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Abstract

The problem of Most Probable Explanation (MPE)
arises in the scenario of probabilistic inference:
finding an assignment to all variables that has the
maximum likelihood given some evidence. We
consider the more general CNF-based MPE prob-
lem, where each literal in a CNF-formula is asso-
ciated with a weight. We describe reductions be-
tween MPE and weighted MAX-SAT, and show
that both can be solved by a variant of weighted
model counting. The MPE-SAT algorithm is quite
competitive with the state-of-the-art MAX-SAT,
WCSP, and MPE solvers on a variety of problems.

1 Introduction
Constraint Satisfaction Problems (CSP) have been the subject
of intensive study; many real-world domains can be formal-
ized by CSP models and solved by either complete or incom-
plete reasoning methods. Beyond classic CSP, where a solu-
tion must satisfy all hard constraints, some CSP models are
capable of handling both hard and soft constraints. The def-
inition of constraints and the measurement of the quality of
a solution vary from model to model, and the goal is usually
to find a best solution to the constraints, rather than simply
a solution. For example, the constraints can be associated
with probability, cost, utility, or weight; the goal can be to
minimize costs of violated constraints, or to maximize the
likelihood of a variable assignment, etc. However, all fit in
a general framework for soft constraints, namely, semi-ring
based CSPs[Bistarelli et al., 1997]. In this paper, we focus
on two specific models: MPE and weighted MAX-SAT.

MAX-SAT extends SAT to the problem of finding an as-
signment that maximizes the number of satisfied clauses, in
case the formula is unsatisfiable. Weighted MAX-SAT ex-
tends MAX-SAT by adding a weight to each clause, with
the goal of finding an assignment that maximizes the sum
of weights of satisfied clauses. MAX-SAT and weighted
MAX-SAT problems are solved by either incomplete local
search methods or complete branch-and-bound based exhaus-
tive search. For most MAX-SAT problems, local search
methods exhibit better speed and scaling than complete meth-
ods. Local search methods, unfortunately, do not provide a
proof that the returned solution is optimal.

The success of modern complete SAT solvers has inspired
a number of researchers to develop improved complete MAX-
SAT algorithms. Recent developments include using unit
propagation for strong bound computation[Li et al., 2005;
2006]; adapting local consistency methods developed for
CSP to MAX-SAT [de Givry et al., 2003]; and using fast
pseudo-Boolean solvers to check the optimality of MAX-SAT
bounds[Aloul et al., 2002].

In probabilistic reasoning, the problem of Most Probable
Explanation (MPE) is to find an assignment to all variables
that has the maximum likelihood given the evidence. Exact
methods for MPE on probability distributions represented by
Bayesian networks include well-known methods such as the
Join Tree algorithm[Jensenet al., 1990], as well as a recent
branch-and-bound algorithm, AND/OR Tree Search[Mari-
nescu and Dechter, 2005]. Since solving MPE exactly is NP-
Hard, local search algorithms have been introduced for ap-
proximation[Park, 2002]. In this paper, we consider MPE
on CNF formulas with weighted literals, where the goal is to
find a solution with maximum product or sum of its literal
weights. This CNF-based MPE problem is strictly more gen-
eral than MPE for discrete Bayesian networks, because any
discrete Bayesian network can be converted to a CNF with
weighted literals whose size is linear in the size of conditional
probability tables (CPTs) of the network[Sanget al., 2005b].

MPE on CNF can be viewed as a special case of Weighted
Model Counting (WMC)[Sanget al., 2005b], and is likely
easier than WMC because we may apply branch-and-bound
based pruning techniques to reduce the search space. We
choose Cachet[Sanget al., 2004], a state-of-the-art model
counting system, as a platform on which to build our
MPE solver, and we extend pruning techniques for sub-
problems with components. As a result, we present MPE-
SAT, a decomposition-based branch-and-bound algorithm
that works on top of WMC and prunes the search space ef-
fectively. Furthermore, we are able to use the dtree algorithm
of [Huang and Darwiche, 2003; Darwiche, 2002] to boost the
performance on problems with good decomposability.

In general, MPE and weighted MAX-SAT illustrate two
complementary ways of representing soft constraints: either
having weight on variables or having weight on constraints
(clauses). Although they have apparently different represen-
tations of weight and goals, they can be converted to each
other by adding auxiliary variables or clauses, possibly at



some loss in efficiency. In addition to describing these re-
ductions, we show how to formulate CNF-based MPE as an
iterative pseudo-Boolean satisfiability (PBSAT) process.

In our experiments we compare our MPE solver MPE-SAT
with other state-of-the-art complete MPE/MAX-SAT solvers
as well as a pseudo-Boolean solver on a variety of MPE and
MAX-SAT problems. Our approach is quite competitive on
most problems and is significantly faster than each of the
other solvers on at least one of the classes of benchmarks.

2 MPE and Weighted MAX-SAT

The MPE problem originated in research on Bayesian net-
works, one of the most popular graphical models. A Bayesian
network is a DAG, where each source node has a prior proba-
bility distribution on its values and each non-source node has
a Conditional Probability Table (CPT) specifying the proba-
bility distribution of its values given the values of its parents.
Most Probable Explanation (MPE) is the problem of finding
a complete assignment of values to nodes that has the max-
imum likelihood given some node values as evidence. The
likelihood of a complete assignment is the product of the cor-
responding entries in the conditional probability tables and
the prior probabilities. To solve MPE exactly, one can ei-
ther compile the Bayesian network into a junction tree and
then propagate the evidence[Jensenet al., 1990], or per-
form a branch-and-bound search,e.g., AND/OR tree search
[Marinescu and Dechter, 2005]. Alternatively, one can con-
vert MPE to weighted MAX-SAT and solve it by any local
search algorithm[Park, 2002].

We begin with some definitions:
Definition 1 A CNF formula with weighted literalsis a CNF
formula plus a functionweight that maps literals to real-
valued non-negative weights.
Definition 2 Given a combination operator⊕ defined on the
reals, the problem ofMPE on CNF formulas with weighted
literals is to find a complete satisfying assignments that has
the maximum⊕iweight(vi), wherevi is either the positive
or negative form of theith variable ins. To be convenient, we
also define the inverse operator⊖. MPE of an unsatisfiable
CNF formula is defined to be 0.

This CNF-based MPE can represent Bayesian-network-
based MPE because there are linear reductions from Bayesian
networks to CNF formulas with weighted literals[Sanget al.,
2005b; Chavira and Darwiche, 2005]. Practically, setting⊕
to arithmetic+ or × (then⊖ is either− or /) suffices our
purposes . For example,× is used for likelihood-originated
MPE and+ is used for weighted MAX-SAT-originated MPE.
In the rest of the paper, we will use the short term MPE for
“MPE on CNF formulas with weighted literals”, when there
is no confusion.

The problem of weighted MAX-SAT on a CNF formula is
to find an assignment that has the maximum sum of weights
of all clauses satisfied by that assignment. When every weight
is 1, weighted MAX-SAT reduces to MAX-SAT.

Both MPE and weighted MAX-SAT optimize a metric of
the weight, the only difference is that MPE has a weight on
each literal and weighted MAX-SAT has a weight on each

clause. Not surprisingly these two representations are equiv-
alent in that they can be directly converted to each other.

MPE to weighted MAX-SAT
We give a simple conversion for MPE on CNF to weighted
MAX-SAT, which is different from the encoding in[Park,
2002] translates MPE on Bayesian Networks to weighted
MAX-SAT. Assuming the combination operator is+,

• for each literal in MPE, a unit clause is added with
weight equal to the weight of the literal.

• all original clauses in MPE are assigned an “infinite”
weight, which is a number chosen to be at least as large
as the sum of the weights added in the previous step.

Since all original clauses have an infinite weight, any op-
timal solution in weighted MAX-SAT must satisfy them and
maximize the sum of weights of satisfied unit clauses, which
obviously maximizes the sum of literal weights in MPE and
therefore is an optimal solution in MPE as well, and vice
versa. The converted formula has a mixture of hard and soft
constraints, which is a challenge for exact weighted MAX-
SAT solvers: to be efficient, they must take advantage of the
hard constraints.

Weighted MAX-SAT to MPE
Givry et. al. [2003] described a Pseudo-Boolean encoding for
MAX-SAT. Although that does not explicitly refer to MPE,
it can be modified for MPE by adding proper weights. Our
conversion is as follows:

• for every variable x in weighted MAX-SAT, let
weight(x) = weight(¬x) = 0.

• for every clauseci in weighted MAX-SAT, an auxiliary
literal ¬yi is added toci, with weight(¬yi) = 0 and
weight(yi) = weight(ci).

While the original formula for MAX-SAT may be unsat-
isfiable, the converted formula is guaranteed to be satisfiable
because one can always obtain a trivial solution by setting all
auxiliaryy variables to false. When the combination operator
is fixed to sum, solving MPE on the converted formula finds a
solution with a maximum sum of weight ofy variables, which
is equivalent to maximizing the sum of weights of satisfied
clauses in weighted MAX-SAT. This encoding does not add
any clause, but needs as many auxiliary variables as the num-
ber of clauses. The inflated number of variables makes solv-
ing MPE more difficult, especially since auxiliary variables
make every clause trivially satisfiable and thus unit propaga-
tion and conflict-driven learning become unavailable.

MPE and Pseudo-Boolean SAT
Since the encoding in[de Givryet al., 2003] converts MAX-
SAT to Pseudo-Boolean SAT and (weighted) MAX-SAT and
MPE are equivalent, we observe that there is a close relation-
ship between MPE as Pseudo-Boolean SAT as well.
Definition 3 Given a CNF formulaφ and a setC of linear
constraints over variables inφ, Pseudo-Boolean SAT (PB-
SAT) is to find a total assignment that satisfies bothφ and
linear constraints inC. A linear constraint has the form∑n

i=1
aivi ≥ d wherevi is a variable that takes value 0 or



1, ai andd are real-valued constants andn is the number of
variables.

We show how to convert a likelihood-based MPE to an
iterative PBSAT process. In the context of likelihood, the
combination operator⊕ becomes×, and a variablevi has
weight(vi) = pi andweight(¬vi) = 1 − pi. Without loss
of generality, we assume0 < pi < 1, otherwise ifpi = 0 (1)
we solve the simplified formula withvi instantiated to 0 (1).
The MPE goal is to find a complete satisfying assignment that
maximizes

∏
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i (1 − pi) is a constant andlog is an increasing
function, this is equivalent to maximizing
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This linear expression can be used as the left side of a
linear constraint in PBSAT, but we still need to figure
out what boundd to put on the right side. By defini-
tion of MPE, we know that the optimal value must be in
[ 0,

∏n

i=1
Max(pi, (1− pi)) ]. Now we can iteratively search

for the boundd using binary search. At each step whend is
set, we solve PBSAT with a single linear constraint

∑

i

log (
pi

1 − pi

)xi ≥ d.

In this way, we can getd arbitrarily close to the optimal value
in a bounded number of steps.

3 Algorithms and the Implementation
In this section, we first examine a simple MPE algorithm and
then show how to enhance it with some advanced techniques.

3.1 DPLL for MPE
The näıveAlgorithm 1 is a simple modification of the classic
DPLL search. First if the formula is empty (already satisfied),
DPLL-MPE returns the optimal value (e.g., sum or product)
of weights of unassigned variables, which becomes part of the
current value; if the formula is UNSAT, DPLL-MPE returns
0 by definition; otherwise it selects a variable to branch, re-
cursively solves each branch and then returns the best value,
which is the better one found in the two branches.

Unlike DPLL for SAT where the search halts when a SAT
leaf is found, DPLL-MPE performs an exhaustive search over
all possible SAT leaves for the optimal value. It can be very
slow without proper pruning, and that is why branch-and-
bound algorithms are widely used for many similar optimiza-
tion tasks including MAX-SAT and weighted CSP.

Algorithm 1 DPLL-MPE
DPLL-MPE(φ) // returns MPE of CNF formulaφ
if φ is empty, return optimal value of unassigned variables
if φ has an empty clause, return 0
select an unassigned variablev ∈ φ to branch
return Max(DPLL-MPE(φ|v=0) ⊕ weight(¬v) ,

DPLL-MPE(φ|v=1) ⊕ weight(v))

Algorithm 2 MPE-SAT
MPE-SAT(φ, lb) // returns MPE of CNF formulaφ
if φ is empty, return optimal value of unassigned vars
if φ has an empty clause, donogood learningand return 0
dodynamic component detection: solve each separately
docache lookup: reuse previously computed values
dodynamic bounding: if E(φ) ≤ lb return 0 // pruning
select an unassigned literalv ∈ φ by branching heuristics
lresult = MPE-SAT(φ|v=0, lb ⊖ weight(¬v))
updatelb according to lresult
rresult = MPE-SAT(φ|v=1, lb ⊖ weight(v))
result = Max(lresult ⊕ weight(¬v), rresult ⊕ weight(v))
docaching: AddToCache(φ, result)
return result

3.2 Branch-and-Bound and Decomposition
Branch-and-bound is the underlying mechanism for most ex-
haustive search algorithms that find an optimal solution. The
branch-and-bound algorithm maintains a global best solution
found so far, as a lower bound. If the estimated upper bound
of a node is not better than the lower bound, the node is
pruned and the search continues with other branches.

Previous research has shown that decomposition and
caching techniques are critical for such exhaustive searchto
be efficient[Darwiche, 2002; Bacchuset al., 2003; Sanget
al., 2004; Marinescu and Dechter, 2005]. However, with dy-
namic decomposition the simple form of branch-and-bound
must be modified. During the search, a problem may decom-
pose into several independent sub-problems (components)
that, for efficiency, one would like to analyze separately. The
branch-and-bound algorithm must include a way of allocating
portions of the global bounds to the individual components.

3.3 MPE-SAT
To address the above issues, we develop MPE-SAT, a
new decomposition-based branch-and-bound algorithm with
dynamic decomposition and caching. MPE-SAT extends
DPLL-MPE with the following function blocks. Since there
are a number of similarities with the related AND/OR tree
search algorithm[Marinescu and Dechter, 2005], we briefly
compare our methods with that algorithm.

Dynamic Component DetectionA connected component
detection is performed dynamically for every non-trivialφ
in the search. Since components ofφ are independent sub-
problems with disjoint variables, they are solved separately
and then their results are combined to get the result forφ
(thoughAlgorithm 2 does not show details of these obvi-
ous steps due to space limitation). (In AND/OR tree search,
components are determined statically using the pseudo tree
constructed before the search.)

Caching and Cache lookupWhen the value of a com-
ponent is known, the component with its value is stored in
a hash table (caching) for later reuse (cache lookup), which
avoids repeated computation. A component to store can be
its corresponding clauses or a short signature of the clauses to
save space. Even when the exact value of a component is un-
known because of pruning in its subtree, a proper bound can
be cached for reuse too. The purpose of this bound caching



is to save the partial work already done for a component that
is to be pruned. A cached bound can be used as an estimated
upper bound of the component for pruning and it is updated
whenever a tighter bound or the exact value of the same com-
ponent is found. (AND/OR tree search caches the context
instead of the component itself.)

Dynamic BoundingThe parameterlb, initially ∞ or given
by local search, is the lower bound forφ whenφ is created.
E(φ) is an upper bound estimation of the true value ofφ,
which can be simply⊕v∈φMax(weight(v), weight(¬v)), a
cached bound or a result by special computation (as described
in section 3.4). IfE(φ) is at mostlb, the current branch is
pruned for it will not yield a better result. Note that for a
subproblem,lb for its right branch may be better thanlb for
its left branch, because solving the left branch may improve
the previouslb. When a sub-problem (component) is being
solved, only local information is needed for pruning; i.e.,the
bound from its parent and the bounds from sibling compo-
nents, which are updated dynamically. A parent’slb is imme-
diately broken and passed into its sub-problems for pruning
(top-down). For example, if sub-problemS splits intoS1 and
S2 then lbS1

= lbS ⊖ E(S2). and lbS2
= lbS ⊖ E(S1).

However, sinceS2 is solved afterS1, lbS2
should be dynam-

ically updated with the exact value ofS1 replacingE(S1).
(AND/OR tree search uses dynamic bounding as well but col-
lects bounds from sub-problems (bottom-up).)

Branching Heuristics Any dynamic heuristic good for
DPLL search will work, and it turns out that decomposition-
based heuristics are often very useful (as discussed in section
3.4). (AND/OR tree search uses the statically-constructed
pseudo-tree heuristic, which also aims at decomposition.)

Nogood LearningThe well-known conflict-driven clause
learning technique for satisfiability testing,e.g., [Zhanget al.,
2001], can be directly used for CNF-based MPE. Learned
clauses implicitly prune the infeasible search space.

Comparison Since the top-down scheme passes the best
known lower bound to a sub-problem once it is available,
MPE-SAT may examine fewer nodes than AND/OR tree
does when pruning occurs. MPE-SAT benefits from nogood
learning that dynamically changes its variable ordering (with
VSIDS or VSADS heuristic), while nogood learning is likely
less useful for the static pseudo-tree variable ordering. The
dynamic component detection in MPE-SAT is more powerful
than the static detection in AND/OR tree search because the
latter may miss some decomposition due to dynamic effects;
however, the overhead of the former is much higher. Finally,
the more expensive component caching in MPE-SAT is more
powerful than context caching in AND/OR tree search, be-
cause different contexts may lead to the same component.

3.4 The Implementation
The problem of model counting (counting the number of solu-
tions of a CNF formula) shares many features with MPE, both
requiring exhaustive search. In DPLL-MPE if we replace the
max operation by sum (and the optimal value of a SAT leaf is
one) we will get a näıve model counting algorithm. Using the
weighted model counting system Cachet[Sanget al., 2004]
as a platform, we have implemented the MPE-SAT algorithm
and the following to better support it.

Component ProcessingComponents are processed in a
depth-first order and the search stays within a component un-
til it is finished. This component processing strategy is well
suited to dynamic bounding for sibling components, but it
is different from that for model counting. In Cachet, once
a component is found SAT during search, the work on the
rest of that component will be temporarily suspended and an
unexploited component (if available) will be processed next.
That strategy works well for finding UNSAT components as
soon as possible, which is good for model counting; but in
MPE-SAT we want to continue working on a SAT component
until it is fully done, because the known value of a finished
component yields better lower bounds for its siblings when
they are checked for pruning.

Optimal Solution Retrieval In order to get the optimal
solution as well as the optimal value, we need to maintain
all partial solutions associated with all the active components
on the current search path, from which we can compose the
optimal solution at backtracking. The optimal partial solution
of a component must be cached together with its exact value.

Branching Heuristics The dynamic branching heuristics
for SAT and model counting such as VSIDS, VSADS and
EUPC[Moskewiczet al., 2001; Sanget al., 2005a] work well
for MPE too. These heuristics aim at maximizing the effect
of unit propagation or avoiding the infeasible search spaceby
learning from conflicts. However for MAX-SAT problems,
we have found that the dtree-based semi-dynamic branch-
ing heuristic[Huang and Darwiche, 2003; Darwiche, 2002;
2004] is often better, because in those problems unit propaga-
tions and conflicts that guide dynamic heuristics are no longer
available whereas structural decomposition based heuristics
are affected less. The dtree program by[Huang and Dar-
wiche, 2003] computes a static variable group ordering based
on dtree decomposition[Darwiche, 2002], which is fed
to MPE-SAT. The semi-dynamic branching heuristic makes
choices by dynamic heuristic for variables in the same group,
but prefers variables in a group with higher priority and the
group priorities are determined statically by dtree. The time
for running dtree is usually insignificant compared to the time
for solving the problem. A nice property of dtree is that after
each group of variables is instantiated (from high to low pri-
ority), the problem is guaranteed to decompose. However, if
a problem has a large tree-width, the sizes of the high priority
groups by dtree can be so large that the search space blows
up before the problem decomposes.

Upper Bound Computation We are able to extend the
UP heuristic[Li et al., 2005] to weighted MAX-SAT in our
solver. Computing an upper bound on the weight of the satis-
fied clauses of formulaφ is equivalent to computing a lower
bound on the weight of violated clauses ofφ. The weight of
violated clauses ofφ can be estimated as follows:

CostLB = 0
for each unit clause ofφ

Simplify φ by setting the current unit clause to true
if there is an empty clause (conflict)

incrementCostLB by the minimum weight of the
empty clause and the clauses for deriving it, and
remove clauses for deriving the empty clause fromφ

CostLB is the lower bound of violated clauses at the end.



We also adopt a trick from previous MAX-SAT solvers that
when the value of a known solution and the current estimated
value differ only by one, unit clauses are safely propagated.

4 Experimental Results

We tested with both CNF-based MPE and MAX-SAT.
The CNF-based MPE problems are either from random
3-CNF or structured CNF formulas with random literal
weights (equivalent to weighted MAX-SAT), or trans-
lated from Bayesian networks (special because of the
ad-hoc Bayesian-network-to-CNF encoding). The MAX-
SAT problems are structured ones used in previous liter-
ature and fault diagnosis problems generated from stan-
dard circuit benchmarks that are challenging for many
solvers. More details of these problems can be found at
www.cs.washington.edu/homes/sang/benchmarks.htm

We used the following state-of-the-art solvers:
Toolbar [de Givryet al., 2003; 2005] : an exact weighted

CSP solver that integrates efficient algorithms for maintaining
various levels of local consistency. It is a generic solver for
weighted CSP and weighted MAX-SAT. We used version 3.0.

UP [Li et al., 2005] : an exact branch-and-bound MAX-
SAT solver using unit propagation and distinguishing inde-
pendent conflicts for powerful lower bound computation.

MaxSatz [Li et al., 2006] : an exact branch-and-bound
MAX-SAT solver extendingUP with sophisticated lower
bound computation techniques. Highly optimized for MAX-
SAT, it was the winner of the 2006 MAX-SAT evaluation.

PB2 [Aloul et al., 2002] : a pseudo Boolean SAT solver
that takes linear constraints. It can prove the optimality of
encoded MAX-SAT problems. Basically, an auxiliary vari-
able is added for each clause and there is a linear constraint
limiting the sum of these added variables to the given bound.

AoTree [Marinescu and Dechter, 2005]: the AND/OR tree
implementation that works for MPE of Bayesian networks
and weighted CSP.

MPE-SAT: our solver that implements the MPE-SAT al-
gorithm. It is for CNF-based MPE and weighted MAX-SAT.

All experiments were done on a Linux machine with 2.8
GHz Pentium 4 CPU and 4 GB memory, except that we ran
AoTree on a Windows machine with 2.8 GHz Pentium 4 CPU
and 1.5 GB memory. The runtime cutoff is 600 seconds.
Since not all solvers apply to the same domains, for each do-
main, we show the results only for the solvers that apply.
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Figure 1: MPE of random 3-CNF (median runtime)

Problems #vars #clauses Toolbar PB2 MPE-SAT

ra 1236 11416 30 0.04 0.18
rb 1854 11324 X 1.2 0.72
rc 2472 17942 X 10 3.9

2bitcomp6 252 766 17 5.5 0.21
2bitmax6 150 370 X 3.5 0.28

rand1 304 578 X X 15

Figure 2:MPE of circuit CNF and runtime in seconds.

Problems #Node Induced width AoTree MPE-SAT

75-12 144 19 20 0.47
90-15 225 23 412 0.1
75-15 225 25 X 0.56
90-25 625 41 X 5.5
90-30 900 47 X 68

Figure 3:MPE of grid Bayesian networks and runtime in seconds.

The first domain is MPE on satisfiable random 3-CNF for-
mulas with random weights between 1 and 1000 on each pos-
itive literal and 0 weight on each negative literal. The prob-
lems were converted to weighted MAX-SAT via the encoding
in section 2 (introducing only positive unit clauses). Since we
use+ as the combination operator⊕ for MPE here, a direct
translation to PBSAT is adding a linear constraint where the
weighted sum of all positive literals is at least a given bound.
In principle we should run PB2 iteratively to optimize this
bound, but we just set the bound asopt (for proving SAT)
andopt + 1 (for proving UNSAT), because PB2 is not effi-
cient enough on this domain. (The value ofopt was that found
by other solvers.) For MPE-SAT, we used the weight-based
dynamic heuristic, where variable selections with good unit-
propagated weights are preferred before a solution is found
(to get a good bound early) and bad unit-propagated weights
are preferred afterwords (to get prunings early).

In Figure 1, each point represents the median runtime on
100 instances. On the PB2 curve, the data point of ratio 2.6
is actually a timeout (median> 600 seconds). Compared to
the other two, PB2 is very inefficient at low ratios, frequently
timed out. However, as the problem gets more and more
constrained with ratio increasing towards 4.2, PB2 improves
significantly. MPE-SAT has a similar trend: it is about two
times slower than Toolbar at low ratios, but gains a dramatic
speedup at high ratios. Apparently at high ratios MPE-SAT
and PB2 benefit a lot from clause learning by the underlying
SAT engine, which prunes most infeasible search space. The
curve of Toolbar is rather flat before ratio 4.2. For low ratio
under-constrained problems, Toolbar prunes the search space
very effectively using advanced bounding techniques; how-
ever, without nogood learning, it is not effective at pruning
using the constraints and so does poorly on well-constrained
high ratio problems. This effect is amplified with 200 vari-
ables and ratio 4.2: Toolbar often cannot solve an instance in
an hour but MPE-SAT can solve it in a few seconds.

Figure 2 shows the results of MPE on structured circuit
CNF formulas with random variable weights. Clearly most
problems are easy to MPE-SAT but hard or non-solvable to
Toolbar. We also ran PB2 with a naı̈ve binary search for the
optimal value. PB2 works fine on all problems but one. It
appears that CNF-based MPE suits MPE-SAT and PB2 better
than Toolbar, which is optimized for weighted CSP.

In Figure 3, we compared with AND/OR tree search on



Problems Toolbar PB2 MaxSatz UP MPE-SAT

Pret6060 40 0.001 11 49 0.05
Pret6075 41 0.001 11 48 0.06
Pret15060 X 0.003 X X 0.09
Pret15075 X 0.003 X X 0.1

dubois22 130 0.001 37 248 0.04
dubois23 245 0.001 74 168 0.04
dubois24 496 0.001 152 X 0.04
dubois25 X 0.001 311 X 0.04
dubois26 X 0.001 X X 0.04
dubois30 X 0.001 X X 0.05
dubois100 X 0.006 X X 0.17

aim-100-16-n1 318 0.001 7.8 41 81
aim-100-16-n2 2 0.005 2.3 24 139
aim-100-16-n3 X 0.003 13.8 194 55
aim-100-16-n4 X 0.005 10.0 29 78
aim-100-20-n1 158 0.003 23 24 2.2
aim-100-20-n2 20 0.008 13 24 1.5
aim-100-20-n3 145 0.001 5.9 20 16
aim-100-20-n4 192 0.04 15 23 4

hole07 0.19 0.001 0.04 0.03 0.31
hole08 1.8 0.002 0.4 0.4 1.9
hole09 20 0.002 4.1 5.8 8.9
hole10 249 0.002 46 96 35

Figure 4: MAX-SAT problems from DIMACS UNSAT instances
and runtime in seconds (X = time> 600).

grid MPE problems on Bayesian networks. Ann × n grid
network has binary-valued nodes indexed by pairs(i, j), with
node(1, 1) as a source and(n, n) as a sink. Each node(i, j)
has parents indexed by(i− 1, j) and(i, j − 1), and a fraction
of nodes have deterministic CPTs[Sanget al., 2005b]. The
sink is set to true as the evidence for MPE. The induced width
of a Bayesian network is a measure of its density. It is clear
that MPE-SAT dominates on all these highly deterministic
problems by a large margin and AoTree has difficulties on
grid networks with large induced width. MPE-SAT is not
very sensitive to the induced width because the underlying
SAT engine can explore the local structures (introduced by
deterministic entries) efficiently.

The remaining experiments were on structured MAX-SAT
problems: examples considered in[de Givry et al., 2003;
Li et al., 2005] and fault diagnosis problems. Our MPE
solver is competitive with the other solvers on most classes.
(We do not show results for unstructured random MAX-SAT
problems where MPE-SAT is not at all competitive because
MPE-SAT spends significant time on dynamic decomposi-
tion checking and caching, which is wasted because the prob-
lems have very dense constraints and hardly decompose.) For
each problem, we gave all solvers the initial bound found by
Borchers’ local search program for MAX-SAT[Borchers and
Furman, 1999], and the optimal value is defined as the min-
imum number of clauses violated. In fact, local search can
quickly find the optimal bound of 1 for every problem in Fig-
ure 4. All the solvers will find a solution value at least as good
as the given bound.

In Figure 4, PB2 dominates on all problems, and MPE-
SAT is also quite good, outperforming Toolbar and UP on
most problems. Unlike other branch-and-bound solvers, PB2
proves the optimality of a given bound that becomes a single
linear constraint. When the upper bound is 1, the problem is
probably under-constrained (note that the encoding for PB2
is trivially satisfiable without the linear constraint), soPB2
can easily find a solution. It is also easy for PB2 to prove that
all problems in Figure 4 are UNSAT using SAT techniques

Problems. OPT Bound Toolbar PB2 MaxSatz UP MPE-SAT

c432-1 1 4 16.9 0.02 0.25 0.17 0.7
c432-2 1 8 X 0.01 543 2.3 0.1
c432-3 2 6 X 0.16 37 0.2 0.25
c432-4 2 6 X 0.06 4.1 0.4 0.75
c499-1 3 4 55 4.58 0.22 0.01 0.4
c499-2 4 5 28 3.58 3.33 0.01 0.37
c499-3 7 9 X X 2.96 0.03 0.66
c499-4 8 9 X X 7.94 0.02 0.75
c880-1 4 9 11.6 0.3 23 0.3 2.2
c880-2 5 6 X X X 0.1 2.7
c880-3 6 8 X X X 0.2 7.8
c880-4 7 8 X X X 0.11 5.9
c1355-1 5 9 X X X 1 1.5
c1355-2 6 9 X X X 1 3.4
c1355-3 7 12 X X X 1.7 4
c1355-4 8 13 X X X 1.9 6.7

Figure 5:MAX-SAT problems from fault diagnosis and runtime in
seconds (X = time> 600).

such as clause learning and non-chronological backtracking,
which are unavailable for other MAX-SAT solvers including
MPE-SAT (because of the MAX-SAT-to-MPE encoding).

MPE-SAT works very well on pret and dubois problems,
because they decompose quickly—they usually have small
separator sets by dtree based heuristics. After those critical
variables are instantiated, the problem decomposes into in-
dependent sub-problems and MPE-SAT can solve them effi-
ciently. For the same reason, MPE-SAT works less well on
some aim-100 and hole problems—the sizes of root separator
sets vary from 17 to 20, large enough to be hard.

Toolbar and UP have somewhat similar behaviors over
problems in Figure 4, in that they can solve all aim (except
one) and hole problems and all fail on large pret and dubois
problems, though UP is faster up to a factor. For large pret and
dubois problems they seem to have difficulty in finding a good
solution matching the given upper bound, but for hole prob-
lems finding a good solution is easy: removing any clause
makes the formula satisfiable.

Next, we show that PB2 is indeed not universally good
for all MAX-SAT problems. In Figure 5, the fault diagno-
sis problems were generated from ISCAS-85 combinational
circuits [Brglez and Fujiwara, 1985]. In a circuit we make
some gates have stuck-at faults such that the output is incon-
sistent with the given input, so a MPE solution is a sound ex-
planation with the least number of faulty gates. This problem
can be solved by a SAT based method that enumerates pos-
sible explanations[Smith et al., 2005]. An optimal solution
often falsifies quite a few clauses. Each entry in the /Bound
column is the initial upper bound (for solvers) returned by lo-
cal search. It is interesting that local search cannot find any
optimal value. PB2 at least takes one run to prove UNSAT
(givenbound = opt−1) and another run to prove SAT (given
bound = opt). So each number for PB2 is the sum of these
two runtimes, and we ignore the insignificant portion of time
for other runs.

Only UP and MPE-SAT can successfully solve all fault di-
agnosis problems, and UP is faster by a constant factor. UP is
extremely efficient probably because of its lower bound com-
putation: there are many binary clauses in these formulas and
UP may get a very tight lower bound by applying the unit
literal rule iteratively. It is a little surprising that MaxSatz,
which is supposed to use more sophisticated lower bounding



techniques than UP, has serious difficulties on many prob-
lems. MPE-SAT is efficient because it takes advantage of
decomposition: the problems often decompose after a few
instantiations when dtree heuristic is used. Toolbar failson
most problems, while PB2 can solve problems with small op-
timal values (≤ 4) but fails on most problems with large op-
timal values (≥ 5). We guess that in general pseudo-Boolean
solvers become very inefficient for MAX-SAT when the op-
timal value is reasonably large, where it is hard to prove both
SAT and UNSAT.

5 Conclusion
MPE and weighted MAX-SAT are complementary represen-
tations for problems with soft constraints and we have de-
scribed natural reductions between them. To solve these op-
timization tasks efficiently, we have presented an algorithm
MPE-SAT which incorporates various techniques with a dy-
namic flavor: including dynamic problem decomposition, dy-
namic bounding, caching (a form of dynamic programming),
and clause-learning. As a result, our approach is quite com-
petitive with other solvers on a wide range of problem do-
mains from MPE and MAX-SAT and significantly outper-
forms each on at least one of the domains.
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