cannot be
at ten different places at once, or that a player is either free or captured but not both).
It is also surprisingly easy to introduce errors in the theory, that are difficult to de-
bug, mostly because of the complex weight learning techniques involved. Therefore,
we believe that the theory augmentation method is a significant step forward in en-
hancing models’ capabilities while requiring small amounts of human effort. As the
complexity of domains and their models increases, this advantage will gain larger
and larger importance.

∀a1,a2, t : [(enemies(a1,a2)∧onHomeTer(a1, t)∧ (S4′)

onEnemyTer(a2, t)∧ samePlace(a1,a2, t)∧ isFree(a1, t)

∧ isFree(a2, t))⇒ failedCapturing(a1,a2, t)] ·11.206

∀a1,a2, t : [(¬enemies(a1,a2)∧onEnemyTer(a1, t)∧ (S5′)

onEnemyTer(a2, t)∧ samePlace(a1,a2, t)∧ isFree(a1, t)

∧ isCaptured(a2, t))⇒ failedFreeing(a1,a2, t)] ·1.483

∀a1,a2, t : [failedCapturing(a1,a2, t)] · (−0.0001) (S6′)

∀a1,a2, t : [failedFreeing(a1,a2, t)] · (−0.002) (S7′)

¬∀a, t : isFailedCaptured(a, t)⊕ isFree(a, t) (H5′)

¬∀a, t : isCaptured(a, t)⊕ isFailedFree(a, t)

¬∀a, t : isFailedCaptured(a, t)⊕ isFailedFree(a, t)

∀a, t : isFailedCaptured(a, t)⇔ isFree(a, t)

∀a, t : isCaptured(a, t)⇔ isFailedFree(a, t)

∀a, t : (isFree(a, t)∧ isFailedCaptured(a, t +1))⇒ (∃=1a1 : failedCapturing(a1,a, t)) (H6′)

∀a, t : (isCaptured(a, t)∧ isFailedFree(a, t +1))⇒ (∃=1a1 : failedFreeing(a1,a, t)) (H7′)

¬∀a, t,c : (isFailedCaptured(a, t)∧ isFailedCaptured(a, t+1)∧ snap(a,c, t))⇒ snap(a,c, t+1)
(H8′)

Fig. 13 Example formulas, learned by Algorithm 1, that model unsuccessful capturing and freeing
events. The crucial intent recognition formula (H8′) is highlighted in bold. Formulas eliminated by
Algorithm 2 are preceded by the ¬ symbol, and are not included in the induced model MS+F . For
concreteness sake, the values of the learned weights here come from one cross-validation run (and
are similar in other runs).



6.3 Recognition of Both Successful and Failed Activities
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Fig. 14 Performance of the baseline and augmented (MS+F ) models on joint recognition of suc-
cessful and failed capturing and freeing. The F1 score of the augmented model is significantly
better than that of the baseline for all four target activities (p-value less than 1.3× 10−4). AC =
actual (successful) capturing, FC = failed capturing, AF = actual freeing, FF = failed freeing.

We now compare the performance of our model MS+F to an alternative (base-
line) method that labels all four activities in the following way. Similarly to the
baseline with states model for successful interactions defined in Section 5.1, there
are two separate stages. First we snap each GPS reading to the nearest cell by ap-
plying only the geometric constraints (H1 and S1–S3) of our theory, and afterward
we label the instances of our activities. The following labeling rule is applied. We
loop over the whole discretized (via snapping) data set and look for instances where
a pair of players a and b were snapped (in the first step) to either the same cell or to
two adjacent cells at time t, they are enemies, b is not captured already, and a is on
its home territory while b is not. If b moves (is snapped to a different cell at a later
time) without having an ally nearby, we output failedCapturing(a,b,t), otherwise we
output capturing(a,b,t). The labeling rule for freeing is defined analogously and all
four events are tied together. We also tested a variant of the DBN model introduced
in Section 5.1 that has two additional hidden state values for node St : isFailed-
Free and isFailedCaptured. However, the difference in the results obtained with this
model was not statistically significant (p-value of 0.38), and therefore we focus on
the conceptually more straightforward baseline model described above.



Model MS+F is evaluated using four-fold cross-validation (always training on
three games and testing against the fourth). Figure 14 compares both models in
terms of precision, recall, and F1 score. Note that all four activities are modeled
jointly in both models. The F1 score of the augmented model is significantly better
than that of the baseline for all four target activities (p-value less than 1.3×10−4).

We see that the baseline model has, in general, a respectable recall but it produces
a large number of false positives for all activities. The false positives stem from
the fact that the algorithm is “greedy” in that it typically labels a situation where
several players appear close to each other for certain period of time as a sequence
of many captures and subsequent frees even though none of them actually occurred.
Model MS+F gives significantly better results because it takes full advantage of
the structure of the game in a probabilistic fashion. It has a similar “over labeling”
tendency only in the case of failed captures, where a single capture attempt is often
labeled as several consecutive attempts. While this hurts the precision score, it is
not a significant deficiency, as in practice, having a small number of short game
segments labeled as possible near-captures is useful as well.

We also note that even though the original model (UML) did not contain any
information on failed capturing nor failed freeing, the performance of MS+F is
respectable even for those two newly introduced activities. We only provided ex-
amples of game situations where those attempts occur and the system augmented
itself and subsequently labeled all four activities. Thus, we see that we can indeed
extend preexisting models in an automated fashion so that the unified model is ca-
pable of recognizing not only individual activities, but also both success and failure
in people’s behavior.

6.4 The Effect of Modeling Failed Attempts on Recognition of
Successful Activities

To address research question Q4 (Does modeling failed attempts of activities im-
prove the performance on recognizing the activities themselves?), we want to see
how much does the recognition of attempted activities help in modeling the suc-
cessful actions (the latter being the standard activity recognition problem). Toward
that end, we compare the Markov logic model MS that jointly labels only successful
capturing and freeing with model MS+F that jointly labels both successful and failed
attempts at both capturing and freeing (see Section 5.2.1 for a detailed description
of the two models). However, we evaluate them in terms of precision, recall, and F1
score only on successful interactions, not all four types of activities.

Figure 15 summarizes the results. We see that when evaluated on actual captur-
ing, MS+F performs better than MS, and similarly for freeing. However, the dif-
ference in F1 scores between a model that captures both attempted and successful
activities (MS+F ) and a model of only successful activities (MS) is not statistically
significant (p-value of 0.20). This is partly because MS already produces very solid
results, leaving little room for improvement. Additionally, the CTF dataset contains
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Fig. 15 Considering unsuccessfully attempted activities strictly improves performance on stan-
dard activity recognition. Blue bars show scores obtained with the unified Markov logic model that
considers only successful activities (MS). The red bars indicate the additive improvement provided
by the augmented model that considers both successful and failed activities (MS+F , the output of
Algorithm 1). Each model labels its target activities jointly, we separate capturing and freeing in
the plot for clarity. Precision has value of 1 for both models. F1 scores obtained when explicitly
modeling failed attempts are not statistically different from F1 scores obtained without modeling
attempts at a high confidence level (p-value of 0.20). However, these results still show the impor-
tance of reasoning about people’s attempts when recognizing their activities; see text for details.

relatively few events of interest. In terms of labeling performance at testing time, the
difference between the two models is more than 11% (MS and MS+F recognize, re-
spectively, 14 and 16 out of 18 successful activities correctly). Thus, we believe the
trends shown in Figure 15 are promising and modeling attempted actions does im-
prove recognition performance on both capturing and freeing, but evaluation on a
dataset with a larger number of events is needed to show the difference to be sta-
tistically significant at a higher confidence level. However, this does not mean that
recognizing attempts is unimportant. As we show above, our induced augmented
model does recognize failed (as well as successful) activities in the complex CTF
domain with high accuracy, and we argue this to be a significant contribution.

Finally, the comparison of MS and MS+F shows that applying our learning algo-
rithm that augments a model with more recognition capabilities does not hurt model
labeling performance. The fact that binary classification problems are typically eas-
ier to solve than their multi-class counterparts has been well reported on in machine
learning literature (Allwein, Schapire, & Singer, 2001). Therefore, introducing new
activities into a model, especially in an automated way, is likely to degrade its per-
formance. Contrary to this intuition, our experiments show that MS+F is no worse



than MS on successful activity recognition (i.e., their intersection) with high confi-
dence, even though MS+F is clearly richer and more useful.

6.5 Identifying Interesting Game Situations

We now turn our attention to the evaluation of the automatic detection of interest-
ing game segments, as stated in our research question Q5. Specifically, we explore
how do the high-activity game segments detected by our system align with human
judgement. We divided each game into 20 second intervals and prepared a visual-
ization of each segment over the map of the campus map using our Google maps
web application (see Figure 1). The 20 second segment length was chosen as the
smallest time in which one can determine if a game situation is interesting or not
with sufficient confidence. This produced a total of 151 different game segments.

We then show each segment individually to five subjects (n = 5) familiar with the
capture the flag domain, and asked them to label each segment as either “interest-
ing” or “uninteresting.” At the same time, the novelty detection system described in
Section 5.4 (L = 32) labeled each segment in the same manner. It selected the “in-
teresting” label for game segments that contain at least one second with the absolute
value of the novelty score larger than two standard deviations of all the novelty
scores within that game.

We measure the inter-annotator agreement by Fleiss’ kappa (κ) (Fleiss, 1971).
Over all four games, the five annotators show substantial agreement: κ = 0.63.
Therefore, we take their majority vote as the ground truth against which we evaluate
the automated system. It is interesting that even a relatively vague notion of an inter-
esting versus uninteresting game situation results in a high agreement across anno-
tators. The novelty score-based labeling method achieves 92.5% accuracy, thereby
exhibiting a substantial agreement with human judgement.

7 Related Work

In the world of single-agent location-based reasoning, Bui (2003) presents and eval-
uates a system for probabilistic plan recognition cast as an abstract hidden Markov
memory model. Subsequently, Liao et al. (2004) implement a system for denois-
ing raw GPS traces and simultaneously inferring individuals’ mode of transporta-
tion (car, bus, etc.) and their goal destination. They cast the problem as learning
and inference in a dynamic Bayesian network and achieve encouraging results. In a
follow-up work, Liao et al. (2005) introduce a framework for location-based activity
recognition, which is implemented as efficient learning and inference in a relational
Markov network.

Ashbrook and Starner (2003) focus on inferring significant locations from raw
GPS logs via clustering. The transition probabilities between important places are



subsequently used for a number of user modeling tasks, including location predic-
tion. Eagle and Pentland (2006) explore harnessing data collected on regular smart
phones for modeling human behavior. Specifically, they infer individuals’ general
location from nearby cell towers and Bluetooth devices at various times of day. Ap-
plying a hidden Markov model (HMM), they show that predicting if a person is at
home, at work, or someplace else can be achieved with more than 90% accuracy.
Similarly, Eagle and Pentland (2009) extract significant patterns and signatures in
people’s movement by applying eigenanalysis to smart phone logs.

Hu, Pan, Zheng, Liu, and Yang (2008) concentrate on recognition of interleaving
and overlapping activities. They show that publicly available academic datasets con-
tain a significant number of instances of such activities, and formulate a conditional
random field (CRF) model that is capable of detecting them with high (more than
80%) accuracy. However, they focus solely on single-agent household activities.

People’s conversation has been the primary focus of multi-agent modeling ef-
fort (Barbuceanu & Fox, 1995). In the fields of multi-agent activity recognition and
studies of human behavior, researchers have either modeled conversation explic-
itly as, for example, Busetta, Serafini, Singh, and Zini (2001), or have leveraged
people’s communication implicitly via call and location logs from mobile phones.
This data has been successfully used to infer social networks, user mobility pat-
terns, model socially significant locations and their dynamics, and others (Eagle
& Pentland, 2006; Eagle, Pentland, & Lazer, 2009). This is arguably an excellent
stepping stone for full-fledged multi-agent activity recognition since location is, at
times, practically synonymous with one’s activity (e.g., being at a store often implies
shopping) (Tang, Lin, Hong, Siewiorek, & Sadeh, 2010), and our social networks
have tremendous influence on our behavior (Pentland, 2008).

Additionally, a number of researchers in machine vision have worked on the
problem of recognizing events in videos of sporting events, such as impressive re-
cent work on learning models of baseball plays (Gupta et al., 2009). Most work in
that area has focused on recognizing individual actions (e.g., catching and throw-
ing), and the state of the art is just beginning to consider relational actions (e.g., the
ball is thrown from player A to player B). The computational challenges of deal-
ing with video data make it necessary to limit the time windows of a few seconds.
By contrast, we demonstrate in this work that many events in the capture the flag
data can only be disambiguated by considering arbitrarily long temporal sequences.
In general, however, both our work and that in machine vision rely upon similar
probabilistic models, and there is already some evidence that statistical-relational
techniques similar to Markov logic can be used for activity recognition from video
(Biswas, Thrun, & Fujimura, 2007; Tran & Davis, 2008).

Looking beyond activity recognition, recent work on relational spacial reason-
ing includes an attempt to locate—using spacial abduction—caches of weapons in
Iraq based on information about attacks in that area (Shakarian, Subrahmanian, &
Spaino, 2009). Additionally, Abowd et al. (1997) present a location- and context-
aware system, Cyberguide, that helps people explore and fully experience foreign
locations. Horvitz et al. (2005) explore an intelligent and nonintrusive navigation
system that takes advantage of predictions of traffic conditions along with a model



of user’s knowledge and competence. Finally, Kamar and Horvitz (2009) explore
automatic generation of synergistic plans regarding sharing vehicles across multiple
commuters.

An interesting line of work in cognitive science focuses on intent and goal
recognition in a probabilistic framework (Baker, Tenenbaum, & Saxe, 2006, 2007).
Specifically, they cast goal inference as inverse planning problem in Markov de-
cision processes, where Bayesian inversion is used to estimate the posterior dis-
tribution over possible goals. Recent extensions of this work begin to consider
simulated multi-agent domains (Baker, Goodman, & Tenenbaum, 2008; Ullman,
Baker, Macindoe, Evans, Goodman, & Tenenbaum, 2010; Baker, Saxe, & Tenen-
baum, 2011). Comparison of the computational models against human judgement
in synthetic domains shows a strong correlation between people’s predicted and ac-
tual behavior. However, the computational challenges involved in dealing with the
underlying partially observable Markov decision processes are prohibitive in more
complex domains with large state spaces, such as ours.

The focus of our work is on a different aspect of reasoning about people’s goals.
Rather than inferring a distribution over possible, a priori known goals, we auto-
matically induce the goals of complex multi-agent activities themselves.

Other researchers have concentrated on modeling behavior of people and gen-
eral agents as reinforcement learning problems in both single-agent and multi-agent
settings. Ma (2008) proposes a system for household activity recognition cast as a
single-agent Markov decision process problem that is subsequently solved using a
probabilistic model checker. Wilson and colleagues address the problem of learning
agents’ roles in a multi-agent domain derived from a real-time strategy computer
game (Wilson, Fern, Ray, & Tadepalli, 2008; Wilson, Fern, & Tadepalli, 2010). Ex-
periments in this synthetic domain show strongly encouraging results. While we do
not perform role learning ourselves, we anticipate that the work of Wilson et al.
is going to play an important role in learning hierarchies of people’s activities. In
our capture the flag domain, one can imagine automatically identifying a particular
player as, for example, a defender and subsequently leveraging this information to
model his or her behavior in a more “personalized” way.

Hong (2001) concentrates on recognizing the goal of an agent in the course of her
activities in a deterministic, but relational setting. Interesting work on goal recog-
nition has been also applied to computer-aided monitoring of complex multi-agent
systems, where relationships between agents are leveraged to compensate for noise
and sparse data (Kaminka, Tambe, Pynadath, & Tambe, 2002). By contrast, in our
work we focus on learning the respective goals of a given set of multi-agent ac-
tivities in a probabilistic setting. The knowledge is in turn leveraged to achieve a
stronger robustness of the other recognition tasks. Similarly to the approach of Hong
(2001), our system does not need a supplied plan library either.

Our work also touches on anomaly detection since our system reasons about the
failed attempts of the players. Anomaly detection concerns itself with revealing seg-
ments of the data that in some way violate our expectations. For an excellent survey
of the subject, we refer the reader to Chandola, Banerjee, and Kumar (2009). In the
realm of anomaly detection within people’s activities, Moore and Essa (2001) ad-



dress the problem of error detection and recovery card games that involve two play-
ers recorded on video. Their system models the domain with a stochastic context-
free grammar and achieves excellent results.

We note that recognizing a failed attempt at an activity is more fine-grained a
problem than anomaly detection. The failed event is not just anomalous in general.8

Rather, it is the specific distinction between success and failure in human activities
that we are interested in. And the distinction lies in the fact that an unsuccessful
attempt does not yield a certain desired state whereas a successful action does. This
desired state is exactly what our approach extracts for each activity in question. To
our knowledge, there exists no prior work on explicit modeling and recognition of
attempted activities or on learning the intended purpose of an activity in a multi-
agent setting.

One of the components of our contribution focuses on joint learning and infer-
ence across multiple tasks (capturing, freeing, and their respective attempted coun-
terparts). This is in contrast with the traditional “pipeline” learning architecture,
where a system is decomposed into a series of modules and each module performs
partial computation and passes the result on to the next stage. The main benefits
of this set-up are reduced computational complexity and often higher modularity.
However, since each stage is myopic, it may not take full advantage of dependencies
and broader patterns within the data. Additionally, even though errors introduced by
each module may be small, they can accumulate beyond tolerable levels as data
passes through the pipeline.

An extensive body of work has shown that joint reasoning improves model per-
formance in a number of natural language processing and data mining tasks in-
cluding information extraction (i.e., text segmentation coupled with entity resolu-
tion) (Poon & Domingos, 2007), co-reference resolution (Poon & Domingos, 2008),
information extraction coupled with co-reference resolution (Wellner, McCallum,
Peng, & Hay, 2004), temporal relation identification (Yoshikawa, Riedel, Asahara,
& Matsumoto, 2009; Ling & Weld, 2010), and record de-duplication (Domingos,
2004; Culotta & McCallum, 2005). Similarly to our work, some of the above models
are cast in Markov logic. However, prior work uses sampling techniques to perform
learning and inference, whereas we apply a reduction to integer linear programming.
Interestingly, Denis and Baldridge (2007) jointly address the problems of anaphoric-
ity and co-reference via a manual formulation of an integer linear program.

Joint activity modeling has also been shown to yield better recognition accuracy,
as compared to “pipeline” baselines as well as baselines that make strong inter-
activity independence assumptions. Wu, Lian, and Hsu (2007) perform joint learn-
ing and inference over concurrent single-agent activities using a factorial conditional
random field model. Similarly, Helaoui, Niepert, and Stuckenschmidt (2010) model
interleaved activities in Markov logic. They distinguish between foreground and
background activities and infer a time window in which each activity takes place
from RFID sensory data. By contrast, we focus on joint reasoning about multi-

8 A situation where a player in CTF moves through the campus at a speed of 100 mph and on her
way passes an enemy player is certainly anomalous (and probably caused by GPS sensor noise),
but we do not want to say that it is a failed attempt at capturing.



agent activities and attempts in a fully relational—and arguably significantly more
noisy—setting.

Manfredotti, Hamilton, and Zilles (2010) propose a hierarchical activity recog-
nition system formulated as learning and inference in relational dynamic Bayesian
networks. Their model jointly leverages observed interactions with individual ob-
jects in the domain and the relationships between objects. Since their method out-
performs a hidden Markov model by a significant margin, it contributes additional
experimental evidence that a relational decomposition of a domain improves model
quality.

Landwehr, Gutmann, Thon, Philipose, and De Raedt (2007) cast single-agent
activity recognition as a relational transformation learning problem, building on
transformation-based tagging from natural language processing. Their system in-
duces a set of transformation rules that are then used to infer activities from sensory
data. Since the transformation rules are applied adaptively, at each step, the sys-
tem leverages not only observed data, but also currently assigned labels (inferred
activities). However, the transformation rules are learned in a greedy fashion and
experiments show that the model does not perform significantly better than a sim-
ple HMM. On the other hand, their representation is quite general, intuitive, and
extensible. As we will see, our Markov logic model has a similar level of represen-
tational convenience while performing global—instead of greedy—optimization in
a significantly more complex domain.

The denoising component of our model can be formulated as a tracking problem.
Prior work proposed a relational dynamic Bayesian network model for multi-agent
tracking (Manfredotti & Messina, 2009). Their evaluation shows that considering
relationships between tracked entities significantly improves model performance, as
compared to a nonrelational particle filter baseline. By contrast, our work explores
joint tracking and activity recognition. However, each GPS reading is annotated
with the identity of the corresponding agent. The work of Manfredotti and Messina
(2009) suggests that our model can be generalized, such that the associations be-
tween GPS and agent identities are inferred and need not be observed.

Our Markov logic theory can be viewed as a template for a conditional random
field (Lafferty, 2001), an undirected graphical model that captures the conditional
probability of hidden labels given observations, rather than the joint probability
of both labels and observations, as one would typically do in a directed graphical
model. Conditional random fields have been extensively applied to activity recog-
nition, and their superior labeling performance over generative models has been
demonstrated in a number of both single-agent and multi-agent domains (Liao et al.,
2005; Limketkai, Fox, & Liao, 2007; Vail, 2008; Vail & Veloso, 2008; Hu et al.,
2008). This is the main reason we cast our models in Markov logic, rather than
in directed models such as relational Bayesian networks (Jaeger, 1997) and their
dynamic counterparts (Manfredotti, 2009), probabilistic relational models (Koller,
1999; Friedman, Getoor, Koller, & Pfeffer, 1999), Bayesian logic programs (Kerst-
ing & De Raedt, 2000), and first-order conditional influence language (Natarajan,
Tadepalli, Altendorf, Dietterich, Fern, & Restificar, 2005).



Since Markov logic is based on, and in fact subsumes, finite first-order logic,
we immediately gain access to a number of techniques developed in the rich field
of traditional logic. Current Markov logic solvers take advantage of the underlying
logical structure to perform more powerful optimizations, such as Alchemy’s MC-
SAT (Poon & Domingos, 2006). We also leverage this relationship between Markov
and first-order logic when inducing an augmented model. Furthermore, presence
of dependency cycles introduces additional problems in directed graphical (rela-
tional) models. Thus, the fact that, in Markov logic, knowledge can be expressed as
weighted first-order formulas combined with the above factors make it a powerful
framework best suited for the multi-agent reasoning tasks considered in this work.

Traditional hidden Markov models operate over an alphabet of unstructured (i.e.,
“flat”) symbols. This makes relational reasoning difficult, as one has to either propo-
sitionalize the domain, thereby incurring combinatorial increase in the number of
symbols and model parameters, or ignore the relational structure and sacrifice infor-
mation. Logical hidden Markov models (LHMMs) have been proposed to address
this problem (Kersting, De Raedt, & Raiko, 2006). LHMMs are a generalization of
standard HMMs that compactly represents probability distributions over sequences
of logical atoms rather than flat symbols. LHMMs have been proven strictly more
powerful than their propositional counterparts (HMMs). By applying techniques
from logic-based reasoning, such as unification, while leveraging the logical struc-
ture component of the model, Kersting et al. (2006) show that LHMMs often require
fewer parameters and achieve higher accuracy than HMMs.

LHMMs have been recently applied to activity recognition. In the context of in-
telligent user interfaces, Shen (2009) designs and evaluates a LHMM model for
recognition of people’s activities and workflows carried out on a desktop computer.
Natarajan, Bui, Tadepalli, Kersting, and Wong (2008) propose a hierarchical exten-
sion of LHMMs along with an efficient particle filter-based inference technique, and
apply it to activity recognition problems in synthetic domains. Both lines of work
show that LHMMs can be learned and applied efficiently, and perform better than
plain HMMs.

However, LHMMs are a generative model and therefore are not ideal for pure
labeling and recognition tasks, where we typically do not want to make strong inde-
pendence assumptions about the observations, nor do we want to explicitly model
dependencies in the input space. TildeCRF—a relational extension of traditional
conditional random fields—has been introduced to address this issue (Gutmann &
Kersting, 2006). TildeCRF allows discriminative learning and inference in CRFs
that encode sequences of logical atoms, as opposed to sequences of unstructured
symbols. TildeCRF specifically focuses on efficient learning of models of sequen-
tial data via boosting, and is subsumed by Markov logic, which can produce both
discriminative and generative models. We cast our model in the latter framework to
make it more general, extensible, and interpretable.

PRISM, a probabilistic extension of Prolog, has been shown to subsume a wide
variety of generative models, including Bayesian networks, probabilistic context-
free grammars, HMMs (along with their logical extension) (Sato & Kameya, 2001,
2008). However, since the focus of PRISM is on representational elegance and gen-



erality, rather than scalability, the sheer size of the state space and complexity of our
CTF domain precludes its application here.

Finally, our Markov logic theory augmentation process is related to structure
learning, transfer learning, and inductive logical programming. In fact, Algorithm 1
implements a special case of structure learning, where we search for a target theory
that explains the training data well, while our declarative bias forces the target theory
to differ from the source theory only as much as necessary. Again, with the intuition
that failed attempts are similar to their failed counterparts. A number of researchers
have focused on structure learning specifically in Markov logic networks. This in-
cludes early work on top-down structure learning, where clauses in the knowledge
base are greedily modified by adding, flipping, and deleting logical literals (Kok &
Domingos, 2005). This search is guided by the likelihood of the training data un-
der the current model. Mihalkova and Mooney (2007) exploit patterns in the ground
Markov logic networks to introduce a bottom-up declarative bias that makes their
algorithm less susceptible to finding only local optima, as compared to alternative
greedy methods. Similarly, Kok and Domingos (2009) introduce a bottom-up declar-
ative bias based on lifted hypergraph representation of the relational database. This
bias then guides search for clauses that fit the data. Since the hypergraph is lifted,
relational path finding tractable. Interesting work on predicate invention applies re-
lational clustering technique formulated in second-order Markov logic to discover
new predicates from relational databases (Kok & Domingos, 2007). The above sys-
tems are capable of modeling relatively rich family of logical formulas. Other ap-
proaches perform discriminative structure learning and achieve excellent results, but
focus on a restricted set of types of formulas (e.g., Horn clauses) (Huynh & Mooney,
2008; Biba, Ferilli, & Esposito, 2008). Davis and Domingos (2009) successfully
use second-order Markov logic in deep transfer learning. They lift the model of the
source domain to second-order ML and identify high-level structural patterns. These
subsequently serve as declarative bias for structure learning in the target domain. By
its very nature, the inductive logic programming discipline has extensively studied
structure learning in deterministic, as well as probabilistic settings (e.g., (Muggle-
ton, 2002; De Raedt, 2008; De Raedt, Frasconi, Kersting, & Muggleton, 2008)). In
fact, our theory augmentation algorithm can be viewed as an efficient Markov logic
based version of theory refinement, a well-established ILP technique that aims to
improve the quality of a theory in terms of simplicity, fit to newly acquired data,
efficiency or other factors (Wrobel, 1996).

Our approach differs from all this work in three main points. First, our declara-
tive bias is defined implicitly by the seed theory of successful activities. Therefore,
our theory augmentation algorithm is not limited to any hard-wired set of formula
types it can consider. Rather, the search space is defined at run time by extracting
motifs from the seed theory. The second distinction lies in computational tractabil-
ity and exactness of the results. By distinguishing between soft and hard formulas,
we are able to search through candidate formulas in a systematic, rather than greedy
manner. Consequently, our final learned model requires fewer parameters, which
is especially important when the amount of training data is relatively small. Ad-
ditionally, our weight learning does not experience cold starts, as we leverage the



seed theory. The final difference is that, to our knowledge, we are the first to ex-
plore structure learning in the context of interplay of success and failure, and their
relationship to the intended goals of people’s actions.

8 Conclusions

This chapter took on the task of understanding the game of capture the flag from
GPS data as an exemplar of the general problem of inferring human interactions
and intentions from sensor data. We have presented a novel methodology—cast in
Markov logic—for effectively combining data denoising with higher-level relational
reasoning about a complex multi-agent domain. Specifically, we have demonstrated
that given raw and noisy data, we can automatically and reliably detect and rec-
ognize both successful and failed interactions in adversarial as well as cooperative
settings. Additionally, we have shown that success, failure, and the goal of an activ-
ity are intimately tied together and having a model for successful events allows us
to naturally learn models of the other two important aspects of life in a supervised
fashion. Specifically, we have demonstrated that the intentions of rational agents
are automatically discovered in the process of resolving inconsistencies between a
theory that models successful instances of a set of activities and examples of failed
attempts at those activities. We have also explored to what extend can we identify
interesting game situations and key players from raw location data. The results pro-
duced by our system show a high agreement with the judgement of human experts.

We have formulated five research questions and designed experiments within the
CTF domain that empirically answer them. Compared to alternative approaches to
solving the multi-agent activity recognition problem, our augmented Markov logic
model, which takes into account not only relationships among individual players,
but also relationships among activities over the entire length of a game, although
computationally more costly, is significantly more accurate on real-world data. Fur-
thermore, we have illustrated that explicitly modeling unsuccessful attempts boosts
performance on other important recognition tasks.

9 Future Work

Multi-agent activity recognition is especially interesting in the context of current
unprecedented growth of on-line social networks—in terms of their size, popularity,
and their impact on our “off-line” lives. In this paper, we show that location infor-
mation alone allows for rich models of people’s interactions, but in the case of on-
line social networks, we additionally have access to the content of users’ posts and
both the explicit and the implicit network interactions. For instance, our preliminary
study shows that, interestingly, about 20% of Twitter users reveal their location with
each post. These data sources are now available to machines in massive volumes



and at ever-increasing real-time streaming rate. We note that a substantial fraction
of posts on services such as Facebook and Twitter talk about everyday activities of
the users (Naaman, Boase, & Lai, 2010), and this information channel has become
available to the research community only very recently. Thus, if we are able to rea-
son about human behavior and interactions in an automated way, we can tap the
colossal amounts of knowledge that is—at present—distributed across the whole
population.

We are currently extending our model to handle not only explicit GPS traces,
but also be able to infer the location of people who do not broadcast their GPS
coordinates. The basic idea is, again, to leverage the structure of relationships among
people. The vast majority of us participate in on-line social networks and typically
some of our friends there do publish their location. We thus view the GPS-enabled
people as noisy location sensors and use the network interactions and dynamics to
estimate the location of the rest of the users. At present, we are testing this approach
on public tweets.
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