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ABSTRACT

Individuals with cognitive impairments would prefer to live
independently, however issues in wayfinding prevent many
from fully living, working, and participating in their com-
munity. Our research has focused on designing, prototyp-
ing, and evaluating a mobile wayfinding system to aid such
individuals. Building on the feedback gathered from po-
tential users, we have implemented the system’s automated
direction selection functionality. Using a decision-theoretic
approach, we believe we can create better wayfinding ex-
perience that assists users to reach their destination more
intuitively than traditional navigation systems. This paper
describes the system and results from a study using system-
generated directions that inform us of key customization fac-
tors that would provide improved wayfinding assistance for
individual users.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Evaluation/methodology, User-centered design,
Prototyping ; K.4.2 [Computers and Society]: Social Is-
sues—Assistive technologies for persons with disabilities

General Terms

Design, Human Factors

Keywords

Wayfinding, user interface, cognitive impairments, Markov
decision process

1. INTRODUCTION
Wayfinding is a concern for individuals with cognitive im-

pairments. Being unable to find their way safely and in-
dependently limits their ability to fully participate in their
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Figure 1: Wayfinding system front-end running on a Nokia
N95 mobile phone. A landmark-based direction is shown
with a selected photo, overlaid arrow, and text. Audio equiv-
alent to the text is also produced using the built-in text-to-
speech function. The phone is used in landscape mode to
utilize a larger portion of the screen for images. The screen
remains slid out to expose the Global Positioning System
(GPS) antenna and keypad, which the top row of keys used
to repeat directions. The center face button is used as a
Help button that requests a different direction.

community, while also placing a burden on their caregivers
and community services. This paper presents the design
of an automated system for producing real-time wayfind-
ing direction delivered on a mobile device (see Figure 1),
and a user study of the system with potential users that in-
vestigates individual preferences and abilities to follow the
different types of supported directions.

Our system generates directions of two core types:

1. Landmark-based directions that direct a user in
relation to a landmark. Landmarks are useful for giv-
ing users a better sense of where they’re going and
whether they’re going the right way. Landmarks may
also require higher cognitive effort due to the need to
recognize visual features from a photo.

2. Turn-based directions that direct a user more pre-
cisely using short messages with an iconic presentation
(see Figure 2). They usually require less cognitive ef-
fort but leave out possibly useful wayfinding detail,
which can lead to users paying closer attention to the
system. In the worst case, a user might focus too much
on these directions and pay too little attention to traf-
fic. They also require highly accurate location to min-
imize problems with message timing.



(a) Straight and standard
left/right turns use solid arrows

(b) Stop and U-turns use standard
street signs

(c) Modified street sign for non-
standard intersections

Figure 2: Examples of turn-based directions.

Our system consists of two parts: a landmark-selection
system that produces landmark-based directions using a photo
database, and a direction-selection system that uses a decision-
theoretic approach to control routing and message delivery.

Studies have shown that landmarks are the predominant
way of producing wayfinding directions for people without
disabilities [10] and that they can help older people by reduc-
ing the cognitive load required to wayfind [6], however un-
til recently integrating landmarks into wayfinding directions
has not been practical. Because of technological advances
that promise to provide scalable and ubiquitous access to
landmark information, those type of directions are now pos-
sible. Our landmark-selection system uses a database of
geo-tagged digital photos (photos containing landmark and
GPS location metadata) to determine landmark visibility.
It selects the most appropriate photo of a desired landmark
and augments the image with an overlaid arrow. See Figure
3 for example images produced by the system. Section 3
describes the landmark system.

Our prior work showed that individuals with cognitive im-
pairments would benefit from a wayfinding system that is
capable of supporting customizable and adaptable direction
selection. This can be achieved by using a decision-theoretic
approach where system actions are chosen based on knowl-
edge of a user model. In many ways this is similar to the
path planning problem in the robotics community. Various
techniques for path planning under uncertainty have been
developed by that community [15], which we can apply to-
ward creating an automated wayfinding system. We model
the problem of direction selection using the Markov deci-
sion process (MDP) framework. An individual user is repre-
sented as an agent in the MDP, whose state contains location
and orientation information (among other data). A user’s
wayfinding preferences and abilities modeled as action costs
and state transition probabilities. Solving the MDP pro-
duces a policy (an optimal set of rules) that determines the
system action to take at each decision point. Section 4 de-
scribes in more detail the MDP we use.

To better understand key customization factors to pro-
duce personalized directions, we conducted a study described
in Section 5. The study used two different user models to
explore potential users’ ability to follow different directions,
and their reaction to those directions. In Section 6, we dis-
cuss how our system can be changed to support those cus-
tomization, through both enhancements to the landmark-
selection system, the user model, and the user interface. Fi-
nally, we end the paper with conclusions in Section 7.

2. RELATED WORK
The design of our system is a result of several previous

iterations that focused on gathering feedback from potential
users and observing how they respond to different types of
wayfinding directions. Our first user study involved a pro-
totype designed to support indoor navigation using combi-
nations of photos, symbols, text, and audio [8]. The results
from that study were positive, showing that potential users
were largely able to use the directions to reach a destination
in an unfamiliar building. However, we also found a wide
range of preferences for the types of directions, with some
participants preferring visual directions while others found
them more cognitively challenging. Therefore, the ability to
modify system behavior to reflect individual preference was
a necessary feature.

In a second round of user studies, we found that the direc-
tions used in indoor navigation had several issues when used
outdoors [9]. Photos without clear landmarks were difficult
to match with the real world, and the step-by-step process
involved constant user attention to the detriment of user
awareness for safety. We therefore incorporated landmark-
based directions and tested their feasibility in a controlled
study. The findings from the controlled study found that
heading toward a landmark was significantly easier and less
error-prone than any other direction type using landmarks.
However, we did not use the landmark-based directions as
part of a route for users to go through, nor were we able to
compare the landmark-based directions to our previous di-
rections. The system in this paper can produce all the types
of directions we have studied, and our user study involves
examining how individuals reacted to the direction types.

Like our initial prototype, the system tested by [4] used
augmented photos to direct potential users with cognitive
impairments. However, because our subsequent studies found
drawbacks to relying on those type of directions, the system
we designed and study in this paper can choose between such
“low-level” or precise directions and“higher-level” landmark-
based directions capable of more than one type of direction.

Related work by [3] focused mainly on the infrastructure
to deliver handcrafted directions to potential users with cog-
nitive impairments, as opposed to automatically generated
ones like the system described in this paper. Other work
has focused on predicting a user’s desired destination [11]

An obvious related technology for wayfinding are the ex-
isting commercial navigation systems. Unlike our system,
current systems are limited in their ability to support cus-
tomization. For example, Global Positioning System (GPS)
navigation devices give users the ability to choose between



(a) An example landmark and over-
laid path arrow

(b) The same direction as in 3a but from a
different location and orientation

(c) A example showing a jointed ar-
row to denote an upcoming turn

Figure 3: Examples of augmented landmark-based photos.

quickest and shortest routes, but every user that chooses the
same route will receive the same type of direction, without
regard to user preference. The GPS unit only modifies its
calculated route if a user chooses to deviate from it, however
we have found that a common behavior when a user becomes
confused is to remain in one place. Because GPS units do
not have alternative methods for delivering directions, they
cannot produce different levels of help that a user may need
in those instances. Finally, current devices do not support
incorporating landmarks into directions, despite the utility
of landmarks in pedestrian wayfinding. This leads to the
need to constantly pay attention to the directions given by
the system, leading to safety issues such as not watching out
for traffic [12].

Recently, systems to choose appropriate landmarks for di-
rections [1] and generating user-specific directions based on
familiar landmarks [5] have been studied. In [1], a mobile
phone game is used to create a set of photos where land-
marks are more easily found, compared to randomly chosen,
nearby geo-tagged photos from online photo sites. Like their
system, our current system requires an initial seeded set of
images with landmark name and location tagged. Unlike
their system, our system can immediately use those pho-
tos without a second phase of user input, because it uses
heuristics such as landmark popularity to choose appropri-
ate landmarks. While [5] shows that using certain landmarks
familiar to users may be beneficial, the study used directions
generated statically (beforehand) as text, rather than deliv-
ered visually in a just-in-time manner to users who may not
be familiar at all with their route.

3. LANDMARK SELECTION SYSTEM
Automatically generating landmark based directions re-

quires selecting an appropriate landmark and an image of
that landmark. The landmark selection system leverages
existing collections of geo-tagged images (images with loca-
tion and landmark metadata) to retrieve suitable images of
landmarks [7]. This makes it possible to select an image
from the database that relates to the user’s current loca-
tion and intended direction, for example, to select an im-
age of the building they should walk toward in a perspec-
tive close to their current position. Additional aspects of
the image database make it possible to choose landmarks
by popularity (heuristically, based on the number of im-
ages in the database) and to choose a quality represen-
tative view from the possible choices. These images can
also be augmented with arrows See Figure 3 for some ex-
ample images that were automatically constructed by the

system and http://vcui1.nokiapaloalto.com/marwebapi/

marwebapi/apiindex for a Web-based front-end.

4. MARKOV DECISION PROCESS
The robotics community has developed various techniques

for path planning under uncertainty [15]. A key concept in
this context is the Markov decision process (MDP), which
provides techniques for generating navigation plans even
when observations and the outcome of navigation actions
are uncertain [14]. For example, partially-observable MDPs
have been used to assist persons with dementia through
tasks such as hand-washing [2]. The framework we chose
builds upon these techniques to model uncertainty in whether
or not a person will follow the guidance provided by our
system, but to reduce the state space necessary to solve our
MDPs, we rely only on observable action results.

MDPs are defined by state and action sets and one-step
transitions. States have associated rewards, and a solu-
tion to an MDP is a policy that maps states to actions in
order to maximize expected reward. A key aspect of MDPs
is that they can be used as a framework for learning and
adaptation – transition probabilities may be approximated
at first and then updated given observed behavior. Tech-
niques for solving MDPs have been shown to enable the
generation of navigation plans in robotics, and we believe
they map well to our problem of choosing directions along
a route for an individual with cognitive impairment that
maximizes the chances of success.

There are some differences between previous applications
of MDPs to robot navigation tasks versus producing wayfind-
ing assistance to a person. One noteworthy alteration to tra-
ditional MDPs that we are using are options, which we use
to represent each direction [13]. Traditional MDPs rely on
fixed time slices and actions take only a single time step,
but obviously users may take a variable amount of time
when following directions. Options can be considered to
be sub-policies that dictate when certain directions can be
given, what expected transitions will occur within the op-
tion, and when they should terminate so that a new option
may be selected. Incorporating options allows us to rea-
son over temporally-extended actions with a lower compu-
tational cost with a trade-off in terms of the optimality of
the eventual solution.

4.1 State
The state consists of variables that determine available

options and affect transition probabilities. The most accu-
rate model would incorporate every valid, observable vari-



able into the state, but at the expense of a huge state space.
The initial design of our model contains only a very small set
of state variables, with the intention of investigating whether
it is sufficient, and if not, what other variables would be the
most beneficial to incorporate into the model.

The state consists of user position (location and orien-
tation), the current option selected by the system, and a
options blacklist. User position is a critical variable. Lo-
cation is represented as a node in a graph network, while
orientation is represented as either a heading toward an ad-
jacent node or from such a node. We consider the current
option as part of the state for the sake of simplicity, because
the choice of options is determined by a combination of the
current option and the (other) state variables. The options
blacklist provides a way to temporarily avoid using direc-
tions that have been unsuccessful in the recent past. It is
represented as an array of decrementing counters, where an
option is given a positive value when a user incorrectly inter-
prets that option, and that option is not available for that
many subsequent future states. A new model is computed
when the blacklist is changed, generating an alternative set
of directions.

4.2 Option
An option is a sub-policy with its own set of termination

states. To simplify our model we define the set of termina-
tion states of an option to be any state where the user has
changed to an adjacent location, changed orientation, or not
moved at all after an abnormally long time. The sub-policy
determines when a state change has occurred. This determi-
nation is not yet implemented in our system, so we currently
simulate that functionality manually.

The options available in our system are:

• Straight: This option is given to make a user move
forward in the direction that they are facing. It might
be used to provide further assurance to the user that
they are moving in the correct direction, or to prompt
a user to continue moving in case the user expects a
new prompt from the system.

• Turns: This category of options covers making a turn.
There are different turn options depending upon the
type of intersection. A regular left/right turn is avail-
able if there is a standard intersection, while slight
turns are usable when the angle of the turn is closer
to straight. First and second turns are supported in
the case where there are more than one possible path
on that side. We choose not to support hard turns to
keep options as simple as possible for users.

• Turn around: This is the U-turn option. It may not
be as effective, as we have found that turning around
can be disorienting for some, but it can be used to
correct a user moving in an undesirable direction.

• Landmark: Based off our landmark analysis study
[9], we found that a number of users are capable of
identifying and moving toward a landmark provided a
photo. Because users did significantly better moving
toward a landmark in front of them, we choose to make
this option available only when landmarks are visible
and in front of a user.

• Stop: This option is given to make a user stop. Rea-
sons for stopping include notifying the participant of
reaching a destination, or introducing a pause in wayfind-
ing when close to traffic for extra caution, or to prevent

a user from moving too quickly away from a “better”
(from a wayfinding standpoint) location.

4.3 Transitions
Once states are defined, transition probabilities are as-

signed to map initial state-option pairs to subsequent states.
In other words, if the system were to choose an option while
the user is in a given state, how will the user react? This is
where user customization plays a major role. Transition
probabilities can be seeded based on general intuition of
wayfinding (e.g., the findings in our study that directing
a user toward a nearby landmark has a higher likelihood of
success) can be defined manually if enough information is
known about the user’s preferences and capabilities. Other-
wise, the user might go through some evaluation routes to
collect initial data on their tendencies.

Health conditions with impact on wayfinding can dictate
an initial distribution over the probabilities. For individuals
with visual impairments, directions that use audio and text
may be preferred over those that involve detailed landmark
photos, so the chances that the former type of directions are
successfully followed should be greater than the latter’s.

4.4 Costs and rewards
Ultimately reaching the goal location is a highly desirable

state, while giving a new direction has a cost both in terms
of cognitive load, distraction, and time. Some of our study
participants mentioned that reaching a destination in the
quickest amount of time or taking the shortest path is less
important to them than being more aware of their route or
using less physical effort. Some users benefit from “high-
level” directions that apply beyond a single turn, because
they can plan their own routes farther, while others interpret
directions more literally, so directions for them may need
to be step-by-step or include additional wording to avoid
ambiguity.

4.5 Producing a Policy
A policy is a mapping from every state to an option that

produces the highest-valued expected reward. It is calcu-
lated by iteratively backing up state values. Each state’s
value is the sum of its reward and a discounted expected
value of all next states of the best option. The discount
factor puts a preference on nearer-term rewards. We use
value iteration to determine the policy, with a termination
threshold that stops iterating when no state’s value changes
between iterations by more than a small delta.

5. USER STUDY
To be useful, generated directions for an individual re-

quires an accurate user model. We therefore conducted a
study to learn key individual preferences and abilities that
would suggest the types of customizations needed to be sup-
ported by the system. Using these findings, we would be
able to support system customization for future users, who
might initially either go through similar trial usage sessions
and/or answer a set of pre-defined questions to “bootstrap”
their system’s model.

The study involves wayfinding through two routes on our
university campus. Two different static user models are used
to create policies for these routes. Similar to our method-
ology in prior user studies, user position and message tim-
ing are still controlled by a wizard, a person who shadows



Figure 4: The Tablet PC Wizard-of-Oz interface used in our
latest user study. The left pane shows the graph network
with Route 2 in our study from the start (top-left node in
red) to the destination (south of the Art building on the
right, in yellow). Metadata for the route segment ahead
of the user’s position (the dot and arrow) is shown in the
upper right table and can be used by the model or by the
prompting system. The lower right pane shows the current
state variables and available options.

the participant with a Tablet PC (see Figure 4 for the wiz-
ard/system interface). Unlike our prior studies, all system
prompts are automatically picked by the system calculating
a policy using the active model. In addition to the wizard,
two researchers shadow participants to note how they react
to the system, and to intervene if there are safety concerns.
Success and difficulties wayfinding due to choice of prompt,
wording, timing, etc. and wayfinding behaviors are noted.

5.1 Initial Models for Study
We defined two models to study that use the same state

variables, but have different transition probabilities and costs.
Model 1: The Näıve Model: The first model incor-

porates few assumptions about wayfinding. It assumes that
every option will be correctly followed 100% of the time, and
that all options have the same base cost. An additional cost
for distance traveled is added so that the distance of a route
is also factored into the policy. A high reward is given for
reaching the goal location, and no discount factor is applied
to future state values. When more than one option has the
same expected value, one is picked pseudorandomly based
on a distribution seeded by the state. This ensures that
there is no variation in the policy across different users.

Model 2: Landmarks for Longer-range Movement:

The second model adds some additional assumptions about
wayfinding to move closer to a model suggested by our pre-
vious study results. First, it penalizes the Stop and Turn
Around options by assigning higher costs to those options,
since users tend to prefer that the system adapt to their cho-
sen route rather than be corrected after every minor route
deviation. Second, it assumes that lower-level options are
more likely to be followed correctly, but gives an additional
bonus to use a Landmark option when the same landmark
was just followed correctly. This models the assumption that
a landmark option potentially requires more cognitive pro-

Table 1: Participant demographics. ∗: Uses powered chair

# Age Sex Health Condition
1 48 Female Traumatic brain injury
2 27 Male Asperger’s
3 49 Male Traumatic brain injury
4 22 Male Cerebral palsy∗

5 21 Male Traumatic brain injury
6 25 Male Cerebral palsy∗

7 45 Male Multiple sclerosis

cessing by a user at first, but that there is an advantage to
using a landmark for longer, continuous stretches of a route.
All other positions are given a small, non-zero probability,
and the total weights are normalized to represent the tran-
sition probability of the options. A discount factor of 0.98
is applied to future state values to reflect the uncertainty of
future options and slightly prefer nearer-term rewards.

5.2 Participants
We recruited 7 participants with cognitive impairments

through the University of Washington Center on Outcomes
Research in Rehabilitation and an outpatient rehabilitation
clinic. Participants ranged in age from 21-49 (mean 34) with
1 woman and 6 men (see Table 1 for the demographics). We
also conducted the same study with 6 participants without
impairments, ranging in age from 28-46 (mean 36.7) with 2
women and 4 men. As the results from the participants with-
out impairments were similar to the results found from the
participants with impairments, this paper will focus on the
findings from studying the participants with impairments.

5.3 Results
As we were only able to recruit a modest number of partic-

ipants for the study, we focus more on the participants’ no-
table actions and comments during the study and debriefing
session. Of the 7 participants with cognitive impairments,
6 were able to follow the directions with only minor errors
such as wrong turns or other issues due to our prototype sys-
tem’s limitations. Participant 4 had some minor problems
interpreting landmark photos along his first route when us-
ing Model 1 because he did not notice the overlaid arrows
on the photos, while on the second route using Model 2, he
needed a significant number of rerouting directions from the
system to recover from several wrong turns.

5.3.1 Landmark-based directions

Landmark-based directions were well-received by some but
found less useful than the turn-based directions by others.
Participants 1, 2, 3, and 5 all expressed the usefulness of
using the photos to wayfind. Participant 3, in particular,
would often press the Help button when given other types of
directions in order to receive a photo-based direction. Sug-
gesting the usefulness of Model 2, all of these participants
were able to wayfind flawlessly when a follow-up direction
used the same landmark (e.g., “Continue along the path to-
ward <landmark>”).

P1: “When you have an actual picture of what’s in front
of the person, that’s excellent.”
P2: “I can coordinate [matching the picture to what he
can see] pretty well.”

Participants 4, 6, and 7 preferred the lower-level, turn-



based directions. Participant 4 and 7 had difficulty seeing
the images on the phone, while Participant 6 simply found
the turn-based directions to be easier. During the debriefing
session, Participant 7 confirmed that the lighting conditions
outside made it difficult for him to see the images, but un-
der better conditions he was able to see the images more
clearly, suggesting that a better (larger, brighter, and/or
higher-contrast) screen might have made a difference in his
wayfinding experience.

The other notable usability issue with the landmark-based
directions occurred when the provided photo was taken from
a different vantage point than the participant’s actual loca-
tion. In some cases, a photo would be used from the other
side of the street. In these cases, participants would either
trust their own judgment and choose a direction to go in, or
request a different type of direction.

P1: “The towers [of the Campanile] were behind trees, but
I trusted myself to go forward.”
P2: “I think [the directions were] pretty clear... if I made
a mistake it could tell me to turn around.”
P7: “I couldn’t see the photos, there was too much glare,
but the façade and context helped in certain cases.”

5.3.2 Using landmark names

In our study, we chose to include the name of the landmark
in every landmark-based direction. Participants expressed
different opinions on using the names. Some participants,
though unfamiliar with the campus, stated that they would
try to match the names to signs as a way of confirming their
direction, and that it could be helpful in remembering the
landmarks for future use. Other participants stated that
they ignored the names. In one case where using the land-
mark name was detrimental, Participant 6 made an incorrect
turn based on an incomplete knowledge of where a certain
landmark was on the campus.

P2: “Some of the signs on the buildings are tricky, you
just have to figure out where the signs are.”

Participants suggested that only referring to a name in
limited cases, such as to describe their destination, would
allow them to focus on finding the landmark carefully only
when it was necessary.

5.3.3 Using compound directions

In our previous studies we found that sequences of turns
could be problematic when they occurred close together.
Some of our directions were therefore compound directions
such as“Go along the sidewalk toward <landmark> and take
the next left.”, followed by a reminder to turn once the par-
ticipant came closer to the intersection. This caused some
confusion for participants, who interpreted the second turn
direction as a separate instruction to be completed after the
first, compound direction. Participants noted that they felt
that they were falling behind while the directions were de-
livered too quickly.

At other times, the compound directions were misinter-
preted. For instance, Participant 6 would sometimes per-
form the straight and turn segments in reverse order.

5.3.4 Other direction issues

Some participants had a few issues with non-standard
turns (slight turns, or “second left”-style turns such as in

Figure 2c). Participants 4 and 6 missed a segment of the
second route that the system attempted to direct them to-
wards when they did not spot the accessible ramp to the
side of a small flight of stairs.

5.3.5 Using help

Participants 3 and 4 used the Help function often to get
different directions, for opposite reasons. Participant 3 pre-
ferred the landmark-based directions and would use the but-
ton to request them, while Participant 4 did not find them
helpful. The other participants used the help function spar-
ingly, or not at all, which matches our previous observation
that potential users may be better served with some form of
automatic assistance.

5.3.6 Attention between device and environment

We observed that Participants 2, 3, 5, and 6 were able
to balance their attention between the device and the envi-
ronment. Participant 4 heavily relied on the text-to-speech
audio and did not pay attention to the environment at most
times, though unlike in our previous studies, no participant
crossed a street at an unsafe location.

Participant 1 explained that some combination of being
nervous and unfamiliar with the device might have con-
tributed to her focusing too heavily on the device, while
Participant 7 also mentioned that increased familiarity with
the device would have changed how he used it.

P1: “I would have enjoyed the walk a lot more if I just
would’ve relaxed. [I] know it’s going to buzz in [my] hand
so then [I] can look at it, but I looked at it the whole time.”
P7: “I was thinking for a while, maybe I should stick this
in my pocket and react when the thing goes off. I didn’t do
it because [I thought], ’Well, by the time I take it out, will
I miss the instruction?’ but obviously not, the instruction
stayed on which was good, so I should have.”

5.3.7 Hardware usability

We observed some drawbacks to using the N95 as the sole
device for this study. As previously noted, some partici-
pants found the screen on the N95 to be insufficiently bright
for displaying images, though others were able to see them.
Participants 4 and 6, who have cerebral palsy and use mo-
torized wheelchairs, found simultaneously holding the de-
vice and pressing buttons to be uncomfortable. Participant
4 suggested that an arm attachment would allow him to
detect the vibratory new direction alert, while Participant
6 suggested a swivel mount that could be attached to one
armrest of his chair.

Another issue during the study were accidental keypresses
that switched phone applications. As we were unable to
disable many of the keys on the N95, this caused issues where
miscellaneous applications would take the foreground and
had to be exited manually by a researcher.

Aside from these issues, the size and form factor of the
N95 was deemed acceptable. Participants felt comfortable
with using it out in the public without stigma.

P3: “I don’t find [the device] obtrusive. Nowadays every-
body’s carrying something.”

5.3.8 Overall participant impressions

The overall impressions that our participants had were
highly positive. Participants expressed the desire to have



the system as soon as it becomes available, with most vol-
unteering to participate in further studies as the system is
enhanced.

P1: “I’d take it to a new city. That would be fantastic!”
P5: “I use my iPhone for directions, but if I had this, I
would definitely prefer to use it for the images.”

6. DISCUSSION AND FUTURE WORK
The results showed that the system, with a few adjust-

ments, could be suitable for potential users to independently
wayfind. It also confirmed that there would be individual,
disparate preferences and interpretations of the directions.
Below are some of the customizations that could be needed
to produce high quality directions suitable for the user.

Individual preference for types of direction: Solv-
ing an MDP produces a policy that chooses the direction
that the model believes most likely produces the highest re-
ward. The transition probabilities that the model relies on
to calculate this policy can be initially populated with ap-
proximate values based on our user studies. For example,
the probability that a user will successfully follow a direc-
tion that involves moving toward a landmark ahead of her
would be higher than that of a landmark behind her. A di-
rection that uses a photo with an overlaid arrow might have
an even higher chance of success, but only lead the user to
a nearby location, while the landmark-based direction could
allow the user to make more progress towards the destina-
tion. In addition, some study participants have stated that
they preferred to have a better idea of where they are going,
so landmark-based directions might again be preferred and
states involving their use would be assigned higher rewards.

Leveraging user familiarity: Landmarks familiar to
a user should be used more often than those less familiar.
Similarly, users comfortable using cardinal directions might
be given them more often. The model can reflect this by
boosting the probabilities of success for options that use
familiar places or terms.

Level of detail in a single direction: Our studies
showed that while minimizing the cognitive load necessary
to interpret a direction is beneficial, some users may benefit
from more “high-level” directions that cover more than one
route segment (see Figure 3c), because they can plan their
own routes farther. Some individuals interpret directions
more literally, so directions for them may need to be more
in the step-by-step fashion or include additional wording to
avoid ambiguity.

Health conditions that impact route planning: One
critical aspect to customization is that people with cognitive
impairments often have other health conditions that impact
their device use and the appropriateness of routes. Visual or
hearing impairments would affect the efficacy of landmark
or audio directions, respectively. For individuals who may
be concerned about fatigue, such as Participant 7, the MDP
can increase the weight of distance to cost so as to minimize
the total effort involved. For those who require accessible
pathways and entrances, options involving stairs or other
inaccessible paths can be heavily penalized.

Detecting errors and intervening: Different users make
different errors. Some find that they cannot follow a direc-
tion, stop to look around, and become frustrated. Others
will pick a direction even when unsure. Some want to be
corrected right away if they are taking a path that makes it

difficult to recover later (for example, people with multiple
sclerosis, who get fatigued). Others are fine with their deci-
sion and just want to proceed rather than backtrack if it’s
unnecessary. Encoding these errors as states involves identi-
fying the behaviors based on the individual’s tendencies and
assigning large penalties to them, while also terminating the
option that caused the error so a new option can be selected.

Customizing for safety: We observed that some indi-
viduals tend to be more careful and maintain an awareness of
their surroundings, whereas others do not always remember
to look out for vehicles and other hazards. While teaching
individuals about traffic safety is outside the scope of our
design, our system must be able to be customized for the
range of user behavior in regards to safety. For users who
are not in the habit of crossing only at crosswalks or do not
always look out for traffic when crossing streets, the system
might explicitly direct the user to a crosswalk and instruct
them to wait until the street is clear of traffic before hav-
ing them cross. For users who tend to be more careful, an
occasional safety reminder might suffice.

Better landmark images: Aside from model enhance-
ments, we have begun working to produce better images
when there is a discrepancy between between a user’s loca-
tion and where a photo was originally taken. Figure 5 shows
alternative images synthesized by the landmark-selection sys-
tem. We have preliminarily evaluated these images with the
group of participants without cognitive impairments, and
the results suggest the potential for improved understand-
ability of the directions, especially Figure 5d.

Alternative form factors: We are considering other
hardware form factors to accommodate usability issues. For
example, a touchscreen phone would allow us to reduce the
number of physical buttons and also present custom, labeled
buttons for various functions.

6.1 Adapting the Model
Solving an MDP involves computing the expected value

of every state and producing a policy that decides on the
highest-valued option to take at each state. The quality
of the policy is only as good as the accuracy of the un-
derlying model at predicting user behavior. Using general
wayfinding insight and a short pre-trial evaluation to de-
fine a model’s initial transition probabilities should provide
a reasonable first policy. The model can be improved by
harnessing the MDP framework, which uses observed be-
haviors to adjust probabilities and converge upon the actual
underlying model.

One challenge of interpreting a user’s behavior given an
option is deciding whether it reflects the user’s likelihood
of success with that specific option (“on-policy” learning in
reinforcement learning terms) or the user’s likelihood of suc-
cess with all options of that type (“off-policy” learning) ap-
plicable to all situations where that type of option could be
given. The former would be the correct approach if the rea-
son for the user’s behavior had to do with only the state she
was in (such as facing a temporary obstruction), while the
latter would be the correct approach if the reason was due
to something more permanent (such as becoming better at
identifying landmarks or experiencing worsened eyesight).

It may be impossible for the system to know how far-
reaching the reasons for an observed behavior are, so a trade-
off must be made to ensure that the model does not adapt
too drastically without more observations. Care will also



(a) A desired path segment
shown on a satellite image

(b) A photo with overlaid ar-
row showing the desired path

(c) “Zoom-out” view that
warps original photo to align
to user’s view

(d) View rendered using a
lightweight 3-D model made
from a small set of photos

Figure 5: Examples of different techniques to visually show a path involving landmarks.

have to be taken to determine how long the changes last.
While the system should almost never immediately repeat a
failed direction, it might be reasonable for the system to try
that direction again in the future.

7. CONCLUSIONS
We have designed, prototyped, and evaluated a wayfind-

ing assistance system that provides directions on a mobile
device to individuals with cognitive impairments. Our prior
user studies have informed the design of a decision-theoretic
model for direction selection. Using the Markov Decision
Process (MDP) framework, we are able to create customiz-
able and adaptive user models that can determine the most
appropriate sequence of directions to present to each indi-
vidual. While there is still much to do to enhance the user
model, results from the user study presented in this paper
show that the system, as designed, can be capable of helping
people find their way to their destination. As has been the
case throughout our project, prioritizing further enhance-
ments to our design will be informed by continued study
and feedback with potential users.
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