
Constraint Propagation for Efficient Inference in

Markov Logic

Tivadar Papai1, Parag Singla2, and Henry Kautz1

1 University of Rochester, Rochester NY 14627, USA
{papai,kautz}@cs.rochester.edu

2 University of Texas, Austin TX 78701, USA
parag@cs.utexas.edu

Abstract. Many real world problems can be modeled using a combi-
nation of hard and soft constraints. Markov Logic is a highly expressive
language which represents the underlying constraints by attaching real-
valued weights to formulas in first order logic. The weight of a formula
represents the strength of the corresponding constraint. Hard constraints
are represented as formulas with infinite weight. The theory is compiled
into a ground Markov network over which probabilistic inference can
be done. For many problems, hard constraints pose a significant chal-
lenge to the probabilistic inference engine. However, solving the hard
constraints (partially or fully) before hand outside of the probabilistic
engine can hugely simplify the ground Markov network and speed prob-
abilistic inference. In this work, we propose a generalized arc consistency
algorithm that prunes the domains of predicates by propagating hard
constraints. Our algorithm effectively performs unit propagation at a
lifted level, avoiding the need to explicitly ground the hard constraints
during the pre-processing phase, yielding a potentially exponential sav-
ings in space and time. Our approach results in much simplified domains,
thereby, making the inference significantly more efficient both in terms
of time and memory. Experimental evaluation over one artificial and two
real-world datasets show the benefit of our approach.

1 Introduction

Combining the power of logic and probability has been a long standing goal
of AI research. The last decade has seen a significant progress towards this
goal, with the emergence of the research area called statistical relational learn-
ing (SRL). Many different representation languages have been proposed which
combine subsets of full-first order logic with various probabilistic graphical repre-
sentations [4]. One such powerful language is Markov Logic [2], which represents
a joint probability distribution over worlds defined by relationships over entities
by attaching weights to formulas in first order logic.

A Markov logic theory can be seen as a combination of hard and soft con-
straints. Hard constraints are modeled by formulas with infinite weight, and must
be satisfied in any world with non-zero probability. The typical approach to infer-
ence in Markov logic involves grounding out the theory and jointly dealing with

J. Lee (Ed.): CP 2011, LNCS 6876, pp. 691–705, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

692 T. Papai, P. Singla, and H. Kautz

both hard and soft constraints. For many problems, hard constraints can pose
a significant challenge to the underlying probabilistic inference engine, making
it difficult for a sampler to move between different modes. Much work has gone
into the development of probabilistic inference algorithms that are robust in the
face of hard constraints (for example, MC-SAT [11], SampleSearch [5]), but the
general problem of efficiently handling hard constraints is far from solved.

The key idea in this paper is that, intuitively, each hard constraint in the
knowledge base reduces the set of possible worlds that have a non-zero proba-
bility. In particular, a set of hard constraints together can restrict the number
of groundings of a predicate about which we are uncertain (i.e., the probability
of an instance of the predicate holding is strictly between 0 and 1). We refer to
this phenomenon as domain pruning. Domain pruning can significantly simplify
the ground network over which probabilistic inference needs to be done, as the
pruned groundings can be treated as evidence (fully observed). Therefore, we
propose an approach to probabilistic inference which has two components: 1)
Solve the hard constraints (fully or partially) to identify the pruned domains 2)
Use a standard probabilistic inference engine with pruned domains input as evi-
dence. Building on ideas in the area of constraint satisfaction, we propose a novel
generalized arc consistency algorithm for propagating the hard constraints. Since
our algorithm deals only with hard constraints to prune the domains, it is guar-
anteed to produce the same solution as the standard techniques. Our algorithm
can be seen as a form of lifted unit propagation. We show that our approach
can use exponentially less space and time than performing unit propagation on
the grounded theory. Experiments on three different datasets clearly show the
advantage our approach.

The organization of this paper is as follows. We first present some background
on Markov logic and constraint propagation. This is followed by the details of
the generalized arc consistency algorithm. We present our results on two real
and one artificial datasets. Next, we discuss some of the related work in this
area. We conclude with the directions for future work.

2 Background

2.1 Markov Logic

First-order probabilistic languages combine graphical models with elements of
first-order logic, by defining template features that apply to whole classes of
objects at once. One such powerful language is Markov logic [2]. A Markov logic
network (MLN) is a set of weighted first-order formulas. The weight of a formula
represents the strength of the constraint. Soft constraints are formulas with
finite weight, while hard constraints have infinite weight. A theory consists of
a combination of hard and soft constraints. Together with a set of constants
representing the objects of interest, it defines a Markov network with one node
per ground atom and one feature per ground formula. The weight of a feature is
the weight of the first-order formula that originated it. More formally,

Constraint Propagation for Efficient Inference in Markov Logic 693

Definition 1. [2] A Markov logic network (MLN) L is a set of pairs (Fi, wi),
where Fi is a formula in first-order logic and wi is a real number. Together with
a finite set of constants C = {c1, c2, . . . , c|C|}, it defines a Markov network ML,C

as follows:

1. ML,C contains one binary node for each possible grounding of each predicate
(ground atom) appearing in L. The value of the node is 1 if the ground
predicate is true, and 0 otherwise.

2. ML,C contains one feature for each possible grounding of each formula Fi

(ground formula) in L. The value of this feature is 1 if the ground formula
is true, and 0 otherwise. The weight of the feature is the wi associated with
Fi in L.

For many problems, a set of ground atoms are known to be true or false before
hand. These are known as evidence atoms. The ground atoms whose value is not
known at the inference time are called query atoms. The ground Markov network
ML,C defines the probability of an assignment y to the query atoms Y , given an
assignment x to the evidence atoms X , as

P (Y = y|X = x) =
1

Zx
exp

(∑
k

wkfk(y, x)

)
(1)

where the summation is taken over all the ground formulas. wk is the weight of
the kth ground formula, fk = 1 if the kth ground formula is true, and fk = 0
otherwise, and Zx is the normalization constant. For any state to have a non-zero
probability, all the hard constraints have to be satisfied, in which case the corre-
sponding weight term (infinite) can be factored out from the denominator as well
as the numerator. The evidence atoms can be input to the inference procedure in
the form of a set called evidence database. The value of evidence atoms is set by
fixing the assignment of the corresponding nodes in the network to the respective
truth value. A large evidence results in effectively pruning the network, as the
corresponding nodes assignments can be fixed and removed from the network.
Marginal inference corresponds to the problem of finding the probability of true
assignment to each of the query nodes in the network. Inference can be done
using standard inference techniques such as Gibbs sampling or belief propaga-
tion. More efficient techniques which exploit the nature of the formula (hard or
soft) [11] or the structure of the network [16] have also been proposed. None of
these techniques is able to exploit the fact that the set of hard constraints in the
knowledge base can, in many instances, be solved very efficiently, thereby signif-
icantly pruning the domains of predicates and shrinking the number of ground
formulas.

Any first-order knowledge base can be equivalently converted into a clausal
form by a series of mechanical steps [12]. We deal with finite first order logic,
and all the function evaluations are assumed to be known in advance [2]. Hence,
any existential can be equivalently replaced by a disjunction of corresponding
ground literals. Therefore, without loss of generality, we will deal explicitly with
clauses in the following formulation.

694 T. Papai, P. Singla, and H. Kautz

2.2 Constraint Satisfaction and Local Consistency

A Constraint Satisfaction Problem (CSP) refers to a set of variables X = {X1,
. . . , Xn}, their domains R = {R1, . . . , Rn} and a set of constraints C = {C1,
. . . , Ck} over the variables in X . Every constraint Ci ∈ C is a relation over some
non-empty set of variables in X , and specifies the set of values the variables
appearing in it can take. A solution to a CSP is a set of assignments S to the
variables in X , such that every member s ∈ S satisfies all the constraints in C.
In many instances, finding such a set is computationally challenging. However,
for many problems, for each variable Xi, we can efficiently eliminate a subset of
the values which are not part of any solution to the CSP. Let Vi ⊆ Ri be the set
of allowed values of Xi after eliminating such a subset of values. A variable is
generalized arc consistent (or hyper-arc consistent) with a constraint, if for every
value in its allowed set of values, there is an assignment to the remaining variables
which satisfies the constraint. Consistency with respect to a set of constraints
is defined in a similar manner. Generalized arc consistency only ensures local
consistency i.e. it does not directly enforce any constraints among the variables
which do not share a constraint. One way to ensure generalized arc consistency
is to initialize the set of allowed values, Vi, to the respective domain Ri, and then
iteratively eliminate those values which are not generalized arc consistent with
the set of constraints. The algorithm continues until none of the Vi sets changes.
This simple iterative procedure can lead to significant reduction in domain size
for many problems. There are other forms of local consistency which could be
enforced. A partial assignment to a set S of variables is said to be consistent
if it does not violate any constraints which involve variables only from S. i-
consistency requires that every consistent assignment of i − 1 variables can be
extended by a value of any other variable not violating any of the constraints, and
strong i-consistency ensures k-consistency for every 1 ≤ k ≤ i. For a thorough
introduction to CSPs and local consistency, see [1].

3 Constraint Propagation in Markov Logic

A set of first order clauses impose a set of constraints on the truth assignment to
the ground atoms which participate in the respective ground clauses. Generalized
arc consistency ensures that allowed truth assignments (true/false) to any ground
atom have a corresponding assignment for all the other atoms in the clause such
that the clause is satisfied. An evidence database fixes the assignment of the
ground atoms in the database to true or false. Given a set of first order clauses,
and an evidence database, our goal then, is to devise an algorithm so that the
ground atoms in the domain are generalized arc consistent with the constraints
imposed by the set of ground clauses. Because each atom can take only two
possible assignments, any pruning on the domain of an atom essentially means
that we can fix its assignment (if the whole domain is pruned then the constraints
are inconsistent). Hence, ensuring generalized arc consistency on a set of hard
clauses in a theory is a way to infer the additional truth assignments for some of
the originally unknown ground atoms. These can then be set to evidence with

Constraint Propagation for Efficient Inference in Markov Logic 695

the inferred truth value for any following probabilistic inference procedure. This
leads to huge simplification in the network over which probabilistic inference
needs to be performed.

The key idea for enforcing generalized arc consistency is to look at each ground
clause in turn, and identify a ground atom whose assignment needs to be fixed
in order to satisfy the clause, given current assignment to other atoms in the
clause. This can be done iteratively, until no more truth assignments can be fixed.
The main caveat with this approach is that it explicitly involves grounding out
the whole theory, which is often prohibitively expensive. Next, we describe an
algorithm which alleviates this problem.

3.1 Generalized Arc Consistency Algorithm

For the notational convenience, we will explain our algorithm for the case of
untyped predicates; extending it to the more general case is straightforward. Let
KB be a knowledge base with a set of hard constraints. Let L denote a predicate
(or its negation). Let each argument take the values from the set of constants
T . Therefore, the domain of L, denoted as R(L), is T k. Further, let D(L) be the
subset of tuples t ∈ R(L), for which L(t) can be true in some model, i.e. t ∈ D(L)
if L(t) = true is possibly a part of some assignment satisfying the constraints
in KB. Let N(L) be the subset of tuples for which L(t) is necessarily true in
any given model, i.e. t ∈ N(L) if L(t) = true in every assignment satisfying the
constraints in KB. Note that N(L) = R(L) \D(¬L).

The goal of the generalized arc consistency algorithm is to find the maximal
N(L) for every predicate L, while propagating constraints through the hard
clauses. The algorithm starts with an initial set N(L) for every L, and iteratively
increases the size of N(L), using the hard constraints given in the knowledge
base, until none of the N(L) sets can be further extended. The starting points
of the algorithm are the ground atoms supplied in the evidence database. The
algorithm is most easily described in the case where each predicate in a clause
contains the same set of variables. Consider, for example:

C = L1(x) ∨ . . . ∨ Lk(x) (2)

where x is a vector of variables. For every 1 ≤ i ≤ k: N(Li) can be updated as
follows:

N(Li)← N(Li)
⋃⎡
⎣ ⋂

i�=j,1≤j≤k

N(¬Lj)

⎤
⎦ (3)

In words, for every tuple c in the domain of x, we can conclude that Li(c) is true
in every possible world if every other Lj(c) appearing in the clause is false in
every possible world. To generalize the update rule for predicates with different
sets of variables we employ the (database) Join and Project operations. We
define Join for two sets of tuples each of which has a corresponding vector of
variables associated with it. Let Si be a set of tuples and Xi be the corresponding
vector of variables (i ∈ {1, 2}). We overload the notation such that Xi also refers

696 T. Papai, P. Singla, and H. Kautz

to the set of variables in the corresponding vector. For now, we assume that a
variable cannot appear more than once in a vector of variables (we will relax this
assumption later in the text). For a tuple s ∈ Si and a variable x ∈ Xi let s[x]
denote the value of the variable x in the tuple s. Let X = X1

⋃
X2 and R(X)

be the full domain formed by the Cartesian product of the individual domains
of the variables in X in some ordering of the variables. The join of the sets of
tuples Si, given corresponding vector of variables Xi, is defined as follows:

Join{〈Xi, Si〉} = 〈X, {c|c ∈ R(X) ∧ ∀i, ∃s ∈ Si ∀x ∈ Xi : s[x] = c[x]}〉 (4)

Join is commutative and associative. The projection of a set S of tuples asso-
ciated with a variable vector X to the variable vector Y is defined as follows:

Project(Y, 〈S, X〉) = {c|c ∈ R(Y) ∧ ∃s ∈ S ∀y ∈ (Y ∩X) : s[y] = c[y]} (5)

For more details on natural join and project operations, see [3]. Using the above
definitions we can extend the update rule to the general case (where each pred-
icate in a clause can contain an arbitrary subset of variables):

N(Li)← N(Li)
⋃

[Project(Xi, Joinj �=i{〈Xj , N(¬Lj)〉}] (6)

The space and time complexity of Equation (6) is sensitive to the order in which
we perform the Joins (they can be performed in any order since Join is both
commutative and associative). The worst case complexity (both space and time)
is exponential in the number of variables involved in the operation. A number
of different heuristic criteria could be used to decide the join order; we selected
the literal L first with the smallest N(L) set. Additionally, while performing a
series of Joins, if the intermediate result contains a set of variables X ′ such that
an x ∈ X ′ variable does not occur in the remaining Xj sets, i.e., x is guaranteed
not to appear on any other side of a Join and x is also not a member of Xi,
then, we can project this partial result to X ′ \ {x}. This re-ordering of join and
project operations can substantially reduce the space and time complexity of the
algorithm. Consider, e.g.,

H(x) ∨O1(x, y1) ∨O2(x, y2) ∨ . . . ∨Ok(x, yk) (7)

where H is a hidden predicate while O1, O2, . . . , Ok are all observed. Also, let
|R(H)| = N and for every 1 ≤ i ≤ n : |R(Oi)| = N2. For every 1 ≤ i ≤ k we can
perform

Project(x, 〈(x, yi), N(¬Oi)〉) (8)

and feed the results to the Joins instead of using N(¬Oi) in the Joins, because
every yi occurs exactly in one predicate. This way, the space and time complexity
of the algorithm reduces to O(kN2) from O(Nk+1).

Algorithm 1 shows the pseudo-code for our generalized arc consistency algo-
rithm. Line 3 initializes the N(Li) sets based on the evidence database. In line 8
of the algorithm we start iterating through all the hard constraints. In line 10 we
update the N(Li) sets for every positive or negative literal using Equation (6).

Constraint Propagation for Efficient Inference in Markov Logic 697

Algorithm 1. Update Algorithm for Generalized Arc Consistency on Clauses
1: for all C ∈ KB do
2: for all Li literal ∈ C do
3: N(Li) = {t|Li(t) = true; given the evidence database}
4: end for
5: end for
6: repeat
7: changed← false
8: for all C ∈ KB do
9: for all Li literal ∈ C do

10: Δ← [Project(Xi, Joinj �=i{〈Xj , N(¬Lj)〉}]
11: if Δ �= ∅ then
12: changed← changed ∨N(Li) �= N(Li)

⋃
Δ

13: N(Li)← N(Li)
⋃

Δ
14: end if
15: end for
16: end for
17: until ¬changed

The algorithm keeps iterating over all the hard constraints until none of the
N(Li) sets change. It is easy to prove the convergence as well as the correct-
ness of our generalized arc consistency algorithm. First, for convergence, clearly,
the algorithm stops if in any iteration, none of the clauses results in a change
in the N(Li) sets. Alternatively stated, each iteration results in at least one of
the N(Li) sets increasing in size. Further, size of each N(Li) is upper bounded
by the size of the corresponding domain R(Li). Therefore, the algorithm termi-
nates in finite steps. By correctness we mean that, if N(Li) is the set obtained for
predicate Li at the end of the algorithm, then, for each tuple ti ∈ N(Li), every
model contains L(ti) in it, i.e. in any satisfying solution to the hard constraints
Li(ti) = true. Let us prove it by induction. Initially, each N(Li) is set using the
evidence database. Hence, the claim is true in the beginning. Next, let the claim
holds at the kth update step (to any of the N(Li)’s) during the execution of the
algorithm. Considering k + 1th update, if an atom ti is added to the set N(Li),
then, there must have been a ground clause, L1(t1)∨L2(t2) · · ·∨Li(tk) · · ·∨Lk(tk),
such that each of Lj(tj) = false,∀j = i. This follows from the generalized arc
consistency update rule (Equation (6)) and the fact that the claim holds true
at the kth update step. Hence, L(ti) must be true as setting it otherwise would
lead to violation of this clause. Further, since we assumed the claim to be true
at step k, and any new additions to the set N(Li) satisfy the claim by above
argument, the claim is true at step k + 1. Hence, proved.

3.2 Extension to Other Cases

Existentials. We extend the update rule for clauses to allow existentially quan-
tified conjunctions besides regular literals. E.g., consider the formula:

P (x) ∨ ∃y [Q(x, y) ∧R(z, y)] (9)

698 T. Papai, P. Singla, and H. Kautz

For all the instantiations of x when ∃y [Q(x, y) ∧R(z, y)] is necessarily false P (x)
must be true. Thus, all we need to do is to extend the definition of N(Li) to
allow Li to be the negation of an existentially quantified conjunction.

Let F = ¬∃Y [L1(X1) ∧ . . . ∧ Lk(Xk)] where Y ⊆ ⋃i Xi. Let X =
⋃

i Xi \ Y
and R(X) be the full domain formed by the Cartesian product of the individual
domains of the non-quantified variables in X in some ordering of the variables.
Then:

N(F)← R(X) \ Project(X, Join1≤i≤k{〈Xi, R(Li) \N(¬Li)〉}) (10)

N(F) has to be updated if N(¬Li) changes for any of the Li’s appearing in F .

Constant Arguments. If a predicate P in a clause has a constant argument
c, we can do the following transformation of the clause to a new clause which
provides an equivalent hard constraint without having constant arguments in
the predicates:

P (x, c) ∨ . . . is replaced byP (x, y) ∨ ¬Ec(y) ∨ . . . (11)

Where Ec(y) is a fully observed predicate and is true if and only if y = c.

Repeated Arguments. If a predicate P in a clause has a variable argument
which appears more than once, the following transformation could handle this
case:

P (x, x) ∨ . . . is replaced byP (x, x′) ∨ ¬E(x, x′) ∨ . . . (12)

Where x′ is a variable not appearing in the original clause, and E(x, x′) is a fully
observed predicate being true if and only if x = x′.

3.3 Relation to Unit Propagation

Running unit propagation on the ground hard clauses using the evidence would
produce exactly the ground unit clauses which correspond to the N sets created
by running the proposed generalized arc consistency algorithm.1 Initially, the N
sets are set according to the evidence, and to the unit clause hard constraints.2

At this point the ground unit clauses available for unit propagation are exactly
the ground unit clauses corresponding to the members of the N sets. Let the
claim holds true after k updates to the N sets. Then, if unit propagation can
derive a new ground unit clause so can the generalized arc consistency algo-
rithm, because the new unit clause is the result of resolving a ground clause
with ground unit clauses to each of which there is a corresponding member of
N . This makes sure that the Joins and Projects in Equation (6) result in a

1 This result holds in general when we do not perform any special pruning for exis-
tential quantifiers (Section 3.2). They are simply treated as disjunction of literals.

2 Algorithm 1 initializes the N sets based only on evidence, but it is easy to see that
both forms of initializations become equivalent after one step of running the original
algorithm on unit clause hard constraints.

Constraint Propagation for Efficient Inference in Markov Logic 699

non-empty set containing a member corresponding to the newly derived ground
unit clause. Also, when Equation (6) updates an N(Li) set based on the clause
C = L1(X1)∨. . .∨Ln(Xn), it uses the values in N(¬L1), . . . , N(¬Lj), . . .N(¬Ln)
(i = j). The ground unit clauses corresponding to these values are available to
unit propagation, hence unit propagation can derive the ground unit clauses
corresponding to the update of N(Li). Therefore, the claim holds true after
k +1 updates to the N sets. Using the induction argument, the claim holds true
for all values of k, and in particular, at the termination of the generalized arc
consistency algorithm.

Although, the end result is the same, the generalized arc consistency algorithm
can use significantly less space and time. Revisiting the example in Equation (7),
there are O(Nk+1) ground clauses created, and hence, unit propagation would
need O(Nk+1) space and time. However, as we pointed out earlier, generalized
arc consistency algorithm requires only O(kN2) space and time.

3.4 Moving Beyond Generalized Arc Consistency

A natural question that may arise is why not use other forms of local consistency
instead of generalized arc consistency (e.g. strong i-consistency). There is a trade-
off between the strength of the consistency requirement and the time spent in
processing the hard constraints. Stronger consistency requirements will typically
result in better pruning but it comes at the cost of increased processing time.
It is easy to see that if l is the maximum length of a clause in the Markov logic
theory, then, strong i-consistency (i ≥ l) subsumes generalized arc consistency.
Following example is illustrative in this regard. Consider the axioms:

1. P (x) ∧Q(x)⇒ O(x)
2. S(x)⇒ P (x)
3. S(x)⇒ Q(x)

where O is an observed predicate such that R(O) = {a, b, c, d} and D(O) =
{a, b, c}. Let R = R(S) = R(P) = R(Q) = R(O). Together these imply that the
domain of S is limited to {a, b, c}. But this cannot be inferred by generalized
arc consistency on the CSP created from these axioms. Enforcing 3-consistency
on the groundings of P, Q and O will ensure that both P (d) = true and Q(d) =
true cannot hold at the same time. Moreover, enforcing 3-consistency on the
groundings of P, Q and S ensures that for every m ∈ R if at least one of P (m)
and Q(m) is false then S(m) must be false as well. Hence, we could try to enforce
strong i-consistency on the CSP for some value of i ≥ 3. But strong i-consistency
requirements do not fall out naturally from the clausal structure imposed by the
Markov logic theory. However, the same effect can be achieved by applying FOL
resolution [12] to the axioms before creating the CSP. For instance, resolving 1
and 2 yields ¬Q(x) ∨ ¬S(x) ∨O(x). Resolving this with 3 yields ¬S(x) ∨O(x).
This new clause then does allow D(S) = {a, b, c} to be inferred by generalized
arc consistency.

Pre-processing a theory by resolving (hard) constraints can be done exhaus-
tively or in a limited manner; for example, resolution could be performed in a

700 T. Papai, P. Singla, and H. Kautz

breadth-first manner up to a fixed depth. Because a Markov logic theory contains
no uninterpreted function symbols, even exhaustive resolution is guaranteed to
terminate, although in the worst case an exponential number of resolvants would
be created. We did some preliminary experiments with performing resolution to
varying depths before applying generalized arc consistency, but little additional
benefit was obtained on our test domains. Exploring this further is a direction
for future work.

4 Experiments

We experimented on two real and one artificial datasets to compare the time and
memory performances of CPI (Constraint Propagation based Inference) and the
standard approach to inference (i.e. no prior pruning of the predicate domains is
done). We used the freely available Alchemy [9] system for all our experiments.
For the standard approach to inference, we used the Alchemy implementation
as is. For the constraint propagation, we implemented a separate program to
prune the domains by propagating the constraints amongst hard clauses. The
output of this program was passed as additional evidence to Alchemy for the
CPI. For the probabilistic inference in both the approaches, exactly the same
knowledge base was used (including all the soft and hard rules). Since exact
marginal inference was not tractable, we used the MCMC based MC-SAT [11]
algorithm implemented in Alchemy. It was run to collect 1000 samples (default in
Alchemy) for both the approaches. All the experiments were run on a cluster of
nodes with processor speed of 2.4 GHz. We do not report accuracy since both the
approaches are guaranteed to give the same results at the point of convergence
of MC-SAT (Section 4.3 discusses some of the issues relating to the convergence
of MC-SAT). We first describe the datasets in detail followed by our results.

4.1 Datasets

Cora. Entity resolution is the problem of determining which observations (e.g.,
records in a database) correspond to the same objects. We used the version of
McCallum’s Cora database available on the Alchemy website (Kok et al. 2007).
The inference task was to de-duplicate citations, authors and venues (i.e., to
determine which pairs of citations refer to the same underlying paper, and simi-
larly for author fields and venue fields). We used the MLN (formulas and weights)
used by Singla and Domingos [15] in their experiments. This contains first-order
clauses stating regularities such as: if two fields have high TF-IDF similarity,
they are (probably) the same; if two records are the same, their fields are the
same, and vice-versa; etc. For each field, we added the hard rules for deciding
that two fields are a non-match if their TF-IDF similarity was below a thresh-
old. This effectively implements the canopies as described by McCallum [10],
to eliminate obvious non-matches. We also added another set of rules deciding
a pair of citations as non-match if any of the fields did not match. The final
knowledge base contained 25 predicates and 52 formulas (6 hard and 46 soft).
Maximum formula-arity was 4 and maximum predicate domain size was 71,000.

Constraint Propagation for Efficient Inference in Markov Logic 701

Capture the Flag (CTF). Our second dataset deals with the task of activity
recognition. Sadilek and Kautz [13] collected this dataset by having subjects
play the game of capture the flag on a University campus. The dataset contains
the details of the GPS location of each player at each time step. The task is to
determine all the captured events during the course of the game. The dataset
contains information about 3 different games with 14 players (divided onto two
teams), running for an average of 625 time steps. Each GPS location was uniquely
snapped (model as hidden predicate) to one of the 6499 cells. We used the
knowledge base hand-coded by Sadilek & Kautz (2010) stating hard facts such
as ”captured players stay at the same location” and soft rules such as ”if two
players from different teams are snapped to the same cell at a time step, then
it is likely to result into a capture event”. We added another hard rule stating
if two agents are at same place, then they must be snapped to nearby cells.
The original knowledge base involves some soft rules with real-valued features.
Since current Alchemy implementation does not support them, we ignored these
rules for our experiments. The final knowledge base contained 9 predicates and
17 formulas (15 hard and 2 soft). Maximum formula-arity was 4 and maximum
predicate domain size was 29 million.

Library. We also experimented with an artificially generated online library
dataset. The goal of the system is to recommend books to each user that they
might like to read. Each user can read books in one or more of the four languages
that they can speak. A user needs to read a book in order to like it. The system
can recommend a book to a user if they have not already read it. These are
modeled as hard constraints. The system recommends a book to a user if the
user shares the liking of another book with a user who likes this book as well.
This is modeled as a soft constraint. Read, available and speaks are modeled as
fully observed. Likes is partially observed. The task is to predict recommends.
The final knowledge base contained 5 predicates and 4 formulas (3 hard and 1
soft). Maximum formula-arity was 4 and maximum predicate domain size was
0.5 million.

We generated a dataset containing 100 users. The number of books was varied
from 500 to 5000, at intervals of 500. For each user (book), the set of languages
spoken (available) was chosen using a Bernoulli trial for each of the 4 languages.
The parameters of the Bernoulli trials were set to model that certain languages
are more popular than others. The number of books read by each user followed
a Gaussian distribution with μ = 30 and σ = 5. The subset of books read by
a user was assigned uniformly at random from the set of books available in the
languages that user could speak. A user left feedback for a book he read with 0.3
probability and the feedback was likes with 0.7 and not likes with 0.3 probability.

4.2 Results

Tables 1 presents the results on the three datasets. For Library, the reported
results are for 2500 books. Standard (Stand.) and CPI refer to the standard ap-
proach to inference, and the constraint propagation based inference, respectively.

702 T. Papai, P. Singla, and H. Kautz

Table 1. Time and memory costs comparing the two inference approaches

Domain Time (in mins) Ground Tuples (in 1000’s)
Const. Propagation Prob. Inference Const. Propagation Prob. Inference
Stand. CPI Stand. CPI Stand. CPI Stand. CPI

CTF 0 0.37 1536.6 528.0 0 585.5 2107.8 1308.7
Cora 0 0.07 181.1 26.2 0 153.6 488.2 81.4

Library 0 0.20 286.4 23.0 0 462.7 366.2 45.9

1000 2000 3000 4000 5000
0

100

200

300

400

500

600

700

Number of books

T
ot

al
 ti

m
e

in
 m

in
ut

es

CPI
Standard

Fig. 1. Inference time for varying number of books

We report the running time of the two algorithms as well as the memory require-
ment, measured in terms of number of ground clauses created. For both time
and memory, results are split into two parts a) cost of constraint propagation b)
cost of probabilistic inference. First cost is zero for the standard inference. For
CPI, total time cost is the sum of two costs. As evident from the table, time
cost of constraint propagation is negligible compared to the cost for probabilistic
inference. On CTF, CPI is faster than standard inference by a factor of 3; on
Cora, by a factor of 7. On library, the gain is an order of magnitude.

Since we run the two inference pieces sequentially (constraint propagation
followed by probabilistic inference), memory cost for CPI is the maximum of the
cost for the two parts. For CTF, the cost of probabilistic inference dominates.
Memory cost for CPI for this dataset is about 60% of the standard inference.
For Cora and Library, constraint propagation dominates the memory cost. This
is due to the join operation in the generalized arc consistency algorithm, which
can turn out to be quite expensive. On Cora, CPI saves memory by more than
a factor of 4. On Library the gain is relatively less. Figure 1 shows the inference
time results for the Library dataset as the number of books is varied from 500 to
5000. The time cost for CPI stays almost constant, whereas, it goes linearly up
for standard inference. The number of ground clauses constructed (during actual
probabilistic inference) follows a similar trend. This is attributed to the fact that
as the number of books increases, the problem becomes sparser i.e. chances of two

Constraint Propagation for Efficient Inference in Markov Logic 703

people having liked the same book and hence, one causing the recommendation
to the other decreases with increasing number of books. Most recommended
groundings need not be considered for inference and CPI can take advantage of
this. Standard inference, not being able to prune the domains, scales linearly
with increasing number of books. It should be noted that the Library dataset
had to be carefully hand-engineered for the standard inference approach to run
on it, whereas CPI did not have any problems with the intuitive formulation of
the knowledge base.3 Exploring this further is a direction for future work.

Results above demonstrate that hard constraints in Markov logic can be used
to significantly reduce both the time and memory cost of inference. The ad-
vantage can be huge for the problems where domains are already very sparse.
Generalized arc consistency is extremely fast relative to the probabilistic infer-
ence. Its memory requirements can be relatively high sometimes, but still it saves
significant memory in many cases, in comparison to the standard approach.

4.3 Note about MC-SAT Convergence

Alchemy does not give a way to detect if the MC-SAT algorithm has converged.
But we compared the differences in the marginals obtained by two approaches at
the end of 1000 steps of MC-SAT (all our results are obtained by running MC-
SAT for 1000 steps.). On the Cora dataset, 99% of the differences were within 0.01
threshold. For Library, this number was 0.05. For Capture the Flag, we noticed a
much larger variation. This is due the fact that it is a much bigger domain, and
many more samples are needed to converge to the right marginals. Nevertheless,
it should be noted that any increase in the number of samples during probabilistic
inference would lead to even larger gain for our approach. This is because we have
a much simpler network, and collecting each sample takes lesser time compared to
the standard approach. For the same reason, we also expect a faster convergence
(in terms of the number of samples needed) for our approach. Exploring these con-
vergence issues in detail is a direction for future work.

5 Related Work

There has been some related work which exploits the structure of the network to
make inference in Markov logic more efficient, but none has separately analyzed
the hard constraints to reduce the size of the predicate domains over which
network is constructed. LazySAT [15] exploits the fact that for many problems,
most ground atoms are false and most ground clauses are satisfied, hence, a local
solver (such as MaxWalkSAT [7]), does not need to explicitly instantiate them.
Lifted Belief Propagation (LBP) [16] performs inference over a lifted network
by clustering the nodes that would pass the same BP message in the ground
network. None of these approaches are able to explicitly eliminate the nodes
which are categorically false (or true) by virtue of the hard constraints. This

3 Results reported above for the Library dataset are for the hand-engineered case.

704 T. Papai, P. Singla, and H. Kautz

may lead to sub-optimal inference, for instance, flipping a false (inferred) node in
LazySAT, or, putting two false nodes in the different clusters for the case of LBP.
Our approach is orthogonal to the benefits obtained by above algorithms, and
thus can be used in conjunction with them. Jha et al. [6] recently proposed a lifted
inference algorithm which uses techniques from logic and database literature.
Their algorithm handles only the case for exact inference and that, too, for a
small class of very simple MLNs.

Shavlik and Natarajan [14] present an approach to pre-process MLN theory
to reduce the size of the ground Markov network. Their pre-processing effec-
tively implements a fast index based algorithm to eliminate trivially satisfied
(or unsatisfied) clauses. Each clause is processed independently. They do not
allow information to be transferred from one clause to another, which is a key
aspect of our approach. Alchemy already implements their pre-processing step,
and hence, any benefits obtained by our approach are in addition to theirs.

Kisyński and Poole [8] analyze the use of different algorithms for constraint
satisfaction in lifted inference. Their analysis is in the context of FOVE (first-
order variable elimination) where factors are eliminated in some order. It’s not
directly applicable to approximate inference setting. Whether their lifted solver
can be used in place of generalized arc consistency in our framework is a direction
for future work.

Our work can be seen in the light of constraints specified using SQL queries
in Relational Markov Networks (RMNs) [17]. Our approach is more general than
theirs because constraints do not have to be repeated for each clause. Further,
unlike their approach, we propagate information from one constraint to another,
thereby potentially leading to even smaller predicate domains, over which to
construct the network.

6 Conclusion and Future Work

We proposed a generalized arc consistency algorithm to effectively propagate
the hard constraints in a Markov logic theory. We are able to do this at a lifted
level, without ever explicitly grounding out the whole theory. Our algorithm
significantly prunes the predicate domains, thereby, resulting in much simpler
networks and allowing for significant efficiency gains during probabilistic infer-
ence. Directions for future work include experimenting with a wider variety of
domains, trying out other forms of consistency requirements, symbolic manipu-
lation of the theory to propagate the constraints more effectively, and combining
our approach with lifted and lazy inference.

Acknowledgements. We are thankful to Ray Mooney for helpful discussions,
and to Adam Sadilek for sharing the CTF dataset. This research was partly
funded by ARO grant W911NF-08-1-0242 and NSF award 1012017. The views
and conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies, either ex-
pressed or implied, of ARO, NSF or the United States Government.

Constraint Propagation for Efficient Inference in Markov Logic 705

References

1. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
2. Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for Artificial Intelli-

gence. Morgan & Claypool, San Rafael (2009)
3. Garcia-Molina, H., Ullman, J.D., Widom, J.D.: Database Systems: The Complete

Book, 2nd edn. Prentice Hall, Englewood Cliffs (2008)
4. Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. MIT

Press, Cambridge (2007)
5. Gogate, V., Dechter, R.: SampleSearch: Importance sampling in presence of deter-

minism. Artificial Intelligence 175, 694–729 (2011)
6. Jha, A., Gogate, V., Meliou, A., Suciu, D.: Lifted inference seen from the other side:

The tractable features. In: Advances in Neural Information Processing Systems 23
(NIPS 2010), pp. 973–981 (2010)

7. Kautz, H., Selman, B., Jiang, Y.: A general stochastic approach to solving problems
with hard and soft constraints. In: Gu, D., Du, J., Pardalos, P. (eds.) The Satisfia-
bility Problem: Theory and Applications. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, vol. 35, pp. 573–586. American Mathematical
Society, New York (1997)

8. Kisyński, J., Poole, D.: Constraint processing in lifted probabilistic inference. In:
Proceedings of 25th Conference on Uncertainty in Artificial Intelligence (UAI
2009), pp. 292–302 (2009)

9. Kok, S., Sumner, M., Richardson, M., Singla, P., Poon, H., Lowd, D., Wang, J.,
Nath, A., Domingos, P.: The Alchemy system for statistical relational AI. Tech.
rep., Department of Computer Science and Engineering, University of Washington
(2010), http://alchemy.cs.washington.edu

10. McCallum, A.: Efficiently inducing features of conditional random fields. In: Pro-
ceedings of 19th Conference on Uncertainty in Artificial Intelligence (UAI 2003),
Acapulco, Mexico, pp. 403–410 (August 2003)

11. Poon, H., Domingos, P.: Sound and efficient inference with probabilistic and de-
terministic dependencies. In: Proceedings of the Twenty-First National Conference
on Artificial Intelligence (AAAI 2006), Boston, MA (2006)

12. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Pren-
tice Hall, Upper Saddle River (2003)

13. Sadilek, A., Kautz, H.: Recognizing mutli-agent activities from GPS data. In: Pro-
ceedings of the 25th AAAI Conference on Artificial Intelligence, AAAI 2010 (2010)

14. Shavlik, J., Natarajan, S.: Speeding up inference in Markov logic networks by
preprocessing to reduce the size of the resulting grounded network. In: Proceedings
of the Twenty First International Joint Conference on Artificial Intelligence (IJCAI
2009), Hyederabad, India, pp. 1951–1956 (2009)

15. Singla, P., Domingos, P.: Discriminative training of Markov logic networks. In:
Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI
2005), Pittsburgh, PA, pp. 868–873 (2005)

16. Singla, P., Domingos, P.: Lifted first-order belief propagation. In: Proceedings of
the 23rd AAAI Conference on Artificial Intelligence (AAAI 2008), Chicago, IL, pp.
1094–1099 (2008)

17. Taskar, B., Abbeel, P., Koller, D.: Discriminative probabilistic models for relational
data. In: Proceedings of 18th Conference on Uncertainty in Artificial Intelligence
(UAI 2002), Edmonton, Canada, pp. 485–492 (2002)

http://alchemy.cs.washington.edu

	Constraint Propagation for Efficient Inference in Markov Logic
	Introduction
	Background
	Markov Logic
	Constraint Satisfaction and Local Consistency

	Constraint Propagation in Markov Logic
	Generalized Arc Consistency Algorithm
	Extension to Other Cases
	Existentials.
	Constant Arguments.
	Repeated Arguments.

	Relation to Unit Propagation
	Moving Beyond Generalized Arc Consistency

	Experiments
	Datasets
	Cora.
	Capture the Flag (CTF).
	Library.

	Results
	Note about MC-SAT Convergence

	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

