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ABSTRACT 
A recent paper [Hanks19851 examines temporal rea- 

soning as an example of default reasoning. They conclude 
that all current systems of default reasoning, including 
non-monotonic logic, default logic, and circumscription, 
are inadequate for reasoning about persistence. I present 
a way of representing persistence in a framework based on 
a generalization of circumscription, which captures Hanks 
and McDermott’s procedural representation. 

1. Persistence 
The frame problem is that of representing a dynamic 

world so that one can formally infer the facts whose truth 
values are not changed by a given action. A temporal 
world model allows one to assert that various actions occur 
at various times, and to be silent about other times. When 
one reasons with such a model, the frame problem is gen- 
eralized to the persistence problem: given that no 
relevant action, or perhaps no action at all, occurred over 
a stretch of time, one may need to infer that certain facts 
do not change their truth values over that time. [n other 
words, one needs to represent the “inertia” of the world, 
the moment to moment persistence of many of its proper- 
ties. 

Examples of persistence abound in everyday reason- 
ing. Sitting in my office, I can infer that my car is in the 
parking lot, because that is where I left it this morning. 
IHanks examines the following example, here 
simplified. Assume a simple linear, discrete model of 
time, containing instants 1, 2, 3, etc. At time 1 John is 
alive, and a gun aimed at John is loaded. At time 3 the 
gun is fired. We know that if the gun is loaded when it is 
fired, John will die at the next moment of time. We 
would like to conclude that John is not alive at time 4. In 
order to do so, we must make the persistence inference 
that the gun stays loaded from times 1 to 3. (See figure 
1.) 
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2. Problems with Default Reasoning 
We would like to find some simple rule of default 

inference which captures persistence reasoning. Hanks 
and McDermott describe “obvious” solutions to the per- 
sistence problem using Reiter’s default logic, McCarthy’s 
circumscription operation, and McDermott and Doyle’s 
non-monotonic logic. In default logic, for example, one 
would include an rule which stated that if a fact held at a 
time Tl, and it was consistent that it held over an interval 
immediately following time Tl, then infer that it does 
hold over Tl. In the circumscriptive approach, one could 
define a “clipping event” which occurs whenever a fact 
changes truth value. Persistence is indirectly asserted by 
circumscribing (minimizing) the predicate which holds of 
all clipping events. 

While intuitively appealing, these approaches do not 
work. The basic problem, Hanks and McDermott point 
out, is that default inferences are not prioritized by each 
system. For example, applying default rules in different 
orders yields different extensions; in circumscription, 
many different models of the axioms may be minimal in 
the “clipping” predicate. Yet only some of these exten- 
sions or minimal models correspond to the intuitive 
understanding of persistence. 

Consider the gun example. The axioms have a 
minimal model (or corresponding extension) in which the 
fact ALIVE persists, but the fact LOADED is (mysteri- 
ously) clipped between times 1 and 3. (See figure 2.) 
Therefore simply circumscribing clipped (or adding 
default rules) does not sanction inferences about per- 
sistence. 

3. .I\ Procedural Solution 

Hanks provides a temporal-assertion management 
program which computes perslstences. Hanks’s program 
functions by computing persistences in temporal order, 
from the past to the future. For example, the persistence 
of LOADED is computed before the persistence of 
ALIVE, and so the program concludes that John dies. 
The program reflects our intuitions in many cases because 
it captures the temporal order of causality: the gun being 
loaded can cause John to die, and so has precedence over 
it. 
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Hanks is not optimistic about the ability of any 
default logic to handle this reasoning properly: “...If a 
significant part of defeasible reasoning can’t be 
represented by default logics, and if in the cases where the 
logics fail we have no better way of describing the reason- 
ing process than by a direct procedural characterization 
(like our program or its inductive definition), then logic as 
an AI representation language begins to look less and less 
attractive.” Such pessimism may be premature. It is possi- 
ble to represent many kinds of ordered defaults in an 
declarative representation. We show how this can be done 
in a circumscriptive framework. 

4. Model Theory 
The semantics of circumscription are based on the 

idea of minimal entailment. One statement entails 
another if all models of the first are also models of the 
second. Suppose a partial order is defined over class of 
models. The minimal models of a statement are those 
which have no strict predecessor in the partial order. 
Then one statement minimally entails another if all 
minimal models of the first are also models of the second. 

McCarthy’s original formulation of circumscription 
[McCarthyl980] defined the partial order over models in 
terms of the extension of some predicate, say P. A model 
Ml would be less than a model M2 if the extension of P 
in Ml is a subset of its extension in M2, and Ml and M2 
are otherwise the same. Newer work [McCarthy1985] has 
refined this definition, largely concentrating on the role of 
the non-circumscribed predicates in the minimization. 
But many other variations on circumscription are possible. 

Let facts (such as LOADED) be represented by 
terms, and the atom 

Hold(t,f) 
be used to assert that fact f holds at time t. The predicate 
Clip holds of a time and a fact if the fact becomes false at 
that time; otherwise, the truth-value of the fact persists 
from the earlier instant. That is: 

Hold(t,f) 3 (Hold(t+ 1,f) @ Clip(t+ l,f)) 
(The symbol $ represents exclusive or.) Suppose we are 
given some assertions about when various facts hold. We 
wish to define a partial order over models of these sen- 
tences which reflects our intuitions about persistence. 

1 2 3 4 
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Figure 1 Figure 2 

“Good” models, Hanks and McDermott suggest, are ones 
in which earlier facts persist as long as possible, and so 
should fall at the beginning of the ordering. Where Ml 
and M2 are models, Ml is as good or better than M2 if 
every clipping in Ml is either matched by an identical 
clipping in M2, or by an earlier clipping in M2 (possibly 
of some different fact) which does not also appear in Ml. 

The less than or equal relation between models is for- 
mally defined as follows. Where Ml is a model and P is a 
predicate, the expression Ml[P] yields the extension of P 
in Ml. The extension of a binary predicate such as Clip is 
a set of pairs, where the pair of x and y is written <x, y>. 
Models can be compared only if they interpret constant, 
function, and predicate symbols other than Clip or Hold 
in the same way. In particular, this means that the models 
agree on the predicate “<“, which is used to order time 
instances. Because models may be compared even if they 
do not agree on the predicate Hold, that predicate (as well 
as Clip) is said to vary during the minimization. 

Ml < M2 if and only if 

(i) Ml and M2 have the same domain 

(ii) Every constant, function, and predicate symbol other 
than Clip and Hold receives the same interpretation 
in Ml and M2. 

(iii) The following (meta-theoretic) statement is true: 

<f, 0 E Ml[Clip] 3 
<f, 0 E M2[Clip] V 
3 t’,f’ . <f’, t’> f M2[Clip] & 

<f’, t’> 6 Ml[Clip] & 
<t’, 0 f Ml[<] 

The final clause in this formula means that the time 
instant t’ is before the time instant t. 

A model Ml is strictly better than 442 (MKM2) just 
in case Ml<M2 and it is not the case that M2<_Ml. 
From this definition one can prove that if MKM2, then 
(in terms of the Clip predicate) Ml and ,542 are identical 
up to some time t’; at t’, the set of clippings in M2 prop- 
erly includes the set of clippings in ,Ml. 

1 2 3 4 
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The minimal models are those M such that there is 
no M’ such that M’<M. It is important to understand that 
the set of models is only partially ordered; there will be 
many minimal models. 

The set of minimal models may be empty if there is 
an infinite chain of models, Ml > M2 > M3 > . . . . This 
can occur if we minimize an existential statement of the 
form, “f will eventually be clipped”, with no upper bound 
placed on the time of clipping. The preference order will 
attempt to postpone the clipping for an infinite period of 
time. This problem does not occur if such an unknown 
time is given a (skolem) constant name, however, due to 
the fact that constants and functions do not vary in the 
minimization. 

5. Proof Theory 
AMcCarthy’s circumscription formula is a statement in 

2nd-order logic which entails those statements true in all 
the minimal models of a predicate. The following per- 
sistence circumscription formula entails those statements 
true in models minimal in the partial order defined above. 
Let K(Clip,Hold) be our initial set of temporal assertions. 
We write an expression such as K(Foo,Bar) to stand for 
the set of sentences obtained by substituting the predicates 
Foo and Bar for every occurrence of Clip and Hold in 
K(Clip,Hold) respectively. The variables c and h range 
over predicates. 

W c,h . 
W(c,h) & 

w t,f . c&f) > 
Wip(t,f) V 
1 t2,f2 . t2<t & Clip(t2,f2) & ~c(tZ,fL)]) 

3 w cf. CIip(t,f) G c(t,f) 

The formula can be informally understood as follows. 
Suppose that c and h are arbitrary predicates which 
satisfies all the constraints placed by the knowledge base 
on the predicates Clip and Holds respectively. Further- 
more, suppose whenever c holds of a particular time and a 
particular fact, then either Clip also holds of that time and 
fact, or Clip holds of some earlier time and fact which are 
not in the extension of c. The conclusion is that c and 
Clip are identical; the second alternative is never the case. 
There cannot be a predicate which satisfies all the con- 
straints on Clip, yet allows some fact to persist for a longer 
time, without having to clip some other fact at that time. 
The predicate-variable h was introduced in order to allow 
Holds to vary during the minimization of Clip. 

In order to use this formula, we must select particular 
instantiations for the variables c and h, such that the ini- 
tial set of assertions K(Clip,Hold) entails the main 
antecedent (in curly braces). Typically c is instantiated as a 
lambda expression which enumerates the the desired set of 
clippings. The variable h is instantiated by a lambda 
expression which describes which and when facts hold in 

the corresponding minimal models. lModus ponens then 
allows us to conclude that the extension of Clip is pre- 
cisely the desired set of clippings: Clip(t,f) G c(t,f). 

It is possible to show that this formula is valid in all 
models minimal in the above sense. As with standard cir- 
cumscription, the formula is inconsistent if there are no 
minimal models. [Lifschitzl985] develops a generic 
circumscription-like formula based on pre-orders. The 
formula above is easy to express in Lifschitz’ compact and 
elegant notation. 

6. Example 
The gun example illustrates the use of persistence cir- 

cumscription. K(Clip,Hold) is the following set of state- 
ments, Not shown are unique name axioms, such as 
LOADED f ALIVE, etc. 

Hold(t,f) > (Hold(t+ 1,f) @ Clip(t+ l,f)) 

Hold(t,FIRE) & Hold(t,LOADED) 3 
lHold(t + l,LOADED) & lHold(t + 1,ALIVE) 

Hold(l,LOADED) 

Hold(l,ALIVE) 

Hold(3,FIRE) 

The goal is to prove that lHold(4,ALIVE). (A more 
complete set of axioms would also state that if something 
is a fact, and it does not hold at a time, then its negation 
holds at that time. This complication would not materially 
change our solution.) 

Our intuitions tell us that the only (required) clipping 
event occurs at time 4, when both LOADED and ALIVE 
become false (as in figure 1). The instantiation for c is 
therefore: 

c = h t, f. t=4 & (f=LOADED V f=ALIVE) 

When do various facts hold? Again referring to figure 1, 
we see that LOADED and ALIVE hold between times 1 
and 3, and FIRE begins holding at time 3 (and persists 
thereafter). For h we can thus choose: 

h = A t,f. 
(f=LOADED > l<t<3) & -- 
(f=ALIVE > l<t<3) & -- 
(f=FIRE 103) & 
(f-LOADED7 f=ALIVE V f=FIRE) 

These expressions are placed in the persistence cir- 
cumscription formula, which is then simplified. l&s 
involves probing that the main antecedent of the formula: 
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(K(c,h) & 
v t,f . c(t,f) z) 

[Clipkf) V 
3 t2,f2 . t2<t & Clip(t2J2) & ic(t2,f2)]) 

> v t,f . Clip(t,f) 3 c(t,f) 

must be true, where c and h are defined as above. This is 
done by showing (i) that K(Clip,Hold) entails K(c,h), and 
(ii) that K(Clip,Hold) entails: 

* v t,f . c(t,f) > 
[Clip(t,O V 
3 t2,fL . t2<t & Clip(Qf2) & ~c(t2,f2)] 

The first part of the proof involves substituting c and 
h for Clip and Holds in the initial knowledge base and 
simpli@ing, which is straightforward but tedious. For 
example, the formula Hold(l,LOADED) becomes 
h(l,LOADED), which is: 

[A t,f . 
(f=LOADED > l<t<3) & 
(f=ALIVE 1 l<t?3>g, -- 
(f=FIRE > 03) & 
(f= LOADEDT f= ALIVE V f= FIRE)] (l,LOADED) 

This expression reduces to: 

(LOADED=LOADED > 1<1<3) & 
(LOADED=ALIVE > 19237& 
(LOADED= FIRE 1 123) & 
(LOADED= LOADED V 

LOADED= ALIVE V 
LOADED= FIRE) 

which, given the unique name axioms mentioned above, is 
a tautology. 

The second step, as mentioned above, is to show that 
K(Clip,Hold) entails the statement marked with a (*). 
The antecedent of (*) is false, and the statement therefore 
true, except when t=4, and f= LOADED or f=ALlVE. 
Therefore we must show that: 

Clip(4,LOADED) V 
3 t2,f2. t2<4 & Clip(t2,f2) & ~(t2,Q) 

and 

t Clip(4,ALIVE) V 
3 t&f2 . t2<4 & Clip(t2,f2) & ic(t2,f2) 

Consider the sentence involving ALIVE, marked with a 
(5-). We can show this statement is true by showing that if 
the second main disjunct is false, then the first disjunct 
must be true. So suppose that 

3 t2,fL . tX4 & Clip(t2,fL) & ic(t2,Q) 

is false. This means that there is no clipping event before 
time 4. K(Clip,Hold) includes the statements 
Hold( l,ALIVE) and Hold( 1,LOADED). The axiom 

Hold(t,f) z) (Hold(t+ l,f) $ Clip(t+ 1,f)) 

can therefore be applied for times t = 1 and t = 2, giving 
the conclusion 

Hold(3,ALIVE) & Hold(3,LOADED) 

Since Hold(3,FIRE), the axiom about firing loaded guns 
tells us that -rHold(4,ALIVE). Since Hold(3,ALIVE), we 
finally conclude that Clip(4,ALIVE), the first disjunct of 
(i), is true. Therefore (T) is true. The sentence (‘just 
before (?)) involving LOADED can be proven in a similar 
manner. 

Thus the statement (*) is true, the main antecedent 
of the instantiated persistence circumscription formula is 
true, and so 

Clipkf) G c(t,f) 

Since c(4,ALIVE), it must the case that Clip(4,ALIVE), 
and so lHold(4,ALIVE). 

Discussion 
Several morals can be drawn from this exercise. One 

is that in reasoning about time, and probably most other 
applications, default inferences must be properly ordered. 
Another is that we may need to step beyond the incre- 
mental progression of circumscriptive techniques, from 
predicate circumscription, to circumscription with vari- 
ables, to formula circumscription, and view circumscrip- 
tion as a general framework for expressing inference in 
terms of various classes of minimal models. A final moral 
is that by thinking about default inference in terms of 
relationships between models, we may more readily see 
the inadequacies of our own purported solutions. 

The particular formulas just presented do not solve in 
the persistence problem in general. Recall the example 
using persistence to infer that my car is in the pai-king lot. 
Suppose I learn at time 1000 that my car is gone. Using 
the techniques just described, I can infer that the car was 
in the parking lot up to the shortest possible time before I 
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knew it was gone. This is clearly an unreasonable infer- 
ence. Someone could have stolen it five minutes after J 
left it there: I have no reason to prefer an explanation in 
which it vanished five seconds before I glanced out my 
office window. The inadequacy is ontological: we can’t 
handle persistence properly until we have a richer theory 
of causation. The purely temporal solution often works 
because the flow of tune reflects the order of physical cau- 
sation. When the full story of causation is told, we then 
require an efficient algorithm for performing the necessary 
deductions, such as Hanks’s, and a clear model theory, 
such as that provided by generalized circumscription, to 
explain and justify the whole process. 

References 

Hanks1985. 
Steve Hanks and Drew McDermott, “Temporal Rea- 
soning and Default Logics,” YALEUKSDIRR 
#430, Yale University, Department of Computer Sci- 
ence, Ott 1985. 

Lifschitzl985. 
Vladimir Lifschitz, “Some Results on Circumscrip- 
tion,” in Proceedings from the Non-Monotonic Rea- 
soning Workshop, AAAI, Ott 1985. 

McCarthyl985. 
John McCarthy, “Applications of Circumscription to 
Formalizing Common Sense Knowledge,” in 
Proceedings from the Non-Monotonic Reasoning 
Workshop, AAAI, Ott 1985. 

McCarthy1980. 
John McCarthy, “Circumscription -- A Form of 
Non-Monotonic Reasoning,” ArtiJicial Intelligence, 
vol. 13, no. 1, pp. 27-38, 1980. 

KNOWLEDGE REPRESENTATION / -to-i 


