
Since its inception, social media have been routinely data
mined for marketing consumer goods. Starting around
2010, researchers began to realize that the same tech-

niques could be used for influenza surveillance (Culotta
2010). Since then, social media analytics for public health
has been expanded to monitor a variety of conditions,
including cholera (Chunara, Andrews, and Brownstein
2012), mental health (Golder and Macy 2011), and diet
(Widener and Li 2014). This body of work has shown that
social media can be a useful complement to traditional meth-
ods, such as surveys of medical providers or individuals, for
gathering aggregate public health statistics. Our work
extends the social media analytics approach to a new
domain, foodborne illness. Our most important contribu-
tion, however, is that we go beyond simply monitoring pop-
ulation-level prevalence. Our system, nEmesis, provides spe-
cific, actionable information, which is used to support
effective public health interventions.
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n Foodborne illness afflicts 48 million
people annually in the US alone. More
than 128,000 are hospitalized and 3000
die from the infection. While preventable
with proper food safety practices, the tra-
ditional restaurant inspection process has
limited impact given the predictability and
low frequency of inspections, and the
dynamic nature of the kitchen environ-
ment. Despite this reality, the inspection
process has remained largely unchanged
for decades. CDC has even identified food
safety as one of seven ”winnable battles”;
however, progress to date has been limited.
In this work, we demonstrate significant
improvements in food safety by marrying
AI and the standard inspection process.
We apply machine learning to Twitter
data, develop a system that automatically
detects venues likely to pose a public
health hazard, and demonstrate its effica-
cy in the Las Vegas metropolitan area in a
double-blind experiment conducted over
three months in collaboration with Neva-
da’s health department. By contrast, previ-
ous research in this domain has been lim-
ited to indirect correlative validation using
only aggregate statistics. We show that the
adaptive inspection process is 64 percent
more effective at identifying problematic
venues than the current state of the art. If
fully deployed, our approach could prevent
more than 9000 cases of foodborne illness
and 557 hospitalizations annually in Las
Vegas alone. Additionally, adaptive
inspections result in unexpected benefits,
including the identification of venues lack-
ing permits, contagious kitchen staff, and
fewer customer complaints filed with the
Las Vegas health department.



The fight against foodborne illness is complicated
by the fact that many cases are not diagnosed or
traced back to specific sources of contaminated food.
In a typical US city, if a food establishment passes its
routine inspection, it may not see the health depart-
ment again for up to a year. Food establishments can
roughly predict the timing of their next inspection
and prepare for it. Furthermore, the kitchen environ-
ment is dynamic, and ordinary inspections merely
provide a snapshot view. For example, the day after
an inspection, a contagious cook or server could
come to work or a refrigerator could break, either of
which can lead to food poisoning. Unless the out-
break is massive, the illness is unlikely to be traced
back to the venue.

CDC has identified food safety as one of seven
”winnable battles,”1 along with vehicle accidents and
HIV, but progress to date on eradicating the disease
has been limited. Our work adds to the arsenal of
tools we as humanity can use to fight disease.

We present a novel method for detecting problem-
atic venues quickly — before many people fall ill. We
use the term adaptive inspections for prioritizing ven-
ues for inspection based on evidence mined from
social media. Our system (nEmesis) applies machine
learning to real-time Twitter data — a popular
microblogging service where people post message
updates (tweets) that are at most 140 characters long.
A tweet sent from a smartphone is usually tagged
with the user’s precise GPS location. We infer the
food venues each user visited by “snapping” his or
her tweets to nearby establishments (figure 1). We
develop and apply an automated language model
that identifies Twitter users who indicate they suffer
from foodborne illness in the text of their public
online communication. As a result, for each venue,
we can estimate the number of patrons who fell ill
shortly after eating there. In this paper, we build on
our prior work, where we showed a correlation
between the number of “sick tweets” attributable to
a restaurant and its historic health inspection score
(Sadilek et al. 2013). In this paper, we deploy an
improved version of the model and validate its pre-
dictions in a controlled experiment.

The Southern Nevada Health District (SNHD)
conducted a three-month controlled experiment
with nEmesis beginning January 2, 2015. Venues
with the highest predicted risk on any given day
were flagged and subsequently verified through a
thorough inspection by an environmental health
specialist. For each adaptive inspection, we perform
a paired control inspection independent of the
online data to ensure full annual coverage required
by law and to compensate for the geographic bias of
Twitter data. During the first three months, the
environmental health specialists inspected 142 ven-
ues, half using nEmesis and half following the stan-
dard protocol. The latter set of inspections consti-
tutes our control group. The inspectors were not

told whether the venue comes from nEmesis or con-
trol.

nEmesis downloads and analyzes all tweets that
originate from Las Vegas in real time. To estimate vis-
its to restaurants, each tweet that is within 50 meters
of a food venue is automatically “snapped” to the
nearest one as determined by the Google Places API.
We used Google Places to determine the locations of
establishments because it includes latitude/longitude
data that is more precise than the street address of
licensed food venues. As we will see, this decision
allowed nEmesis to find problems at unlicensed ven-
ues.

For this snapping process, we only consider tweets
that include GPS coordinates. Cell phones determine
their location through a combination of satellite
GPS, WiFi access point fingerprinting, and cell-tower
triangularization (Lane et al. 2010). Location accura-
cy typically ranges from 9 meters to 50 meters and is
highest in areas with many cell towers and Wi-Fi
access points. In such cases, even indoor localization
(for example, within a mall) is accurate.

Once nEmesis snaps a user to a restaurant, it col-
lects all of his or her tweets for the next five days,
including tweets with no geo-tag and tweets sent
from outside of Las Vegas. This is important because
most restaurant patrons in Las Vegas are tourists, who
may not show symptoms of illness until after they
leave the city. nEmesis then analyzes the text of these
tweets to estimate the probability that the user is suf-
fering from foodborne illness.

Determining if a tweet indicates foodborne illness
of the user is more complex than simply scanning for
a short list of key words. By its nature, Twitter data is
noisy. Even a seemingly explicit message, such as “I
just threw up,” is incomplete evidence that the
author of the tweet has a foodborne illness. By using
a language model rather than relying on individual
key words, our method is able to better model the
meaning behind the tweet and is therefore able to
capture even subtle messages, such as “have to skip
work tomorrow” or “I need to go to a pharmacy.” Fig-
ure 1 lists the 20 most significant positive and nega-
tive language features that contribute to the score.

nEmesis then associates the individual sickness
scores to the food venues from which the users orig-
inally tweeted. Each snapped twitter user is a proxy
for an unknown number of patrons that visited but
did not tweet. Since contracting foodborne illness
and tweeting at the right times and places is a rela-
tively rare occurrence, even a single ill individual can
be a strong evidence of a problem. The web interface
(figure 2) is used by the managing health specialist to
sort venues by the number of sick users and to dis-
patch inspectors.

Figure 3 illustrates the full nEmesis process. On a
typical day we collect approximately 15,900 geo-
tagged tweets from 3600 users in the Las Vegas area.
Approximately 1000 of these tweets, written by 600
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unique users, snap to a food venue. nEmesis then
tracks these 600 users and downloads all their subse-
quent tweets for the following five days. These sub-
sequent tracked tweets are then scored by the lan-
guage model. Finally, venues are ranked based on the
number of tweets with sickness score exceeding the
threshold of 1.0 determined on a withheld validation
set. During the experiment, nEmesis identified on
average 12 new tweets per day that were strongly
indicative of foodborne illness. Figure 4 shows a dis-
tribution over health scores inferred by nEmesis.

Significance of Results
To the best of our knowledge, this is the first study
that directly tests the hypothesis that social media

provide a signal for identifying specific sources of any
disease through a controlled, double-blind experi-
ment during a real-world deployment. By contrast,
prior work has been anecdotal, limited to finding cor-
relations, and/or didn’t include a control group.

Related Work
Since the famous cholera study by John Snow (1855),
much work has been done in capturing the mecha-
nisms of epidemics. There is ample previous work in
computational epidemiology on building relatively
coarse-grained models of disease spread through dif-
ferential equations and graph theory (Anderson and
May 1979, Newman 2002), by harnessing simulated

Figure 1. The Top 20 Most Significant Negatively and Positively Weighted Features in Our Language Model.

Positive Feature Negative Features
Feature Weight Feature Weight

stomach 1.7633 think i’m sick − 0.8411

stomachache 1.2447 i feel soooo − 0.7156

nausea 1.0935 f--k i’m − 0.6393

tummy 1.0718 @ID sick to − 0.6212

#upsetstomach 0.9423 sick of being − 0.6022

nauseated 0.8702 ughhh cramps − 0.5909

upset 0.8213 cramp − 0.5867

naucious 0.7024 so sick omg − 0.5749

ache 0.7006 tired of − 0.5410

being sick man 0.6859 cold − 0.5122

diarrhea 0.6789 burn sucks − 0.5085

vomit 0.6719 course i’m sick − 0.5014

@ID i’m getting 0.6424 i"’m − 0.4988

#tummyache 0.6422 is sick − 0.4934

#stomachache 0.6408 so sick and − 0.4904

i’ve never been 0.6353 omg i am − 0.4862

threw up 0.6291 @LINK − 0.4744

i’m sick great 0.6204 @ID sick − 0.4704
poisoning 0.5879 if − 0.4695

feel better tomorrow 0.5643 i feel better − 0.4670



large geographical area, typically at the level of a state
or large city. Researchers have examined influenza
tracking (Culotta 2010; Achrekar et al. 2012; Sadilek
and Kautz 2013; Broniatowski and Dredze 2013;
Brennan, Sadilek, and Kautz 2013), mental health
and depression (Golder and Macy 2011; De Choud-
hury et al. 2013), as well as general public health
across a broad range of diseases (Brownstein, Freifeld,
and Madoff 2009; Paul and Dredze 2011b).

Some researchers have begun modeling health and
contagion of specific individuals by leveraging fine-
grained online social and web search data (Ugander
et al. 2012; White and Horvitz 2008; De Choudhury
et al. 2013). For example, in Sadilek, Kautz, and Silen-
zio (2012) we showed that Twitter users exhibiting
symptoms of influenza can be accurately detected
using a model of language of Twitter posts. A detailed
epidemiological model can be subsequently built by
following the interactions between sick and healthy
individuals in a population, where physical encoun-
ters are estimated by spatiotemporal colocated
tweets.

Our earlier work on nEmesis (Sadilek et al. 2013)
scored restaurants in New York City by their number
of sick tweets using an initial version of the language
model described here. We showed a weak but signifi-
cant correlation between the scores and published
NYC Department of Health inspection scores.
Although the data came from the same year, many
months typically separated the inspections and the
tweets.

Other researchers have recently tried to use Yelp
restaurant reviews to identify restaurants that should
be inspected (Harrison et al. 2014). Key words were
used to filter 294,000 Yelp reviews for New York City
to 893 possible reports of illness. These were manu-
ally screened and resulted in the identification of 3
problematic restaurants.

Background: Foodborne Illness
Foodborne illness, known colloquially as food poi-
soning, is any illness that results from the consump-
tion of contaminated food, pathogenic bacteria,
viruses, or parasites that contaminate food, as well as
the consumption of chemical or natural toxins such
as poisonous mushrooms. The US Centers for Disease
Control and Prevention (CDC) estimates that 47.8
million Americans (roughly 1 in 6 people) are sick-
ened each year by foodborne disease. Of that total,
nearly 128,000 people are hospitalized, while just
over 3000 die of foodborne diseases (CDC 2013).

CDC classifies cases of foodborne illness according
to whether they are caused by one of 31 known food-
borne illness pathogens or by unspecified agents.
These 31 known pathogens account for 9.4 million
(20 percent of the total) cases of food poisoning each
year, while the remaining 38.4 million cases (80 per-
cent of the total) are caused by unspecified agents.

populations (Eubank et al. 2004), and by analysis of
official statistics (Grenfell, Bjornstad, and Kappey
2001). Such models are typically developed for the pur-
poses of assessing the impact a particular combination
of an outbreak and a containment strategy would have
on humanity or ecology (Chen, David, and Kempe
2010).

However, the above works focus on aggregate or
simulated populations. By contrast, we address the
problem of predicting the health of real-world popu-
lations composed of individuals embedded in a social
structure and geo-located on a map.

Most prior work on using data about users’ online
behavior has estimated aggregate disease trends in a
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Figure 2. nEmesis Web Interface. 

The top window shows a portion of the list of food venues ranked by the
number of tweeted illness self-reports by patrons. The bottom window pro-
vides a map of the selected venue, and allows the user to view the specific
tweets that were classified as illness self-reports.
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Figure 3. Adaptive Inspection Process. 

Starting from the top: All tweets geo-tagged in the Las Vegas area are collect-
ed. Tweets geo-tagged within 50 meters of a food venue are snapped to that
venue, and the Twitter IDs of the users are added to a database of users to
be tracked. All tweets of tracked users are collected for the next five days,
whether or not the users remain in Las Vegas. These tweets are evaluated by
the language model to determine which are self-reports of symptoms of
foodborne illness. Venues are ranked according to the number of patrons
who later reported symptoms. Health department officials use the nEmesis
web interface to select restaurants for inspection. Inspectors are dispatched
to the chosen restaurants, and findings reported.

LAS VEGAS

C

Rank Food Vendors

Dispatch
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Inspection
Reports

Continuously
collect tweets
throughout 
Las Vegas and
snap tweets to
food venues
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track users who
likely ate at
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of location
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visited before
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Food poisoning episodes associated with these 31
known pathogens account for an estimated 44 per-
cent of all hospitalizations resulting from foodborne
illness, as well as 44 percent of the deaths. Of these 31
known pathogens, the top five (Norovirus, Salmonella,
Clostridium perfringens, Campylobacter species, and
Staphylococcus aureus) account for 91 percent of the
cases of foodborne illness, 88 percent of the cases
that require hospitalization, and 88 percent of the
cases that result in death. The economic burden of
health losses resulting from foodborne illness are
staggering. One recent study estimated the aggregat-
ed costs in the United States alone to be $77.7 billion
annually (Scharff 2012).

Despite the variability in the underlying etiology
of foodborne illness, the signs and symptoms of dis-
ease overlap considerably. The most common symp-
toms include vomiting, diarrhea (occasionally
bloody), abdominal pain, fever, and chills. These
symptoms can be mild to serious, and may last from
hours to several days. Some pathogens can also cause
symptoms of the nervous system, including
headache, numbness or tingling, blurry vision, weak-
ness, dizziness, and even paralysis. The gastrointesti-
nal fluid losses can commonly result in dehydration,
leading to secondary symptoms such as excessive
thirst, infrequent urination, dark-colored urine,
lethargy, and lightheadedness. Typically, symptoms
appear within hours, but may also occur days to even
weeks after exposure to the pathogen (Morris and
Potter 2013). According to the US Food and Drug
Administration (FDA), the vast majority of these
symptoms will occur within three days (FDA 2012).

Public health authorities use an array of surveil-
lance systems to monitor foodborne illness. In the
United States, the CDC relies heavily on data from
state and local health agencies, as well as more recent
systems such as sentinel surveillance systems and
national laboratory networks, which help improve
the quality and timeliness of data (CDC 2013). An
example of the many systems in use by CDC would
include the Foodborne Diseases Active Surveillance
Network, referred to as FoodNet. FoodNet is a sen-
tinel surveillance system using information provided
from sites in 10 states, covering about 15 percent of
the US population, to monitor illnesses caused by
seven bacteria or two parasites commonly transmit-
ted through food. Other systems include the Nation-
al Antimicrobial Resistance Monitoring System
(NARMS), the National Electronic Norovirus Out-
break Network (CaliciNet), and the National Molecu-
lar Subtyping Network for Foodborne Disease Sur-
veillance (PulseNet), among many others.

A major challenge in monitoring foodborne illness
is in capturing actionable data in real time. Like all
disease surveillance programs, each of the systems
currently in use by CDC to monitor foodborne illness
can entail significant time lags between when cases
are identified and the data is analyzed and reported.



Whereas this is not as important a limitation in terms
of epidemiological surveillance, using surveillance
data to actively intervene in outbreaks of foodborne
illnesses can be challenging when surveillance data
may not infrequently identify cases after the window
of opportunity needed to prevent additional cases
(Heymann 2004).

Methods
There are three general types of restaurant inspec-
tions conducted by health departments. First, restau-
rants are inspected prior to receiving a permit to
ensure that the facility is designed and constructed
in a way that allows food to be handled, prepared,
and served in a safe manner. For example, inspec-
tions would ensure that food contact surfaces were
durable and able to be easily cleaned, backflow pre-
vention devices were installed in the plumbing sys-
tem, and that commercial-grade appliances were
installed. Once this type of inspection is completed
for a facility, it would not be conducted again unless
the facility was renovated. 

The second, and most common, type of inspec-

tions are routine inspections. Routine inspections are
not driven by the occurrence of problems, but are
conducted periodically to prevent foodborne illness
by ensuring that the facility is operating in accor-
dance with good food-handling practices. Nevada
law requires that these types of inspections happen at
least annually. A routine inspection is a risk-based
process addressing a food establishment’s control
over the five areas of risk for foodborne illness: per-
sonal hygiene, approved food source, proper cooking
temperatures, proper holding times and tempera-
tures, and sources of contamination. 

A third type of inspection is a complaint-driven
inspection initiated by either consumer complaints
or the identification of a foodborne illness occurrence
that may be associated with the facility. These inspec-
tions have a narrow focus but look in depth at a prob-
lem. For example, an inspection based on a com-
plaint of improper handwashing at a restaurant
would result in the inspector evaluating the hand-
washing facilities (that is, the availability of hand
sinks, hot water, soap, and paper towels) and observ-
ing employees as they wash their hands, but would
not result in a complete inspection of the facilities. If
the inspection were related to foodborne illness, the
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Figure 4. Distribution of Inferred Health Scores (Horizontal Axis) for One Week's Worth of Tweets. 

The vertical axis shows the common logarithm of the number of messages with a particular health score. Higher scores indi-
cate increased probability of being sick. Note that a tiny proportion of tweets (scores larger than 1.0) confidently show a
foodborne illness.
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inspection would focus on the preparation of the par-
ticular foods consumed and the risk factors for the
contamination, proliferation or amplification, and
survival of the causative organism. This type of
inspection is reactive in nature, and while it may pre-
vent additional disease, problems in the facility have
already occurred. The ultimate goal of all of these
types of inspections is to prevent foodborne illness.
Historically, there has been no way to easily identify
restaurants having a decline in food handling prac-
tices and easily prevent illness, as inspections are
based largely on the elapsed time from a previous
inspection. As a result, these types of inspections rep-
resent the bulk of inspection activities but tend to be
rather inefficient in identifying problem facilities.
Complaint-driven inspections, while important,
identify the problems after they have occurred,
which is too late to prevent disease. More important-
ly, foodborne illnesses are frequently underdiagnosed
and underreported (Scallan et al. 2011), preventing
public health officials from identifying the source of
illness for most foodborne infections.

Clark County, Nevada, is home to more than 2
million people and hosts over 41 million annual vis-
itors to the Las Vegas metropolitan area. The South-
ern Nevada Health District (SNHD) is the govern-
mental agency responsible for all public health
matters within the county and is among the largest
local health departments in the United States by pop-
ulation served. In 2014, SNHD conducted 35,855
food inspections (of all types) in nearly 16,000 per-
mitted facilities. In Southern Nevada, inspection vio-
lations are weighted based on their likelihood to
directly cause a foodborne illness and are divided
into critical violations at 5 demerits each (for exam-
ple, food handlers not washing hands between han-
dling raw food and ready to eat food), to major vio-
lations at 3 demerits each (hand sink not stocked
with soap), to good food management practices with
no demerit value (leak at the hand sink). Demerits are
converted to letter grades, where 0–10 is an A, 11–20
is a B, 21–39 is a C, and 40+ is an F (immediate clo-
sure). A repeated violation of a critical or major item
causes the letter grade to drop to the next lower rank.
A grade of C or F represents a serious health hazard.

Controlled Experiment: 
Adaptive Inspections
During the experiment, when a food establishment
was flagged by nEmesis in an inspector’s area, he was
instructed to conduct a standard, routine inspection
on both the flagged facility (adaptive inspection) and
also a provided control facility (routine inspection).
Control facilities were selected according to their loca-
tion, size, cuisine, and their permit type to pair the
facilities as closely as possible. The inspector was blind
as to which facility was which, and each facility
received the same risk-based inspection as the other.

Labeling Data at Scale
To scale the laborious process of labeling training
data for our language model, we turn to Amazon’s
Mechanical Turk.2 Mechanical Turk allows requesters
to harness the power of the crowd in order to com-
plete a set of human intelligence tasks (HITs). These
HITs are then completed online by hired workers
(Mason and Suri 2012).

We formulated the task as a series of short surveys,
each 25 tweets in length. For each tweet, we ask “Do
you think the author of this tweet has an upset stom-
ach today?” There are three possible responses
(“Yes,” “No,” “Can’t tell”), out of which a worker has
to choose exactly one (figure 5). We paid the workers
1 cent for every tweet evaluated, making each survey
25 cents in total. Each worker was allowed to label a
given tweet only once. The order of tweets was ran-
domized. Each survey was completed by exactly five
workers independently. This redundancy was added
to reduce the effect of workers who might give erro-
neous or outright malicious responses. Inter-annota-
tor agreement measured by Cohen’s κ is 0.6, consid-
ered a moderate to substantial agreement in the
literature (Landis and Koch 1977). Responses from
workers who exhibit consistently low annotator
agreement with the majority were eliminated.

Workers were paid for their efforts only after we
were reasonably sure their responses were sincere
based on inter-annotator agreement. For each tweet,
we calculate the final label by adding up the five con-
stituent labels provided by the workers (Yes = 1, No
= –1, Can’t tell = 0). In the event of a tie (0 score), we
consider the tweet healthy in order to obtain a high-
precision data set.

Designing HITs to elicit optimal responses from
workers is a difficult problem (Mason and Suri 2012).
Pricing HITs poorly can lead to workers not even
considering a task; HITs that are too long can cause
worker attrition, poorly or ambiguously worded HITs
will lead to noisy data. Worker satisfaction is also an
important “latent” factor, which should not be tak-
en lightly. Many Mechanical Turk workers are mem-
bers of communities that offer requester reviews,
very similar to Amazon’s product review system. As
a result, requesters who are unresponsive or oppor-
tunistic will soon find it hard to get any HIT com-
pleted.

Given that tweets indicating foodborne illness are
relatively rare, learning a robust language model pos-
es considerable challenges (Japkowicz et al. 2000;
Chawla, Japkowicz, and Kotcz 2004). This problem
is called class imbalance and complicates virtually all
machine learning. In the world of classification,
models induced in a skewed setting tend to simply
label all data as members of the majority class. The
problem is compounded by the fact that the minor-
ity class members (sick tweets) are often of greater
interest than the majority class.

We overcome class imbalance faced by nEmesis
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through a combination of two techniques: human
guided active learning, and learning a language mod-
el that is robust under class imbalance. We cover the
first technique in this section and discuss the lan-
guage model induction in the following section.

Previous research has shown that under extreme
class imbalance, simply finding examples of the
minority class and providing them to the model at
learning time significantly improves the resulting
model quality and reduces human labeling cost
(Attenberg and Provost 2010). In this work, we lever-
age human guided machine learning — a novel
learning method that considerably reduces the
amount of human effort required to reach any given
level of model quality, even when the number of
negatives is many orders of magnitude larger than
the number of positives (Sadilek et al. 2013). In our
domain, the ratio of sick to healthy tweets is rough-
ly 1 : 2500.

In each human guided learning iteration, nEmesis
samples representative and informative examples to
be sent for human review. As the focus is on the
minority class examples, we sample 90 percent of

tweets for a given labeling batch from the top 10 per-
cent of the most likely sick tweets (as predicted by our
language model). The remaining 10 percent is sam-
pled uniformly at random to increase diversity. We
use the HITs described above to obtain the labeled
data.

In parallel with this automated process, we hire
workers to actively find examples of tweets in which
the author indicates he or she has an upset stomach.
We asked them to paste a direct link to each tweet
they find into a text box. Workers received a base pay
of 10 cents for accepting the task, and were motivat-
ed by a bonus of 10 cents for each unique relevant
tweet they provided. Each wrong tweet resulted in a
10 cent deduction from the current bonus balance of
a worker. Tweets judged to be too ambiguous were
neither penalized nor rewarded. Overall, we have
posted 50 HITs that resulted in 1971 submitted tweets
(mean of 39.4 per worker). Removing duplicates
yielded 1176 unique tweets.

As a result, we employ human workers that “guide”
the classifier induction by correcting the system when
it makes erroneous predictions, and proactively seek-
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Figure 5. Example of a Mechanical Turk Task.

In this task, online workers are asked to label a given tweet. While tweets are often ambiguous, we encouraged workers to
use their best judgment and try to polarize their answers. We found that when workers are presented with too many options,
they tend to select “Can’t tell” even when the text contains a strong evidence of illness.

Help us �nd health problems looming behind these tweets.
Please use your best judgment to evaluate these tweets for signs of upset stomach, e.g. food poisoning, diarrhea, 
stomach ache, or food-related disease. Use theradio-buttons to select what you think is the most likely answer for 
each tweet. You will be paid based on agreement of your input with other workers and with our automated
system. Please consider each tweet carefully. Use the last response("It's absolutely impossible to tell from
this tweet") only when absolutely sure the health of the person cannot be estimated.

• Evaluate all tweets to complete the HIT.

• The tweets are often ambiguous or even nonsensical. Please use your best judgment to
!nd the best label for each tweet.

• You are not required to follow any links that may be included in the text.

• The tweets are un!ltered and therefore may contain offensive language.

• Enjoy the HIT, you are helping science! :-)

Do you think the author of this tweet has an upset stomach today?

I want to go to bed. It's 1am and I can't fall asleep because I'm sad :(

Yes: This person likely has an upset stomach

No: This person does NOT indicate upset stomach in this tweet

It's absolutely impossible to tell from this tweet



ing and labeling examples of the minority classes.
Thus, people and machines work together to create
better models faster. This combination of human
guided learning and active learning in a loop with a
machine model has been shown to lead to signifi-
cantly improved model quality (Sadilek et al. 2013).

In a postmortem, we have manually verified sub-
mitted tweets and 97 percent were correct sick tweets.
This verification step could also be crowdsourced.
Since searching for relevant tweets is significantly
more time consuming than simply deciding if a giv-
en tweet contains a good example of sickness, future
work could explore multitiered architecture, where a
small number of workers acting as “supervisors” ver-
ify data provided by a larger population of “assis-
tants.” Supervisors as well as assistants would collab-
orate with an automated model, such as the support
vector machine (SVM) classifier described in this
paper, to perform search and verification tasks.

Language Model
Harnessing human and machine intelligence in a
unified way, we develop an automated language
model that detects individuals who likely suffer from
a foodborne disease, on the basis of their online Twit-
ter communication.

Support vector machines are an established
method for classifying high-dimensional data (Cortes
and Vapnik 1995). We train a linear binary SVM by
finding a hyperplane with the maximal margin sepa-
rating the positive and negative data points. Class
imbalance, where the number of examples in one
class is dramatically larger than in the other class,
complicates virtually all machine learning. For SVMs,
prior work has shown that transforming the opti-
mization problem from the space of individual data
points to one over pairs of examples yields signifi-
cantly more robust results (Joachims 2005).

We use the trained SVM language model to predict
how likely each tweet indicates foodborne illness.
The model is trained on 8000 tweets, each independ-
ently labeled by five human annotators as described
above. As features, the SVM uses all uni-gram, bi-
gram, and tri-gram word tokens that appear in the
training data at least twice. For example, a tweet “My
tummy hurts” is represented by the following feature
vector:

{my, tummy, hurts, my tummy, tummy hurts, my
tummy hurts}

Prior to tokenization, we convert all text to lower
case and strip punctuation. Additionally, we replace
mentions of user identifiers (the “@” tag) with a spe-
cial @ID token, and all web links with a @LINK token.
We do keep hashtags (such as #upsetstomach), as
those are often relevant to the author’s health state,
and are particularly useful for disambiguation of
short or ill-formed messages.

Training the model associates a real-valued weight
to each feature. The score the model assigns to a new

tweet is the sum of the weights of the features that
appear in its text. There are more than 1 million fea-
tures; figure 2 lists the 20 most significant positive
and negative features. While tweets indicating illness
are sparse and our feature space has a very high
dimensionality, with many possibly irrelevant fea-
tures, support vector machines with a linear kernel
have been shown to perform very well under such
circumstances (Joachims 2006, Sculley et al. 2011,
Paul and Dredze 2011a). Evaluation of the language
on a held-out test set of 10,000 tweets shows 0.75
precision and 0.96 recall. The high recall is critical
because evidence of illness is very scarce.

System Architecture
nEmesis consists of several modules that are depict-
ed at a high-level in figure 3. Here we describe the
architecture in more detail. We implemented the
entire system in Python, with NoSQL data store run-
ning on Google Cloud Platform. Most of the code
base implements data download, cleanup, filtering,
snapping (for example, “at a restaurant”), and label-
ing (“sick” or “healthy”). There is also a considerable
model-learning component described in the previ-
ous two sections.

Downloader
This module runs continuously and asynchronously
with other modules, downloading all geo-coded
tweets based upon the bounding box defined for the
Las Vegas Metro area. These tweets are then persist-
ed to a local database in JSON format.

Tracker
For each unique Twitter user that tweets within the
bounding box, this module continues to download
all of their tweets for two weeks, independent of loca-
tion (also using the official Twitter API). These tweets
are also persisted to local storage in JSON format.

Snapper
The responsibility of this module is to identify Las
Vegas area tweets that are geo-coded within 50
meters of a food establishment. It leverages the
Google Places API, which serves precise location for
any given venue. We built an in memory spatial
index that included each of those locations (with a
square boundary based on the target distance we
were looking for). For each tweet, nEmesis identifies
a list of Google Places in the index that overlapped
with the tweet based on its lat/long. If a given tweet
had one or more location matches, the matching
venues are added as an array attribute to the tweet.

Labeler
Each tweet in the data store is piped through our
SVM model that assigns it an estimate of probability
of foodborne illness. All tweets are annotated and
saved back into the data store.

Aggregation Pipelines
We use Map Reduce framework on Google App
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Engine to support custom aggregation pipeline. It
updates statistics about each venue (number of sick
tweets associated with that venue, etc.).

Web Interface
The health professionals interact with nEmesis
through a web application shown in figure 1. All
modules described above work together to produce a
unified view that lists most likely offending venues
along with supporting evidence. This allows inspec-
tors to make informed decisions how to allocate their
resources. The application was written using a com-
bination of Python for the data access layer and
AngularJS for the front-end.

Developing the SVM model took 3 engineer-
months. The backend modules above (Downloader
through Labeler) took 2 engineer-months, and the
Web Interface took an additional engineer-month.

Results and Discussion
Figure 6 is a histogram of the inspection results. There
are clearly more control restaurants (red) that passed

inspection with flying colors — zero or one demerit.
The adaptive inspections (blue) appear to cluster
toward the right — more demerits — but a careful sta-
tistical analysis is necessary to determine if this is real-
ly the case. We use paired Mann-Whitney-Wilcoxon
tests to calculate the probability that the distribution
of demerits for adaptive inspection is stochastically
greater than the control distribution (Mann and Whit-
ney 1947). This test can be used even if the shapes of
the distributions are nonnormal and different, which
is the case here. The test shows that adaptive inspec-
tions uncover significantly more demerits: nine versus
six per inspection (p-value of 0.019).

Note that the result would have been even stronger
if not for an outlier in the control group, a single con-
trol restaurant that received a score of 62 for egre-
gious violations. Even including this outlier, howev-
er, we have very strong statistical evidence that
adaptive inspections are effective.

Chi-squared test at the level of discrete letter grades
(as noted earlier, 0–10 is an A, 11–20 is a B, 21–39 is
a C, and 40+ is an F), also show a significant skew
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Figure 6. Histogram of the Inspection Results.

The adaptive inspections are blue (light gray), and the control inspections are red (dark gray). The horizontal axis is the num-
ber of demerits where the bucket size is 2, and the vertical axis is the number of venues.
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toward worse grades in adaptive
inspections. The most important dis-
tinction, however, is between restau-
rants with minor violations (grades A
and B) and those posing considerable
health risks (grade C and worse).
nEmesis uncovers 11 venues in the lat-
ter category, whereas control finds
only 7, a 64 percent improvement.

All of our data, suitably anonymized
to satisfy Twitter’s terms of use, is avail-
able upon request to other researchers
for further analysis.

CDC studies show that each out-
break averages 17.8 afflicted individu-
als and 1.1 hospitalizations (CDC
2013). Therefore we estimate that
adaptive inspections saved 71 infec-
tions and 4.4 hospitalizations over the
three-month period. Since the Las
Vegas health department performs
more than 35,000 inspections annual-
ly, nEmesis can prevent over 9126 cas-
es of foodborne illness and 557 hospi-
talizations in Las Vegas alone. This is
likely an underestimate as an adaptive
inspection can catch the restaurant
sooner than a normal inspection. Dur-
ing that time, the venue continues to
infect customers.

Adaptive inspections yield a number
of unexpected benefits. nEmesis alert-
ed SNHD to an unpermitted seafood
establishment. This business was
flagged by nEmesis because it uses a
comprehensive list of food venues
independent of the permit database.
An adaptive inspection also discovered
a food handler working while sick with
an influenza-like disease. Finally, we
observed a reduced amount of food-
borne illness complaints from the pub-
lic and subsequent investigations dur-
ing the experiment. Between January
2, 2015, and March 31, 2015, SNHD
performed 5 foodborne illness investi-
gations. During the same time frame
the previous year, SNHD performed 11
foodborne illness investigations. Over
the last 7 years, SNHD averaged 7.3
investigations during this three-month
time frame. It is likely that nEmesis
alerted the health district to food safe-
ty risks faster than traditional com-
plaint channels, prior to an outbreak.

Given the ambiguity of online data,
it may appear hopeless to identify
problematic restaurants fully automat-
ically. However, we demonstrate that

nEmesis uncovers significantly more
problematic restaurants than current
inspection processes. This work is the
first to directly validate disease predic-
tions made from social media data. To
date, all research on modeling public
health from online data measured
accuracy by correlating aggregate esti-
mates of the number of cases of dis-
ease based on online data and aggre-
gate estimates based on traditional
data sources (Grassly, Fraser, and Gar-
nett 2005; Brownstein, Wolfe, and
Mandl 2006; Ginsberg et al. 2008;
Golder and Macy 2011; Sadilek et al.
2013). By contrast, each prediction of
our model is verified by an inspection
following a well-founded professional
protocol. Furthermore, we evaluate
nEmesis in a controlled double-blind
experiment, where predictions are ver-
ified in the order of hours.

Finally, this study also showed that
social-media-driven inspections can
discover health violations that could
never be found by traditional proto-
cols, such as unlicensed venues. This
fact indicates that it may be possible to
adapt the nEmesis approach for iden-
tifying food safety problems in non-
commercial venues, ranging from
school picnics to private parties. Iden-
tifying possible sources of foodborne
illness among the public could sup-
port more targeted and effective food
safety awareness campaigns.

The success of this study has led the
Southern Nevada Health District to
win a CDC grant to support the fur-
ther development of nEmesis and its
permanent deployment statewide.
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