
Towards a Theory of Natural Language Interfaces
to Databases

Ana-Maria Popescu∗

University of Washington
Computer Science

Seattle, WA 98195, USA

amp@cs.washington.edu

Oren Etzioni
University of Washington

Computer Science
Seattle, WA 98195, USA

etzioni@cs.washington.edu

Henry Kautz
University of Washington

Computer Science
Seattle, WA 98195, USA

kautz@cs.washington.edu

ABSTRACT
The need for Natural Language Interfaces to databases (NLIs)
has become increasingly acute as more and more people ac-
cess information through their web browsers, PDAs, and
cell phones. Yet NLIs are only usable if they map natu-
ral language questions to SQL queries correctly. As Schnei-
derman and Norman have argued, people are unwilling to
trade reliable and predictable user interfaces for intelligent
but unreliable ones. In this paper, we introduce a theoreti-
cal framework for reliable NLIs, which is the foundation for
the fully implemented Precise NLI. We prove that, for a
broad class of semantically tractable natural language ques-
tions, Precise is guaranteed to map each question to the
corresponding SQL query. We report on experiments test-
ing Precise on several hundred questions drawn from user
studies over three benchmark databases. We find that over
80% of the questions are semantically tractable questions,
which Precise answers correctly. Precise automatically
recognizes the 20% of questions that it cannot handle, and
requests a paraphrase. Finally, we show that Precise com-
pares favorably with Mooney’s learning NLI and with Mi-
crosoft’s English Query product.

Categories and Subject Descriptors
H.2.3 [Database Management]: Query Languages—SQL;
H.5.2 [Information Interfaces and Presentation]: User
Interfaces , Natural Language

General Terms
Languages, Algorithms, Reliability

Keywords
Natural language interface, database, reliability

∗We thank Keith Golden, Dan Weld, Bonnie Weber and
Tessa Lau for comments on previous drafts. This research
was supported in part by ONR grant N00014-02-1-0324.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’03, January 12–15, 2003, Miami, Florida, USA.
Copyright 2003 ACM 1-58113-586-6/03/0001 ...$5.00.

1. INTRODUCTION
Understanding arbitrary natural language sentences is widely
regarded as “AI complete”. Yet understanding questions
such as “What are the Chinese restaurants in Seattle?” seems
straightforward even for a machine. While natural language
sentences have the potential to be subtle, complex, and rife
with ambiguity, they can also be simple, straight forward,
and clear. This paper attempts to formalize this intuition
by identifying classes of questions that are “easy to under-
stand” in a well defined sense.
Research on Natural Language Interfaces to databases (NLIs)
has largely tapered off since the mid 1980’s [2]. Yet the
need for NLIs has become increasingly acute as more and
more nontechnical people access a wide range of databases
through their web browsers, PDAs, and cell phones (e.g.,
accessing services such as moviefone and tellme). The tiny
screen and keyboard of a cell phone or PDA make interac-
tion paradigms such as direct manipulation and browsing
far less appealing. Yet these form factors only increase the
appeal of NLIs coupled with speech recognition.
In recent years significant advances have been made in dialog
management (see work on spoken-language dialog systems
[16, 1] and tutorial systems [7]), yet the core problem of
reliably understanding a single sentence is far from solved.
We anticipate that, due to its reliability Precise would be
an attractive module for a dialog system.

1.1 Reliable NLIs
To satisfy users, NLIs can only misinterpret their questions
very rarely if at all. Imagine a mouse that appropriately re-
sponds to a ’click’ most of the time, but periodically whisks
the user to an apparently random location. We posit that
users would have an even worse reaction if they were told
that a restaurant was open on a Sunday, but it turned out to
be closed. If the NLI does not understand a user, it can in-
dicate so and attempt to engage in a clarification dialog, but
to actively misunderstand the user, form an inappropriate
SQL query, and provide the user with an incorrect answer,
would erode the user’s trust and render the NLI unusable.
Consequently, this paper has twin goals. First, we introduce
a theoretical framework for analyzing the reliability of an
NLI — formally defining soundness and completeness, and
identifying a class of semantically tractable natural language
questions for which sound and complete NLIs can be built.
Second, we show that the theory has practical import by
measuring the prevalence of semantically tractable questions
and the performance of a sound and complete NLI.

149

In essence, the paper introduces a new methodology for
NLI research, which is loosely analogous to the taxonomic
paradigms popular in Knowledge Representation (KR),
computational learning theory (COLT) and elsewhere in
Computer Science. COLT has a long history or classify-
ing learning problems as “easy” or “hard” (e.g., the concept
class k-CNF is learnable in the PAC framework, whereas
k-term DNF is not [21]). Similarly, KR researchers have
identified a wide range of KR formalisms (e.g., description
logics) and analyzed the decidability and complexity of infer-
ence within them [3, 9]. By analogy, our taxonomic theory
seeks to carve out classes of questions that are semantically
tractable in the context of NLIs. We do not claim that NLI
users will restrict their questions to a subset of English in
practice, but rather that identifying classes of questions as
semantically tractable (or not), and experimentally measur-
ing the prevalence of such questions, is a worthwhile avenue
for NLI research.
This paper goes beyond pure taxonomic results to describe
the fully-implemented Precise system, which maps English
questions to SQL queries1. The paper measures precise’s
efficacy empirically on an independently gathered sample
of several hundred questions posed by university students
to three distinct databases in the domains of restaurants,
jobs, and geography [19]. We report on two key experimen-
tal results. First, semantically tractable questions are in
fact quite prevalent (from 77.5% to 97% of the questions in
Mooney’s data). Second, based on our theoretical analysis
we have been able to build an NLI that is 100% accurate
on all three of our benchmark databases. It answers se-
mantically tractable questions and requests paraphrases for
intractable ones.

1.2 Organization
The remainder of the paper is organized as follows. First,
we introduce some basic notation and begin to formalize the
class of “easy questions”. Next, we give an example of Pre-
cise in action and describe each component of the Precise
NLI. We then make our “easy questions” intuition more pre-
cise by specifying a natural subset of English that can be ef-
ficiently and accurately interpreted as non-recursive Datalog
clauses. We also state the formal results on the soundness
and completeness of our approach. We then present empiri-
cal results that show that Precise indeed has high coverage
and accuracy over common English questions. We conclude
with a discussion of related and future work.

2. SEMANTIC TRACTABILITY
This section begins to formalize the notion of semantically
tractable questions. We start with some preliminary defini-
tions.
A database is made up of three types of elements: relations,
attributes and values. Each element is distinct and unique:
an attribute element is a particular column in a particular
relation and each value element is the value of a particular
attribute. A value is compatible with its attribute and also
with the relation containing this attribute. An attribute is
compatible with its relation. Let a wh-word be any word in
the set {”what”, “which”, “where”, “who”, “when”}. Each
database attribute has a set of compatible wh-values.

1Precise can be accessed at
http://www.cs.washington.edu/research/nli

A token is a set of word stems that matches a database
element. For instance, {require,experience} and {need,
experience} match the database attribute Required Ex-
perience. Many different tokens might match the same
database element, and conversely, a token might match sev-
eral different elements (sometimes with different types). Each
token has a set of possible types (e.g. value token, attribute
token) corresponding to the types of the database elements
it matches. A syntactic marker (such as “the”) is a token
that belongs to a fixed set of database-independent tokens
that make no semantic contribution to the interpretation of
a question.
With these terms defined, we can begin to formalize the
notion of semantically tractable questions. Our definition
is based on the observation that many natural questions
specify a set of attribute/value pairs as well as free-standing
values, where the attribute is implicit. An attribute (or rela-
tion) may also be paired with a wh-word (such as “what”).
For example consider the question, “What French restau-
rants are located downtown?” in the context of a database
containing the relation Restaurants with attributes Name,
Cuisine and Location. The word “French” refers to the
value French of the implicit database attribute Cuisine,
the words “located” and “downtown” refer to the explicit
attribute Location and its value Downtown, and the word
“restaurant” refers to the relation Restaurants and corre-
sponds with the wh-word “what”.
The fact that attributes may be implicit allows a form of
“ellipsis” that occurs frequently in questions; recovering this
missing information is an important challenge for semantic
interpretation.
Our definition of a semantically tractable question captures
the above intuitions. First, we require that some set of to-
kens exists such that every word in q appears in exactly one
token. We refer to any such token set as a complete tokeniza-
tion of q. Precise uses an attachment function to model
syntactic attachment constraints derived from the question’s
parse tree. Attachment is a function from pairs of tokens to
TRUE or FALSE. For instance, in the above example the
tokens located and downtown are attached while the tokens
what and downtown are not.
In order for the sentence to be interpreted in the context of
the given database, at least one complete tokenization must
map to some set of database elements E as follows:
1) each token matches a unique database element in E.
This means that there is a one-to-one match between the
tokens in the tokenization and E.
2) each attribute token corresponds to a unique value token.
This means that (a) the database attribute matching the
attribute token and the database value matching the value
token are compatible and (b) the attribute token and the
value token are attached.
For instance, consider the tokens locate (which matches
the Location attribute) and downtown (which matches the
value Downtown). Downtown is compatible with Loca-
tion and the two given tokens are attached. Thus, locate
corresponds to downtown.
3) each relation token corresponds to either an attribute to-
ken or a value token.
This means that (a) the database relation matching the rela-
tion token and the database element matching the attribute
or value token are compatible and (b) the relation token is
attached to the corresponding attribute or value token.

150

 SYNTACTIC MARKERS TOKENS

 job system HP Unix what are the on a

 JOB

 Developer System Admin what Description

 whatPlatform

 Stratify HP what

SQL QUERY

Company

 HP Unix

FROM JOB WHERE = ’DescriptionSELECT DISTINCT HP ’ AND = ’ Unix ’;

 are the HP jobs on a Unix system?What

 QUESTION

Company Platform

LEXICON

Figure 1: The transformation of the question “What are the HP jobs on a Unix system?” to an SQL query, in the context

of a database containing a single relation, JOB, with attributes Description, Platform and Company.

.

For instance, the relation token restaurant (which matches
the relation Restaurants) corresponds to the attached
value token French (which matches the value French cor-
responding to the attribute Cuisine). Note that a value
token need not have a corresponding attribute token in the
sentence — this is the form of ellipsis mentioned earlier.
A mapping from a complete sentence tokenization to a set
of database elements such that conditions 1 through 3 are
satisfied is a valid mapping (see Section 5). If the sentence
tokenization contains only distinct tokens and at least one
of its value tokens matches a wh-value, we refer to the cor-
responding sentence as semantically tractable.

3. THE PRECISE SYSTEM
Given a question q, Precise determines whether it is seman-
tically tractable and if so, it outputs the corresponding SQL
query (queries). The problem of finding a mapping from
a complete tokenization of q to a set of database elements
such that the semantic constraints imposed by conditions
1 through 3 are satisfied is reduced to a graph matching
problem. Precise uses the max-flow algorithm to efficiently
solve this problem. Each max-flow solution corresponds to
a possible semantic interpretation of the sentence. precise
collects max-flow solutions, discards the solutions that do
not obey syntactic constraints, and retains the rest as the
basis for generating SQL queries corresponding to the ques-
tion q.
This section begins with an example of Precise in action.
Subsequently, we describe each of Precise’s modules in
more detail.

3.1 PRECISE in Action
To illustrate Precise’s behavior consider how it maps the
example question “What are the HP jobs on a Unix sys-
tem?” to an SQL query. This question is chosen to il-
lustrate the sort of ambiguity that Precise is able to re-
solve automatically. For brevity and clarity, this example
refers to a single relation (Job) with attributes Descrip-
tion, Platform and Company. We will then look at a

slightly modified version of the sentence that shows how we
handle multiple relations.
The tokenizer produces a single complete tokenization of
this question: (what, HP, job, Unix, system). Note that
the tokenizer strips syntactic markers such as “the” and “a”.
By looking up the tokens in the lexicon, precise efficiently
retrieves the set of matching database elements for every
token.2 In this case, what, HP and Unix are value tokens,
system is an attribute token and job is a relation token (see
Figure 1).
Next, the matcher constructs the attribute-value graph
shown in figure 2. To understand the meaning of nodes
in the graph, it is helpful to read it column by column from
left to right. The leftmost node is a source node. The Value
Tokens column consists of the tokens matching database val-
ues (which in turn can be found in the DB Values column).
For instance, the token HP is ambiguous as it could either
match a value of the Company attribute or a value of the
Platform attribute. Edges are added from each value token
to each matching database value. Solid edges represent the
final flow path while dashed edges suggest alternative flow
routes. Let F denote the flow in the network.
The matcher connects each database value to its correspond-
ing database attribute. Each attribute is then connected to
its matching attribute tokens and also to the node I, which
stands for implicit attributes. All attribute tokens link to
the node E, which stands for explicit attributes. Finally,
both E and I link to the sink node T.
Notice the two instances of the column containing DB at-
tribute nodes. The unit edge from each DB attribute node
to itself ensures that only one unit of flow in fact traverses
each such node. These edges are needed because more than
one DB value is compatible with a given DB attribute and
a DB attribute may match more than one attribute token -
however, our definition of a valid mapping requires each DB
attribute be used only once (see the Section 5).
The graph is interpreted as a flow network where the ca-

2The lexicon contains synonym information (e.g.,‘’system”
and “platform” are synonyms).

151

What

Unix

HPS

Description= what

Platform=HP

Platform=Unix

Company=HP

Description

Platform

Company

Platform

Company

E

I T
2

Value
Tokens

DB Values Attribute
Tokens

systemDescription

DB Attributes−1 DB Attributes−2

Figure 2: The attribute/value graph created by Precise for the question “What are the HP jobs on a Unix system?”

.

S
City

T

town

Jobjobs

 Tokens
Relation

Relations
DB

Figure 3: The relation graph built by Precise for the question “What are the HP jobs on a Unix platform in a small town?”

.

pacity on each edge is 1, unless otherwise indicated. The
capacity on the edge from E to T is the number of attribute
tokens (in our example, 1). The capacity on the edge from
I to T is the number of Value Tokens minus the number
of Attribute Tokens. That difference is 2 in our example.
Setting the capacity to be this difference forces the maxflow
algorithm to send one unit of flow from some value token to
each explicit DB attribute. The matcher runs the maxflow
algorithm on the graph subject to these capacity constraints
and searching for an integer solution. The maximum flow
through the network in this example is 3. In fact, the maxi-
mum flow in any graph constructed by the Precise matcher
is equal to the number of value tokens because each value
token has to participate in the match produced by the algo-
rithm.
The solid arrows indicate the path chosen by the maxflow
algorithm. Note how the ambiguity regarding whether HP
is the name of a company or of a platform is automatically
resolved by maximizing the flow. The algorithm “decides”
that HP is the company because this choice allows flow along
two edges with capacity 1 into node I. Because the edge
(I,T) has capacity 2, this choice maximizes the flow through
the graph (F = 3). If the algorithm ”decided” that HP was
the platform, there would be no possible interpretation for
”Unix” and the final flow would be 2.
After all attribute and value tokens have been matched to
database elements, Precise ensures that all relation tokens
correspond to either a value token or an attribute token.
In the case of a unique relation token (job), this amounts
to checking whether any of the matching database relations
contains some attribute matching an attribute token. Since
in our example job matches only Job, the algorithm has
found a one-to-one match between the sentence tokens and
the database elements that satisfies the semantic constraints
in the set of conditions for semantically tractable sentences.

At this point, Precise checks whether the match satisfies
the syntactic constraints represented by pairs of attached
tokens:(what, job),(HP, job), (Unix, system).3 If all the
attachment constraints are satisfied it means that a valid
mapping has been found. Each valid mapping is converted
into a SQL query; in the end Precise will return the set of
non-equivalent such queries. In our example, a single valid
mapping is found and so the Precise returns the SQL query
at the bottom of Figure 1.
Consider a slightly different version of the above sentence :
“What are the HP jobs on a Unix system in a small town?”
in the context of a database containing a Job as well as
City table. In addition to the Description, Company
and Platform attributes, Job also contains a JobID field.
City has attributes Name, Size and JobID, which is a
foreign key corresponding to Job.JobID.
Using the lexicon, Precise determines that “town” is a
synonym for “city”. Precise first builds an attribute-
value graph similar to the one in Figure 1. This
time, the first node column contains a node for the
value token small, which matches the value small of
the database attribute City.Size. Since we now have
4 value tokens and 1 attribute token, the capacity of
edge (E, T) remains 1 while the capacity of (I, T) is
3. A unique maximum-flow solution with F = 4 exists
and suggests the following token-database element map-
ping: HP matches Job.Company=HP, Unix matches
Job.Platform=Unix, small matches City.Size=small
and system matches Job.Platform.
Since all attribute and value tokens have been matched to

3Some types of flow-networks allow syntactic information
to be used earlier in the generation of the valid mapping:
the initial set of edges is pruned according to attachment
information and the max-flow procedure runs on a modified
version of the original flow-graph [10].

152

SQL Query Set + Answer Set

PRECISE

Tokenizer

Lexicon

 Plug in

Database

Equivalence Checker Matcher

English Question

Query Generator

 Parser

Figure 4: Precise System Architecture

database elements, Precise must now ensure that all rela-
tion tokens correspond to either a value token or an attribute
token. We solve the problem by building an additional rela-
tion flow network as detailed below. Precise records the
database relations employed by the attribute/value max-
flow solution: Job and City. A relation flow network with
unit-capacity edges is constructed as shown in Figure 3.
Precise finds a max-flow solution in this network such that
with F = |relation tokens| = 2. Such a solution yields a one-
to-one match of relation tokens to database relations that
contain attributes and values that match sentence attribute
tokens and value tokens. Precise also ensures that the rela-
tion tokens are attached to these attribute and value tokens,
which means that a valid mapping has been found.
No other valid mappings are found and the Query Gener-
ator constructs the SQL interpretation(s) corresponding to
the given sentence. When the valid mapping contains mul-
tiple database relations, a different SQL interpretation is
built for each join path corresponding to the set of rela-
tions. Our example assumes that the database contains only
the tables Job and City and the only possible join path is
Job.JobID= City.JobID.
The following SQL query is then built:

SELECT DISTINCT Job.Description

FROM Job, City

WHERE (Job.Company =’HP’)

AND (Job.Platform = ’Unix’)

AND (City.Size = ’small’)

AND (Job.JobID = City.JobID);

4. SYSTEM ARCHITECTURE
We now look at the components of the system in greater
detail (see Figure 4 for an overview).

4.1 Lexicon
The lexicon supports the following two operations:
1) given a word stem ws, retrieve the set of tokens which
contain ws.
2) given a token t, retrieve the set of database elements
matching t.
In the following, we describe the manner in which the lexi-
con is derived from the database. The names of all database
elements are extracted and split into individual words. Each
word is then stemmed and a corresponding set of synonyms
is identified using a general-purpose word ontology (Word

Net). Each database element is thus associated with a set
of word stems and each word stem is in turn associated with
a set of synonyms. For every set sd of stemmed words cor-
responding to a database element d, a synonym-augmented
set of word stems synd is computed by successively replacing
each word stem in sd with a possible synonym. For instance,
the set {require, experience} will yield the synonym-
augmented set need experience. Any synonym-augmented
word set synd represents a token matching the database ele-
ment d. In the above example, {require, experience} and
{need, experience} are tokens matching the database at-
tribute Required Experience. All tokens derived in this
manner point to hash tables containing the database ele-
ments they match. Furthermore, the tokens are placed in
a hash table indexed by word stems - this two-level storage
structure ensures that the lexicon can easily perform its two
defining operations.

4.2 Tokenizer
The tokenizer’s input is a natural language question and its
output is the set of all possible complete tokenizations of the
question. The tokenizer proceeds by stemming each word in
the question, and the looking up in the lexicon the set of to-
kens containing the word stem. For each potential token, the
tokenizer checks whether the other words in the token are
also present in the question. For example, the word “price”
is contained in tokens matching several database attributes
(Breakfast.Price, Lunch.Price, Dinner.Price). How-
ever, when the question contains the phrase “price of break-
fast” the only relevant attribute is Breakfast.Price and
the only relevant token is price breakfast. Finally, the
tokenizer also assigns to each token the types of database el-
ements it could potentially match to (e.g., value, attribute,
relation etc.).
Once potential tokens are identified, computing the set of
complete tokenizations is equivalent to the NP-hard prob-
lem of exact set covering. In practice, however, the average
number of complete tokenizations is close to 1 and tokeniza-
tion takes less than 2 seconds (wall-clock time).

4.3 Matcher
The matcher embodies the key innovation in Precise. We
reduce the problem of finding a semantic interpretation of
ambiguous natural language tokens as database elements to
a graph matching problem. More precisely, according to [8],
our reduction is to a maximum-bipartite-matching problem
with the side constraints that all Value Token and Attribute
Token nodes and a specified subset of the DB Value and DB
Attribute nodes be involved in the match [10]. The matcher
runs in polynomial time in the length of the natural language
question and in the maximum ambiguity of question tokens.

4.4 Parser Plug in
Precise relies on the Charniak parser [4] to parse the ques-
tion. Precise then extracts attachment relationships be-
tween tokens from the parse tree. For example, the parser
enables Precise to realize that, in the question “What are
the capitals of the US states?”, the token capital is at-
tached to the token state. The attachment relationships
are used by the matcher in the generation of valid mappings
(only semantic interpretations which satisfy the syntactic
attachment constraints represent valid mappings).

153

4.5 Query Generator
The query generator takes the database elements selected
by the matcher and weaves them into a well-formed SQL
query. In the case of single-relation queries, this process is
straightforward. The SELECT portion of the query contains
the database elements paired with wh-words; the WHERE
portion contains a conjunction of attributes and their values,
and the FROM portion contains the relevant relation name
for the attributes in WHERE. In the case of multi-relation
queries, the generator adds join conditions to the WHERE
clause, which reflect a join path that contains all the re-
lations implicitly invoked by attributes in the query. The
participating relation names are also listed in the FROM
clause. If the join path is unique, the generator terminates.
Otherwise, the generator generates a query for each pos-
sible join path and submits the queries to the equivalence
checker (below). It is possible for multiple join paths to yield
SQL queries that are not equivalent, leading Precise to flag
a question as ambiguous. We omit many technical details
here for brevity, but see [10] for formalization and detailed
examples.

4.6 Equivalence Checker
The equivalence checker tests whether there are multiple dis-
tinct solutions to the maxflow problem and whether these
solutions translate into distinct SQL queries. We show in
[10] that finding distinct max-flow solutions amounts to find-
ing all maximum-matchings in two bipartite subgraphs of
the current flow-graph; we employ a well known maximum-
matching enumeration algorithm [20] to do so. Precise
checks for query equivalence using the algorithm in [5],
which is polynomial time for acyclic conjunctive queries.
If precise finds two distinct SQL queries, it does not out-
put an answer, since it cannot be certain which query is the
right one. Instead, Precise asks the user to choose between
two or more competing semantic interpretations of particu-
lar tokens. For example, consider the question “What are
the systems analyst jobs in Austin?”. “Systems analyst”
could refer to the job title systems analyst; on the other
hand, “systems” could refer to the area systems and “an-
alyst” could refer to the job title analyst. Thus, precise
asks the user to indicate the appropriate interpretation.
This completes our overview of Precise. While modules like
the tokenizer and the equivalence checker are intractable in
the worst case, in practice Precise is quite fast taking an
average of 6 seconds per query (wall-clock time).

5. THEORY
In this section we formally define the class of semantically
tractable questions. We show that for this class of questions,
Precise is provably reliable (see the Theorem at the end of
this section). We start by introducing the necessary notation
and definitions.
Given a set of database elements E, let Ev, Ea and Er de-
note the sets of values, attributes and relations in E. Given
a set of tokens T and a set of database elements E such that
each token in T refers to a unique matching element in E,
let Tv, Ta and Tr denote the sets of value tokens, attribute
tokens and relation tokens in T .
We can now define the notion of a Valid Mapping:
Given a question q with a tokenization T , attachment func-
tion AT , a lexicon L, and a set of database elements E, we

say that there is a valid mapping from T to E if the following
conditions hold:

1. Sentence Token − Database Element Match

There is a one-to-one match (respecting L) between
the tokens in T and the database elements in E.

2. Attribute Token − Value Token Correspondence

Each attribute token corresponds to a unique attached
value token. Formally, all Ta tokens can be assigned
t o value/attribute token pairs (tv , ta) (no token ap-
pearing more than once) such that tv , ta are attached
and for each (tv , ta) pair , a unique value/attribute
pair (dv , da) exists in E′

av such that tv and ta match
dv and respectively da as described in 1.

3. Implicit Attributes

Each value token matches to a database value that
is compatible with some database attribute. Some of
these database attributes may not match any of the
attribute tokens in the sentence; we refer to them as
implicit attributes. Formally, E can be extended to set
E′ by adding attribute elements such that E′ can be
grouped into: - a set Er consisting of distinct database
relations. - a set E′

av of compatible attribute/value
pairs, with no database element appearing more than
once such that each relation in Er contains at least one
attribute in E′

av.

4. Relation Token − Attribute/Value Token Correspon-
dence

Each relation token corresponds to either an attached
attribute token or an attached value token. Formally,
each Tr token can be assigned to either an attribute
token or a value token, creating the pair (tr, t) with
the following properties: a) the elements of the pair
are attached, b) tr matches a relation element dr in
Er and t matches an element d of some E′

av pair such
that d and to dr are compatible.

Given a valid mapping for a question q, it is a straight for-
ward syntactic manipulation to construct the SQL interpre-
tation φ (see [10] for the laborious details).
Finally, we can introduce our key taxonomic distinction. A
question q is said to be semantically tractable relative to a
given lexicon L, and an attachment function AT if and only
if q has at least one complete tokenization T such that:
1) All tokens in T are distinct.
2) T contains at least one wh-token.
3) There exists a valid mapping (respecting AT and L) from
T to some set of database elements E.4

A semantic interpretation algorithm is said to be sound if
it returns only valid mappings; the algorithm is said to be
complete if it returns all valid mappings. The properties
of soundness and completeness are essential to NLI reliabil-
ity. Soundness blocks erroneous interpretations of the user’s
questions, and completeness ensures that when the user’s
question is ambiguous (i.e, has multiple distinct interpre-
tations) the system can detect the ambiguity and respond
appropriately.
4This definition of semantically tractable questions is simpli-
fied to facilitate the exposition of our theory. In fact, Pre-
cise handles a broader subset of English that includes sen-
tences containing repeated tokens, database-specific func-
tions, aggregate operators, negation, etc.

154

5.1 Formal Results and Discussion
With the above definitions in place we can state our key
guarantee regarding Precise.

Theorem 1. Given a lexicon L and an attachment func-
tion AT, Precise is sound and complete for any semanti-
cally tractable question.

Furthermore, given any question, Precise can detect whether
is semantically tractable. Thus, the following holds:

Corollary 1. Given a question q,
a) if q is semantically tractable with respect to L and AT,
PRECISE will output the set of non-equivalent SQL inter-
pretations of the question q.
b) Otherwise, PRECISE will reject the question as semanti-
cally intractable.

Naturally, the above theoretical results only apply when
their assumptions (enumerated earlier) are satisfied. For
instance, to prevent misunderstanding, Precise declines to
answer questions containing words absent from its lexicon.
However, that restriction is key to reliability — a single un-
known word can easily change the meaning of a question.
Of course, our theory does not guarantee the reliability of a
full-blown dialog system. However, we believe that interface
designers will see great value in having a provably reliable
NLI module, which would enable the interface designer to
localize interpretation errors to other modules and recover
appropriately.
How prevalent are semantically tractable questions in prac-
tice? If they are rare, then our results are of limited interest.
In fact, our experimental results below provide evidence that
semantically tractable questions are quite common.

6. EXPERIMENTAL RESULTS
We ran our experiments on three benchmark databases in
the domains of restaurants, jobs, and geography. Each
database was tested on a set of several hundred English ques-
tions whose corresponding SQL query was manually gener-
ated by an expert.5

Our first experimental question is: what is the prevalence
of semantically tractable questions? We addressed this
question by measuring the frequency of such questions in
Mooney’s independently collected set of questions. We de-
tected whether a question was “semantically tractable” by
running Precise on the question, if Precise generated one
or more answers for the question then we knew that the
question is semantically tractable; Precise automatically
rejects intractable questions. The results are shown in Ta-
ble 1. We see that semantically tractable questions are quite
common ranging from 77.5% in the geography database to
97% in restaurant database. Examples of complex, but se-
mantically tractable questions include “What is the largest
city in the state with the smallest population?” and “What
river does not traverse the state with the smallest popula-
tion?”
The set of intractable questions for the Geography database
includes questions containing unknown words, requiring

5The databases, English questions, and corresponding
queries were generously supplied to us by Ray Mooney and
his group. They were used in [19].

Restaurants Geography Jobs
97% 77.5% 88%

Table 1: The prevalence of semantically tractable ques-
tions in Mooney’s data.

database functions not yet handled by Precise, or inquir-
ing about information not present in the database. For in-
stance, the question “What is the population density of the
major cities in the US?” is not semantically tractable in the
context of the Geography database because only informa-
tion concerning the population density of US states is avail-
able. The question “What are some of the neighborhoods of
Chicago?” cannot be handled by Precise because the word
“neighborhood” is unknown.
The second experiment augments our theoretical soundness
result for Precise. While Precise is provably guaranteed
to be sound, that result holds under the assumptions spelled
in Section 5 — what happens in practice? We found that
on each of our benchmark databases, Precise made no mis-
takes. That is, the SQL queries it generated were the same
as the ones generated by hand in Mooney’s data. Thus, it is
reasonable to believe that they captured the user’s intent in
asking their natural language question. This result is very
important in meeting our goal of building a reliable NLI (see
Figure 5).
To assess the difficulty of the problem, we compared Pre-
cise’s accuracy with that of Mooney’s learning NLI and with
Microsoft’s NLI for SQL server (“English Query”). The
metric we used was precision, adapted from the informa-
tion retrieval literature by [19]. Formally, the precision of
an NLI on a data set is the number of English questions
where the NLI correctly maps a question to the correspond-
ing SQL query, divided by the number of questions that the
NLI answers (each NLI declines to answer some questions).
Precise shows better precision than the learning NLI and
massively outperforms Microsoft’s product on each of the
databases tested.

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��

��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�

��
��
��
��

P
re

ci
si

on
 (

M
oo

ne
y

D
at

a)

90

80

70

60

50
40

100

Mooney

Precise

EQ

Rest Geo Jobs

Figure 5: Precision on Mooney’s Data: Precise makes

no errors.‘ The precision differences between Precise and

Mooney’s NLI are statistically significant for the Geo and

Job dbs (two-sample t-test, p = 0.05).

We were surprised by the extent to which both research
prototypes outperformed Microsoft’s English Query (EQ).
EQ had trouble identifying the correct database elements
referred to by the sentence. For instance, in the Restaurant
domain some names of counties were mistaken for names of
cities. In addition, both EQ and the learning NLI ignore
parts of the question that they fail to parse, yielding incor-
rect answers. In contrast, Precise refuses to return an SQL

155

query in such cases.A key advantage of Precise compared
with a learning NLI such as Mooney’s is that Precise is not
sensitive to changes in the distribution of questions whereas
inductive learning systems typically suffer when the distri-
bution of the data over time changes from the distribution
of training data. To measure the impact of this “distribu-
tion drift” on Mooney’s system we collect a new data set of
70 questions for each domain from graduate students in the
University of Washington, manually labeled them with the
correct SQL queries, and input the questions to both the
learning NLI and Precise. As the results in Figure 6 show,
the learning NLI’s precision dropped by 5.6% on average. In
contrast, Precise remained 100% precise.

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

JobsGeo

Mooney

Precise

95

90

85

80

75
70

100

Rest

P
re

ci
si

on
(N

ew
 D

at
a)

Figure 6: Precision (New Data): The precision of the

learning NLI is sensitive to distribution changes whereas

Precise remains error free. Each of the differences shown

is statistically significant at p = 0.05.

All the NLIs tested in our experiments decline to answer
some questions. We refer to the number of questions an-
swered by an NLI, divided by the total number of questions
as that NLI’s recall. The recall for the different NLIs is
shown in Figure 7. Although Precise’s recall is lower than
80% on the geography databases, it is important to keep in
mind that Precise is a highly portable system that does
not require training examples (each manually labeled with
the appropriate SQL query), nor does Precise require ex-
tensive manual customization as is the case with Microsoft
English Query.6 This is in sharp contrast to early NLIs,
based on semantic grammars, which typically took months
of programmer-time per database [12].

7. RELATED WORK
Our approach to language understanding differs from that
of other natural language systems such as spoken language
dialog systems [16], tutorial systems [7], etc. Speech sys-
tems have employed n-grams (sometimes in combination
with CFG grammars) for language-modeling purposes. More
recent work also addresses the use of large-scale dependency
grammars which can include semantic and morphologic in-
formation, hierarchical statistical language models [16], etc.
While powerful, these systems don’t offer theoretical guar-
antees, and are based on very different algorithms. While
there has been extensive work on NLIs [2], most of the ear-
lier work is different from our own. precise is transportable
to arbitrary databases in the sense of [11], and in contrast
with hand crafted semantic grammars, which are tailored to
an individual database (e.g., LADDER [12]).

6An undergraduate spent over 15 hours per database to cus-
tomize the Microsoft product.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
�� �
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

Rest

90

80

70

60

50

30
40

100

R
ec

al
l(

M
oo

ne
y

D
at

a)

Geo Jobs

Mooney

EQ

Precise

Figure 7: Recall on Mooney’s Data: Precise handles

slightly fewer questions than Mooney’s learning NLI, but

more questions than Microsoft’s English Query. The re-

call differences between Precise and the learning NLI

are only statistically significant on the Job dataset at

p = 0.05.

The early work with the most similarities to Precise was
done in the field of sublanguages. Previous research on sub-
languages has focused on subsets of natural language that
are restricted to a single domain (e.g., medicine). Kittredge
[14] realized that applications such as machine translation
or text generation systems have a better chance of achieving
high performance when tailored to specific domains.
In order to correctly analyze a given text, Kittredge relies on
semantic constraints which cannot be stated for the entire
English language but can be written down via a domain-
specific grammar [13]. In addition, a sublanguage typically
relies on a hand crafted domain-specific lexicon. Some sub-
languages, such as the medical domain sublanguage, may
use specialized word-formation rules. Traditional sublan-
guage work has looked at defining sublanguages for various
domains. More recent work [15, 17] suggests using AI tech-
niques to learn aspects of sublanguages automatically.
Our work can be viewed as a generalization of traditional
sublanguage research because it is domain independent. We
do not rely on a domain-specific grammar or lexicon. In-
stead, our lexicon is automatically extracted from the input
database, and we make use of standard parsers. Instead
of restricting ourselves to a particular domain, we restrict
ourselves to sublanguages of English that can be defined
more generally. For example, this paper shows how ques-
tions that can be mapped to non-recursive datalog clauses
are semantically tractable. Finally, in addition to offering
formal guarantees we report on experiments that quantify
the prevalence of our “sublanguage” in the sample of ques-
tions collected independently by Mooney [19].
A more recent paper [18] uses description logics to trans-
late between the logical form of a question and its SQL
interpretation. The logical form of a question is obtained
in a compositional manner from its syntactic information.
Unlike Precise, the system uses extensive domain-specific
knowledge and is not evaluated experimentally.
Our focus on NLIs was inspired by that of [19]. Mooney ar-
gued convincingly for renewed interest in NLIs and showed
how strong performance can be achieved by a combination of
novel learning methods. We have built directly on Mooney’s
experimental framework, but have chosen to explore a differ-
ent point in the NLI design space. Namely, we focus on high
precision NLIs at the expense of recall. Thus, for example,
we analyze every word in the sentence whereas Mooney’s

156

NLI will ignore unknown words and still try to interpret
the sentence. Ours is not a learning approach, which obvi-
ates creating training examples and labeling each example
with the appropriate SQL queries; finally, we insist on be-
ing able to plug in state-of-the-art parsers to leverage their
ongoing improvements, which Mooney cannot easily accom-
modate. It is natural to consider synergies between the two
approaches as they have complimentary strengths. For ex-
ample, could Precise be a source of training examples for
Mooney’s learning systems?
After developing Precise independently, our literature
search uncovered [6]. Chu and Meng’s system stores in-
formation about a given database in a graph whose nodes
represent database tables and whose edges represent differ-
ent types of relationships between tables. Given a nat-
ural language question, the system uses a statistical ap-
proach in order to recognize the database elements (rela-
tions/attributes/values) referred to by the question. Next,
the system relies on heuristics to supplement the information
extracted from the question (e.g., adding join conditions.)
so that a valid SQL query can be formed. Like Precise,
the system is transportable and graph based. However, the
graph representation and the associated semantic interpre-
tation algorithm are very different. Because Chu and Meng’s
system does not reduce semantic interpretation to a match-
ing problem, is not able to offer any theoretical guarantees.
Finally, the system was never evaluated empirically so it is
difficult to assess its effectiveness in practice.
Our own group’s work on the EXACT natural language in-
terface [22] builds on Precise and on the theoretical frame-
work laid out in this paper. EXACT composes an extended
version of Precise with a sound and complete planner to
develop a powerful and provably reliable interface to house-
hold appliances.

8. CONCLUSIONS AND FUTURE WORK
We have described a novel theoretical and practical ap-
proach to the problem of producing a reliable NLI to
databases. Such interfaces are increasingly important on
web sites, particularly as people access information from
PDAs, cell phones, and other devices where small screens
make GUIs less appealing. To the best of our knowledge,
ours are the first formal guarantees on the soundness and
completeness of an NLI. Moreover, we have shown experi-
mentally that the guarantees result in a NLI that is highly
reliable in practice. Precise provided correct answers to
over 80% of the questions in our data sets, and correctly
identified the rest as questions it does not understand.
Although Precise is only effective on semantically tractable
questions, in future work we plan to explore increasingly
broad classes of questions both experimentally and analyti-
cally. Precise can be extended to handle additional types
of SQL statements or database-specific functions. Finally,
we plan to include Precise as a module in a full-fledged di-
alog system and investigate what theoretical guarantees can
be made in this broader context.
An important direction for future work is helping users un-
derstand the types of questions Precise cannot handle via
dialog, enabling them to build an accurate mental model
of the system and its capabilities. Precise’s responses to
questions it decline to answer can be very helpful here. For
example, Precise could be extended to say “please use sim-
pler sentences” based on an analysis of its parse tree, and it

could indicate the limitations of its knowledge with “I don’t
have geographical information outside the U.S.”.

9. REFERENCES

[1] J. Allen, G. Ferguson, and A. Stent. An architecture for
more realistic conversational systems. In Intelligent User
Interface, 2001.

[2] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch.
Natural Language Interfaces to Databases - An
Introduction. In Natural Language Engineering, vol 1, part
1, pages 29–81, 1995.

[3] F. Baader and B. Hollunder. A Terminological Knowledge
Representation System with Complete Inference
Algorithms. In Proceedings of the First International
Workshop on Processing Declarative Knowledge, 1991.

[4] E. Charniak. A Maximum-Entropy-Inspired Parser. In
Proceedings of NAACL-2000, 2000.

[5] C. Chekuri and A. Rajamaran. Conjunctive Query
Containment Revisited. In Proceedings of the Sixth
International Conference on Database Theory, 1998.

[6] W. Chu and F. Meng. Database Query Formation from
Natural Language using Semantic Modeling and Statistical
Keyword Meaning Disambiguation. Technical Report
990003, UCLA CS Dept., 16, 1999.

[7] M. Core, J. Moore, and C. Zinn. Initiative in Tutorial
Dialogue. In Proceedings of ITS 2002 Workshop on
Empirical Methods for Tutorial Dialogue Systems
(ITS-02), 2002.

[8] T. Cormen, C. Leiserson, and R. Rivest. Introduction to
Algorithms. MIT Press, Cambridge, Massachusetts, 1984.

[9] F. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The
Complexity of Concept Languages. In Information and
Computation, 134, 1997.

[10] O. Etzioni, H. Kautz, and A. Popescu. Towards a theory of
natural language interfaces to databases. In Submitted for
publication, 2002.

[11] B. Grosz, D. Appelt, P. Martin, and F. Pereira. TEAM: An
Experiment in the Design of Transportable Natural
Language Interfaces. In Artificial Intelligence 32, pages
173–243, 1987.

[12] G. Hendrix, E. Sacerdoti, D. Sagalowicz, and J. Slocum.
Developing a natural language interface to complex data.
In ACM transactions on Database Systems 3(2), pages
105–147, 1978.

[13] R. Kittredge. Sublanguages. In American Journal of
Computational Linguistics 8(2), pages 79–84, 1982.

[14] Kittredge.R. Variation and homogeneity of sublanguages.
In R. Kittredge and J. Lehrberger, editors, Sublanguage:
Studies of Language in Restricted Semantic Domains,
pages 107–137. de Gruyter, Berlin, 1982.

[15] G. R. Adaptive information extraction and sublanguage
analysis. In Proceedings of IJCAI 2001, 2001.

[16] S. Satingh, D. Litman, M. Kearns, and M. Walker.
Optimizing Dialogue Management With Reinforcement
Learning: Experiments with the NJFun System. In Journal
of Artificial Intelligence Research (JAIR), 2002.

[17] S. Satoshi. A New Direction For Sublanguage Nlp. In New
Methods in Language Processing, pages 165–177, 1997.

[18] D. Stallard. A terminological transformation for natural
language question-answering systems. In Proceedings of
ACL-86, 1986.

[19] L. Tang and R. Mooney. Using Multiple Clause
Constructors in Inductive Logic Programming for Semantic
Parsing. In Proceedings of the 12th European Conference
on Machine Learning (ECML-2001), Freiburg, Germany,
pages 466–477, 2001.

[20] T. Uno. Algorithms for Enumerating All Perfect, Maximum
and Maximal Matchings in Bipartite Graphs. In
International Symposium on Algorithms and Computation
(ISAAC 1997), pages 92–101, 1997.

[21] L. Valiant. A Theory of the Learnable. In Communications
of the ACM, v27 n.11, pages 1134–1142, 1984.

[22] A. Yates, O. Etzioni, and D. Weld. A Reliable Natural
Language Interface to Household Appliances. In Submitted
to IUI-2003, 2002.

157

