
Learning Declarative Control Rules for Constraint-Based Planning

Yi-Cheng Huang ychuang@cs.cornell.edu
Bart Selman selman@cs.cornell.edu

Department of Computer Science, Cornell University, Ithaca, NY 14850 USA

Henry Kautz kautz@cs.washington.edu

Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195 USA

Abstract

Despite the long history of research in us-
ing machine learning to speed-up state-space
planning, the techniques that have been de-
veloped are not yet in widespread use in prac-
tical planning systems. One limiting fac-
tor is that traditional domain-independent
planning systems scale so poorly that ex-
tensive learned control knowledge is required
to raise their performance to an acceptable
level. Therefore work in this area has focused
on learning large numbers control rules that
are specific to the details of the underlying
planning algorithms, which can be extremely
costly. In recent years a new generation of
planning systems with much improved speed
and scalability has become available. These
systems formulate planning as solving a large
constraint satisfaction problem. This formu-
lation opens up the possibility that domain-
specific control knowledge can be added to
the planner in a purely declarative manner
via a set of additional constraints.

In this paper we present the first positive re-
sults on automatically acquiring such high-
level, declarative constraints using machine
learning techniques. In particular, we will
show that a new heuristic method for gener-
ating training examples together with a rule
induction algorithm can learn useful control
rules in a variety of domains. Only a small
number of rules are needed to reduce solution
times by two orders of magnitude or more on
larger problems, training times are short, and
the learned rules can be exported to other
planning systems.

1. Introduction

Deterministic state-space planning is a hard combi-
natorial problem that arises in tasks such as robot
control, software verification, and logistics scheduling.
Although in general planning is PSPACE-complete
(Bylander, 1991), for particular domains efficient al-
gorithms — i.e., polynomial or at worst exponen-
tial with a very low exponent — may exist for find-
ing exact or approximate solutions. Research in
machine learning have long studied the problem of
automatically creating efficient planners by learning
domain-specific rules or cases to control a general
search engine (Minton, 1988; Carbonell, Knoblock,
& Minton, 1990; Veloso, 1992; Etzioni, 1993; Bhat-
nagar & Mostow, 1994; Kambhampati, Katukam, &
Qu, 1996; Borrajo & Veloso, 1997; Aler, Borrajo, &
Isasi, 1998; Leckie & Zukerman, 1998; etc.). However,
the successful practical application of machine learn-
ing techniques has been limited by at least two fac-
tors: First, traditional domain-independent planning
systems (e.g., PRODIGY, SOAR, NONLIN, UCPOP)
scale so poorly that extensive learned control knowl-
edge is required to raise their performance to an ac-
ceptable level. Second, previous work has focused on
learning control rules that are specific to the details of
the underlying general planner. This approach leads
to the need to learn and manage large numbers of
rules, which can be extremely costly in terms of time
and the number of training examples. Furthermore,
the learned domain-specific rules cannot be reused by
other planners, nor can the learning module itself be
ported to other systems without extensive modifica-
tions.

In recent years a new generation of planning systems
with much improved speed and scalability has become
available (Weld, 1999). These systems formulate plan-
ning as solving a large constraint satisfaction prob-
lem: Graphplan (Blum & Furst, 1995) and its de-

scendents encode a CSP in a data structure called
a plan graph, while SATPLAN and its descendents
(Kautz & Selman, 1992; 1996; 1999) explicitly con-
vert planning problems into Boolean satisfiability. The
constraint-based formulation opens up the possibility
that domain-specific control knowledge can be added
to the planner in a purely declarative manner via a set
of additional constraints. These new constraints do
not make explicit reference to the workings of the un-
derlying constraint satisfaction algorithm; like the con-
straints that define the original problem instance, they
only refer to the solution (plan) space. In earlier work
(Kautz & Selman, 1998; Huang, Selman, & Kautz,
1999), we showed that the same set of hand-coded
declarative constraints can provide dramatic reduc-
tions in solution times of radically different constraint
satisfaction algorithms (e.g., local search or systematic
search), and that a large subset of the constraints can
be employed by fundamentally different planning ar-
chitectures (e.g., the forward-chaining planner TLPlan
(Bacchus & Kabanza, 2000)). The next natural ques-
tion to ask is whether this kind of declarative control
knowledge can be learned.

In this paper we present our initial positive results
on automatically acquiring such constraints using ma-
chine learning techniques. The training set consists
of a small number of planning problems (in the ex-
periments here, 10 or fewer) together with their op-
timal solutions. We will describe how positive and
negative examples of the target concepts used by the
control rules are heuristically extracted from the in-
put data. The rules are generated by an inductive
logic programming approach based on the FOIL al-
gorithm (Quinlan, 1990; 1996); unlike much work in
inductive logic programming, however, explicit back-
ground knowledge in the form of defined predicates is
not supplied to the system. Experimental evaluation
on five different benchmarks domains from a recent
planning competition is quite promising: training time
is short (on the order of a minute), and the system
learned small sets of high-quality rules. Adding these
rules to our constraint-based planner reduced solution
times by two orders of magnitude on large problems
while maintaining or improving plan quality.

In addition to the earlier work mentioned above, there
is other recent work on speed-up learning which, like
ours, combines aspects of supervised learning and rule
induction. The systems of Khardon (1999) and of Mar-
tin and Geffner (2000) try to learn very large sets of
production-style rules that replace, rather than im-
prove, a search engine, and require thousands of train-
ing examples and long training times. The work by Es-
tlin and Mooney (1996) differs from ours in that it re-

Control Rules

Plan Justification / Type Inference

Learning Module / Verification

Planning Problem

BLACKBOX Planner

Figure 1. The basic learning framework.

quires the user to explicitly supply background knowl-
edge to the learner in the form of additional predi-
cates and “relational clichés” (Silverstein & Pazzani,
1991). Recently Kambhampati (1999) has shown how
explanation based learning (EBL) techniques can be
applied to Graphplan, but does not attempt to learn
high-level, declarative rules.

We will illustrate the details of the system using exam-
ples from a logistics planning domain (Veloso, 1992)
which has appeared as a benchmark in most recent
work in planning. In brief, the task in this domain is
to move a set of packages from various initial locations
to various goal locations. Packages can be moved be-
tween locations within a city by truck. Airplanes can
transport packages between airports in different cities.
The basic actions are loading and unloading packages
from vehicles, driving trucks, and flying airplanes. In
the formulation used by the constraint-based planners
considered here, all actions require one time unit for
execution, and any number of non-conflicting actions
may occur at the same time step. The number of time
steps in a plan is its parallel length, and the number
of actions is its sequential length. For example, a plan
of parallel length 10 with 8 actions occurring at each
time step would have sequential length 80. A plan can
be deemed optimal in terms of its parallel or sequen-
tial length, or some combined measure; in our work,
the optimality criteria is to minimize parallel length,
and then to minimize sequential length.

2. Learning Framework

Our general learning framework is shown in Figure 1.
The process begins by presenting the planning module
with a problem instance of small to moderate size from
the given planning domain. We use the Blackbox plan-
ner (Kautz & Selman, 1999), which combines both the
Graphplan and SATPLAN systems mentioned above.
Blackbox generates a plan of optimal parallel length.
The plan is then passed through a justification algo-
rithm which minimizes its sequential length by remov-
ing sets of unnecessary actions (Fink & Yang, 1992).

The justified plan also includes a description of the
complete state at each time step, which is easily com-
puted by simulating execution of the plan from the
initial state. Meanwhile, a type inference algorithm
computes type information for all operators and ob-
jects in the domain (Fox & Long, 1998). The justified
plan and type information are passed to the learning
module.

The learning module uses the plan in two ways. First,
any previously learned rules are verified against the
plan, and inconsistent rules are discarded. Second, a
set of positive and negative examples of target con-
cepts are heuristically extracted from the plan, as will
be described in detail below. This step crucially de-
pends upon the fact that the plan is optimal or near-
optimal. Those examples not covered by previous rules
are used as training data by an inductive rule learning
algorithm, which generates one or more new control
rules. The type information inferred earlier improves
the speed and quality of rule induction. (Note, how-
ever, that some induced rules may be incorrect, and
thus the need for the verification step.) The process is
then repeated for several problem instances, and the
final set of learned rules is output in the form of a
set of logical axioms, which can be used by either the
original planner or a variety of other recent planning
engines.

We next consider aspects of the system in more detail.

2.1 Target Concepts for Actions

For each action in the planning domain, the system
learns two complementary concepts, select action and
reject action. Each concept is defined by a set of logic
programming-type rules in a simple temporal logic.
Select rules indicate conditions under which the action
must be performed, and reject rules indicate conditions
under which it must not be performed.

Both kinds of rules can be divided into two categories
according to the information upon which they rely
(Huang, Selman, & Kautz, 1999). A static rule is one
whose body depends only upon the initial and goal
states specified in the planning problem, but not upon
the particular time step at which the action should be
selected or rejected. Thus, a static rule either holds
for all time steps in the problem instance or for none.
A dynamic rule is one whose body also depends upon
what is true at to the “current” time step. As de-
scribed below, static and dynamic rules are learned
separately.

Examples of different kinds of rules from the logistics
domain are:

static reject: Do not unload a package from an air-
plane at an airport if that airport is not in the
package’s goal city.

dynamic reject: Do not move an airplane if it cur-
rently contains a package which needs to be un-
loaded at that city.

dynamic select: Unload a package from a truck at
the package’s goal location.

The logistics domain does not happen to contain any
static select rules; these would arise in domains where
some particular action must be repeatedly performed
at every step of the plan in order to achieve the goal.
(Note that only actions whose preconditions hold in
every state can appear in static select rules.)

2.2 Heuristics for Identifying Training
Examples

A traditional EBL approach would find examples of
the select and reject concepts by examining a trace of
the planner or by re-deriving the solution to a solved
instance. In our approach, by contrast, the training ex-
amples are heuristically derived from the solved prob-
lem instance. The heuristic is based on the notion that
there is a good chance that the particular actions that
appear in an optimal solution must be selected, and
those that do not appear must be rejected. (In other
words, we are using learning to operationalize the op-
timality criteria of the planner and justification mod-
ule.) This method of generating examples is obviously
fairly noisy, and we will describe the techniques we use
to minimize the effect of incorrectly labeled examples.

In particular, assume that the plan P is found by the
planner for a given problem. We will say an instanti-
ated action is (1) real at time i if it appears in P at
time i; (2) virtual at time i if all of its preconditions
hold at time i but it does not belong to plan P at time
i; and (3) mutex virtual at time i if it is virtual and
there exists at least one real action that is mutually
exclusive with it at time i. (Two actions are mutually
exclusive if they cannot occur at the same time, even
if their preconditions both hold; for example, loading
an airplane is mutually exclusive with flying that air-
plane.)

Each element of the set of all actions instantiated at all
times (up to the length of the solution) is categorized
according to this scheme. Then the positive and neg-
ative examples for learning static and dynamic select
and reject rules for each action are chosen according
the scheme specified in Table 1. Note that the train-
ing set for learning dynamic rules is a subset of the

Table 1. Types of actions used in training sets for the static and dynamic varieties of the select and reject rules.

select rule reject rule
positive example negative example positive example negative example

static real virtual virtual real
dynamic real mutex virtual mutex virtual real

Table 2. Outline of the rule induction algorithm, based on
Quilan’s FOIL.

Rules = ∅
Remaining = examples for the target concept R
while Remaining ≠ ∅

rule = R← null
while rule covers negative examples

Add a literal L to the body of
rule that maximizes gain

Remove from Remaining examples that
are covered by rule

Add rule to Rules

training set used for learning static rules, because it
contains fewer examples based on actions that do not
appear in the plan.

Why is the training set for dynamic rules restricted
in this manner? In short, to reduce the amount of
noise it contains. In general, learning good dynamic
rules is more difficult than learning good static rules,
because there are more dynamic rules that are consis-
tent with the data. Furthermore, examples based on
actions that do not occur are clearly less reliable than
ones based on actions that do occur. One would like to
concentrate on examples of non-occurring actions that
are relevant to the problem instance. Mutex virtual
actions tend to be more relevant than others because
their preconditions and effects overlap with those of
actions that do occur.

2.3 Rule Induction

Control rules are generated from the training exam-
ples by a greedy general-to-specific search in the space
of restricted temporal logic programs, as shown in Ta-
ble 2, using an algorithm based on the FOIL procedure
(Quinlan, 1990; 1996).

The simple temporal logic programs we consider are
constructed as follows. There are three kinds of pred-
icates: static predicates, which refer to facts whose
truth cannot be changed by any action (e.g., the pred-
icate “in-city” used to assert that a particular location
is part of a particular city); fluent predicates, used for
facts whose truth varies over time (e.g., the predicate
“at” which relates a movable object and a location);
and action predicates, used for parameterized actions

(e.g., “Fly-Airplane”). There is a single modal op-
erator “goal”, used to assert that its argument is one
of the specified goals of the planning problem. A literal
is an expression of the following form or its negation,
where P is a predicate, F is a fluent predicate, and
each Xi is a variable:

Xi = Xj , P (X1, ..., Xn), goal(F (X1, ..., Xn))

A rule contains a distinguished literal, its head, and a
set of literals that make up its body. An instantiation
of a rule is created by substituting constants for all
of its variables. A rule is consistent with a justified
plan iff for all of its instantiations, the head is true
at each time step at which all literals in the body are
true. Note that goal literals and static predicate lit-
erals have the same truth value at all time steps in a
justified plan; in particular, “goal” here refers only to
final goals, not intermediate goals. This language can
be enriched in various ways, for example by including
other modal operators such as “next” or “eventually”,
or by allowing a rule to contain explicit constants; we
will explore these extensions in future research.

The head of a select control rule must be a positive
action predicate literal, and the head of a reject rule
must be a negative action predicate literal. As we
have mentioned, static and dynamic rules are learned
separately. The two kinds of rules are distinguished by
the kinds of literals that may appear in their bodies:

Static rules may contain positive or negative
equality literals, static predicate literals, and goal
literals. Note that the truth of each of these kinds
of literals does not vary across time steps.

Dynamic rules may contain all of the above,
but must also contain at least one negative or
positive (non-goal) fluent literal. Note that the
when checking the consistency of a dynamic rule,
the (non-goal) fluent literals are evaluated at the
same time step used to evaluate the rule’s head.

As in FOIL, the literals added to the rule at each step
are chosen according the following criteria:

• the literal with greatest gain if this gain is close
to the maximum possible; otherwise

• all determinate literals found;1 otherwise

• the literal with highest positive gain; otherwise

• the first literal considered that introduces a new
variable.

We experimented with a number of different defini-
tions of the gain function. We obtained the best per-
formance using the “Laplace estimate” used in a num-
ber of recent learning systems (CN2 (Clark & Boswell,
1991), etc.):

Gain(r) =
p + 1

p + n + 2
,

where r is the candidate rule, p is the number of pos-
itive examples covered by r, and n is the number of
negative examples covered by r.

Because the Laplace estimate penalizes rules with low
coverage, it proved to be more robust against noise
in the training set. Noise is also handled, as noted
earlier, by pruning learned rules that turn out to be
inconsistent with future examples of solved planning
problems given to the learner.

We mentioned above that during plan justification
type inference on all objects and predicates is per-
formed using the algorithm from TIM (Fox & Long,
1998). This inferred type information serves two pur-
poses: First, types are used to reduce the number of
rules considered in the learning procedure. For exam-
ple, when considering candidate equality literals, the
arguments of the equality literal must be of the same
type. Second, when adding a literal that introduces
new variables, inferred types are used to correctly find
bindings for every new variable. For instance, when
adding a literal (at o l) to a rule, where the types of o
and l associated to the literal are “package”and “loca-
tion” respectively and o is a new variable, only objects
with type “package” will be considered as bindings for
variable o. In other words, objects with type “truck”
or “airplane” that can also be bound to the first ar-
gument of predicate (at o l) will not be considered.
This use of type information is important to correctly
acquire control rules.

It is common in inductive logic programming for the
user to provide explicit background knowledge to the
system in the form of additional relations or axioms

1A determinate literal is one that introduces new vari-
ables so that there is exactly one binding for each positive
example and at most one binding for each negative exam-
ple in the partially-constructed rule (Muggleton & Feng,
1992; Quinlan, 1996).

Table 3. A simple logistics problem and its solution. There
are three cities (A, B, and C), each containing two loca-
tions, an airport and a postoffice (e.g., apt-A and po-A). In
each city there is a truck (trk-A, trk-B, trk-C), and there
is one airplane (pln). There are two packages (o1, o2) to
be delivered.

Initial: (at o1 apt-A), (at o2 apt-B),
(at pln apt-A), (at trk-C apt-C),
(in-city apt-A A), (in-city po-A A), ...

Goal: (at o1 po-C), (at o2 po-C)
Plan: 1 Load-Airplane (o1 pln apt-A)

2 Fly-Airplane (pln apt-A apt-B)
3 Load-Airplane (o2 pln apt-B)
4 Fly-Airplane (pln apt-B apt-C)
5 Unload-Airplane (o1 pln apt-C)
5 Unload-Airplane (o2 pln apt-C)
6 Load-Truck (trk-C o1 apt-C)
6 Load-Truck (trk-C o2 apt-C)
7 Drive-Truck (trk-C apt-C po-C)
8 Unload-Truck (trk-C o1 po-C)
8 Unload-Truck (trk-C o2 po-C)

(Quinlan, 1990). For example, the user might write a
definition for a predicate that holds of “packages that
need to be moved”. One might argue, however, that
manually defining good background knowledge is as
difficult as defining good control rules. In our system,
by contrast, no additional background knowledge is
input by the user. The categorization of the different
kinds of predicates, the state information that appears
in the justified plan, and the inferred type information
can all be considered to be kinds of background knowl-
edge that is automatically acquired by the system.

2.4 Using Learned Rules

As reported in Huang, Selman, and Kautz (1999), we
extended the PDDL planning input language (McDer-
mott, 1998) of the Blackbox planner to allow control
knowledge to be specified using temporal logic formu-
las. Thus the rules created by the learning module
can be directly fed back to the planner. Blackbox uses
static reject rules to prune the Boolean SAT encod-
ings it creates of planning problems. All other kinds
of rules are converted in propositional clauses that are
added to the encoding. The general effect of the added
clauses is to make the encoded problem easier to solve
by increasing the power of the constraint propagation
routines used by the system’s SAT engines.

3. An Example

We will now step through an example of learning a con-
trol rule for the logistics domain. Consider a problem
instance and the (justified) plan found by the Blackbox
planner as shown in Table 3. Suppose we are learning
static reject rules for the action “Unload-Airplane

Table 4. Learning static reject rules for the action
“Unload-Airplane (o p a)”. The types of the variables
are: o - package; p - airplane; a - airport; c - city; and l -
location.

time o p a c l
+ 2 o1 pln apt-A A po-C
+ 3 o1 pln apt-B B po-C
+ 4 o1 pln apt-B B po-C
+ 4 o2 pln apt-B B po-C
- 5 o1 pln apt-C C po-C
- 5 o2 pln apt-C C po-C

(o p a)”. (See the caption of Table 4 for the types asso-
ciated with each variable in this example.) According
to the heuristic for generating training examples for
static reject rules, Unload-Airplane (o1 pln apt-A)
at time 2 is a positive example because all of its pre-
conditions hold at time 2 (such as (in o1 pln) and (at
pln apt-A)) but it does not appear in the plan. On
the other hand, Unload-Airplane (o1 pln apt-C) at
time 5 is a negative example because it appears in the
plan at time 5. The complete set of positive and neg-
ative examples are shown in the first five columns in
Table 4.

Following the learning procedure outlined above, two
determinate literals (in-city a c) and (goal (at o l)) are
first added to the rule, and they introduce two new
variables c and l (see last two columns in Table 4).

In the next iteration, a literal ¬(in-city l c) is found
to give the highest possible gain and is added to the
rule. Now the rule covers only positive examples and
none of negative examples. Therefore the procedure
terminates with the rule:

¬ Unload-Airplane (o p a) ←
(in-city a c) ∧ (goal (at o l)) ∧ ¬(in-city l c)

It is worth noting that the above rule captures the
concept of “an object that is not in its goal city”.
In other recent work on learning control knowledge
for planning (Estlin & Mooney, 1996), this concept
can only be learned by introducing hand-coded back-
ground knowledge.

4. Experimental Results

We have performed a preliminary empirical evaluation
of our approach on a set of planning domains (logistics,
grid, gripper, and mystery) from the 1998 AI Plan-
ning Systems Competition (AIPS98), as well as the
tireworld domain from the PDDL (McDermott, 1998)
and TLPlan (Bacchus & Kabanza, 2000) distributions.
All experiments were run on a 300Mhz Sparc Ultra. As
noted earlier, the logistics domain has become a partic-

Table 5. Learning time (in seconds) and number of rules
acquired. Learning time includes time to both generate and
verify rules. Mystery training problems are from AIPS98
competition, and Tireworld problems are from PDDL dis-
tribution. All other training problems are randomly gen-
erated.

domain # training learning # rules
problems time learned

grid 6 66.79 10
gripper 2 0.13 3
logistics 10 22.54 11
mystery 6 120.6 4
tireworld 4 1.23 17

Table 6. Blackbox without and with (c) learned control
knowledge. Results are averaged over 10 runs and times
are given in cpu seconds. Grid and tireworld problems are
randomly generated. Logistics-d and logistics-e are from
the Blackbox distribution. All other problems are from
the AIPS98 competition.

problem time step Blackbox Blackbox(c)
(# obj/goal)

grid-a 13 (28/3) 20.99 4.81
grid-b 18 (29/1) 74 16.62
grid-c 23 (29/2) 2132 37.03

gripper-p03 15 (12/8) > 7200 7.18
gripper-p04 19 (14/10) > 7200 259.8
logistics-d 14 (36/9) 15.85 5.76
logistics-e 15 (40/10) 3522 290.9

logistics-p05 12 (43/4) > 7200 10.58
logistics-p07 9 (60/6) 1522 32.34
mystery-p10 8 (77/1) > 7200 47.25
mystery-p13 8 (83/2) 161 12.24
tireworld-a 24 (15/19) 5.8 3.65
tireworld-b 30 (17/23) 60.6 28.39

ularly popular benchmark for recent work in planning.

Table 5 summarizes the learning time and number of
control rules acquired for each domain. Most of the
training examples are randomly generated small in-
stances, while a few are taken directly from the avail-
able distributions. In general our learning times are
very short relative to other speed-up learning systems,
which typically take several minutes to several hours
to generate a good set of rules.

Table 6 summarizes the results of running Blackbox
with and without the learned control rules on a set of
larger and harder problems drawn from each domain.
For each domain Blackbox’s various parameters are set
to optimize performance for the case where no learned
rules are added. To give a very rough idea of the size
of the each instance, the solution parallel length (time
steps), number of objects (constants), and number of

goals are indicated. It can be easily seen that Blackbox
with learned control rules is significantly faster, often
by two orders of magnitude. Several problems that
could not be solved by original Blackbox were solved
by Blackbox with learning.

We also discovered that learned domain knowledge
could help the planner to find better quality solu-
tions. For example, consider the problem logistics-p07
from the AIPS98 competition. During the competi-
tion, only the HSP planner (Bonet & Geffner, 1997)
could find a plan as short as 112 actions. However,
Blackbox with learned control knowledge is able to find
a plan that takes 9 time steps with only 46 actions!

It is interesting to compare rules learned by our system
with hand-coded ones. We consider the logistics plan-
ning domain and the hand-coded rules from TLPlan.
We found that all static reject rules used in TLPlan
are correctly acquired by our learning system. In ad-
dition, our system learns several useful dynamic select
rules that were not used in TLPlan. For example,
our system learns the dynamic select rule: “Unload
a package from a truck at the package’s destination”.
Because TLPlan is a purely sequential planner (unlike
Blackbox, Graphplan, etc.) it cannot make use of rules
that would select for a set of actions of equal priority
to be executed simultaneously. (Instead, one would
have to write a much more complex select rule that en-
forced some arbitrary temporal ordering between the
unloads.) Our system did fail, however, to learn some
of the dynamic reject rules used by TLPlan.

Unlike EBL approaches, the learned rules are not nec-
essarily logical consequences of the domain (Mitchell,
Keller, & Kedar-Cabelli, 1986; Dejong & Mooney,
1986). In particular, if the training set is too small,
one could in principle learn rules that exclude all so-
lutions to a particular problem instance, although this
did not occur in our experiments.

5. Conclusions

In recent years research in state-space planning has
been re-energized by a new generation of highly effi-
cient constraint-based planners. We believe that the
field of speed-up learning is poised to undergo a sim-
ilar resurgence. In this paper we have presented the
first positive results on acquiring and using declarative
domain-specific control knowledge for constraint-based
planning. Our approach blends aspects of explanation-
based learning, supervised learned, and inductive logic
programming. Our learning architecture is simple and
modular, and initial empirical evaluation on estab-
lished benchmarks has shown that control knowledge

can be learned that is on par with that created by
hand. Our current and future work includes a more
careful and detailed empirical evaluation of the ap-
proach; an investigation of learning and using more
expressive control rule languages; and a study of ways
to create training problems that will most aid learning.
In particular, we are investigating an active learning
approach, in which the current set of learned control
rules is used to influence the creation of the next train-
ing problem.

Acknowledgements

Part of the work reported in this paper was supported
by a summer internship at AT&T Labs.

References

Aler, R., Borrajo, D., & Isasi, P. (1998). Genetic
programming and deductive-inductive learning: A
multistrategy approach. Proceedings of the Fif-
teenth International Conference on Machine Learn-
ing (pp. 10–18). Madison, WI: Morgan Kaufmann.

Bacchus, F. & Kabanza, F. (2000). Using temporal
logics to express search control knowledge for plan-
ning. Artificial Intelligence, 116 .

Bhatnagar, N. & Mostow, J. (1994). On-line learning
from search failures. Machine Learning, 15 , 69–117.

Blum, A. & Furst, M. L. (1995). Fast planning
through planning graph analysis. Proceedings of
the Fourteenth International Joint Conference on
Artificial Intelligence (pp. 1636–1642). Montreal,
Canada.

Bonet, B. & Geffner, H. (1997). A fast and robust ac-
tion selection mechanism for planning. Proceedings
of the Fourteenth National Conference on Artificial
Intelligence (pp. 714–719). Provide, RI.

Borrajo, D. & Veloso, M. M. (1997) Lazy incremental
learning of control knowledge for efficiently obtain-
ing quality plans. In David Aha (Ed.), Lazy Learn-
ing, Kluwer Academic Publishers.

Bylander, T. (1991). Complexity results for planning.
Proceedings of the Twelfth International Joint Con-
ference on Artificial Intelligence (pp. 274–279), Sid-
ney, Australia: Morgan Kaufmann.

Carbonell, J., Knoblock, C., & Minton, S. (1990).
Prodigy: An integrated architecture for planning
and learning. In K. VanLeh (Ed.), Architectures for
Intelligence. Hillsdale, NJ: Lawrence Erlbaum As-
sociates.

Clark, P. & Niblett, T. (1989). The CN2 induction
algorithm. Machine Learning, 3(4), 261–283.

DeJong, G. & Mooney, R. J. (1986). Explanation-
based learning: An alternative view. Machine
Learning, 1(2), 145–176.

Estlin, T. A. & Mooney, R. J. (1996) Multi-strategy
learning of search control for partial-order planning.
Proceedings of the Thirteen National Conference on
Artificial Intelligence (pp. 843–848). Portand, OR.

Etzioni, O. (1993). Acquiring search-control knowl-
edge via static analysis. Artificial Intelligence,
62(2), 255–302.

Fikes, R. E. & Nilsson, N. (1971). STRIPS: A new
approach to the application of theorem proving to
problem solving. Artificial Intelligence, 5(2), 189–
208.

Fink, E. & Yang, Q. (1992). Formalizing plan jus-
tifications. Proceedings of the Ninth Conference of
the Canadian Society for Computational Studies of
Intelligence (pp. 9–14).

Fox, M. & Long, D. (1998). The automatic inference
of state invariants in TIM. Journal of Artificial In-
telligence Research, 9 , 367–421.

Martin, M. & Geffner, H. (2000). Learning general-
ized policies in planning using concept languages.
Proceedings of the Seventh International Conference
on Principles of Knowledge Representation and Rea-
soning. Breckenridge, CO.

Gerevini, A. & Schubert, L. (1998). Inferring state
constraints for domain-independent planning. Pro-
ceedings of the Fifteen National Conference on Ar-
tificial Intelligence (pp. 905–912). Madison, WI.

Huang, Y.-C., Selman, B., & Kautz, H. (1999). Con-
trol knowledge in planning: benefits and tradeoffs
Proceedings of the Sixteen National Conference on
Artificial Intelligence (pp. 511–517). Orlando, FL.

Kambhampati, S., Katukam, S., & Qu Y. (1996). Fail-
ure driven dynamic search control for partial order
planners: An Explanation Based Approach. Artifi-
cial Intelligence, 88(1-2), 253–315.

Kambhampati, S. (1999). Improving graphplan’s
search with EBL & DDB techniques. Proceedings
of the Sixteenth International Joint Conference on
Artificial Intelligence. Stockholm, Sweden: Morgan
Kaufmann.

Kautz, H. & Selman, B. (1992). Planning as satis-
fiability. Proceedings of the Tenth European Con-
ference on Artificial Intelligence (pp. 359–363). Vi-
enna, Austria: John Wiley & Sons.

Kautz, H. & Selman, B. (1996). Pushing the enve-
lope: planning, propositional logic, and stochastic
search. Proceedings of the Thirteen National Con-
ference on Artificial Intelligence (pp. 1194–1201).

Portand, OR: AAAI Press.

Kautz, H. & Selman, B. (1998). The role of domain-
specific axioms in the planning as satisfiability
framework. Proceedings of the Fourth International
Conference on Artificial Intelligence Planning Sys-
tems , Pittsburgh, PA: AAAI Press.

Kautz, H. & Selman, B. (1999). Unifying SAT-based
and Graph-based planning. Proceedings of the Six-
teenth International Joint Conference on Artificial
Intelligence (pp. 318–325). Stockholm, Sweden:
Morgan Kaufmann.

Khardon, R. (1999). Learning action strategies for
planning domains. Artificial Intelligence, 113(1-2),
125–148.

Knoblock, C. (1994). Automatically generating ab-
stractions for planning. Artificial Intelligence,
68(2), 243–302.

Leckie, C. & Zukerman, I. (1998). Learning search
control rules for planning. Artificial Intelligence,
101 , 63–98.

McDermott, D., et al. (1998). PDDL — the planning
domain definition language. Yale University, New
Haven.

Mitchell, T., Keller, R., & Kedar-Cabelli, S. (1986).
Explanation-based generalization: A unifying view.
Machine Learning, 1(1), 47–80.

Minton, S. (1988). Quantitative results concerning the
utility of explanation-based learning. Proceedings of
the Seventh National Conference on Artificial Intel-
ligence (pp. 564–569). St. Paul, MN: AAAI Press.

Muggleton, S., & Feng, C. (1992). Efficient induction
of logic programs. In S. Muggleton(Ed.), Inductive
Logic Programming. London: Academic Press Lim-
ited.

Quinlan, J. R. (1990). Learning logical definitions
from relations. Machine Learning, 5 , 239–266.

Quinlan, J. R. (1996). Learning first-order definitions
of functions. Journal of Artificial Intelligence Re-
search, 5 , 139–161.

Silverstein, G. & Pazzani, M. J. (1991). Relational
clichés: Constraining constructive induction during
relational learning. Proceedings of the Eighth Inter-
national Workshop on Machine Learning (pp. 432–
436). Evanston, IL: Morgan Kaufmann.

Veloso, M. M. (1992). Learning by analogical reasoning
in general problem solving. Doctoral dissertation,
Department of Computer Science, Carnegie Mellon
University, Pittsburgh.

Weld, S. D. (1999). Recent advances in AI planning.
AI Magazine, 20(2), 93–123.

