
Heuristics for Fast Exact Model Counting

Tian Sang, Paul Beame, and Henry Kautz

Computer Science and Engineering,
University of Washington, Seattle WA 98195-2350
{sang,beame,kautz }@cs.washington.edu

Abstract. An important extension of satisfiability testing is model-counting, a
task that corresponds to problems such as probabilistic reasoning and comput-
ing the permanent of a Boolean matrix. We recently introduced Cachet, an ex-
act model-counting algorithm that combines formula caching, clause learning,
and component analysis. This paper reports on experiments with various tech-
niques for improving the performance of Cachet, including component-selection
strategies, variable-selection branching heuristics, randomization, backtracking
schemes, and cross-component implications. The result of this work is a highly-
tuned version of Cachet, the first (and currently, only) system able to exactly
determine the marginal probabilities of variables in random 3-SAT formulas with
150+ variables. We use this to discover an interesting property of random formu-
las that does not seem to have been previously observed.

1 Introduction

The substantial progress in practical algorithms for satisfiability has opened up the pos-
sibility of solving many related, and even more difficult, logical problems. In recent
work [10], we introduced Cachet, which applies techniques for practical satisfiability
algorithms to the associated counting problem, #SAT, that requires the computation of
the number of all satisfying assignments of a given CNF formula.

Cachet is an exact model-counting algorithm which combines formula caching [7,
2, 5], clause learning [8, 13, 14], and dynamic component analysis [4, 2, 3]. Cachet was
shown to outperform other model counting algorithms on a wide range of problems.

In [10], the primary focus was on managing the component caching, and integrating
it with clause learning since the combination of the two can cause subtle errors if certain
cross-component implications are not controlled. Handling these problems involved
techniques to flush certain cache entries and to detect and prevent cross-component
implications involving learned clauses.

In this paper we examine a wide range of different techniques for improving the
performance of Cachet, including component-selection strategies, variable-selection
branching heuristics, backtracking schemes, and randomization. Many of these tech-
niques have previously worked well in SAT solvers. In addition to studying these heuris-
tics we also study the impact of using a more liberal but still sound method, suggested
in [10], controlling cross-components implications involving learned clauses.

One major goal of this work beyond improving the performance of Cachet itself is
to determine which of the heuristics from SAT solvers are well-suited for use in #SAT

solvers in general. Our results show that some popular techniques such as randomization
and aggressive non-chronological backtracking perform quite poorly when combined
with component caching as in Cachet and do not appear to be particularly well-suited
to use in #SAT solvers in general.

In the case of variable-selection branching heuristics, we observe that in Cachet the
tradeoffs between heuristics are somewhat different than in the case of SAT solvers.
Based on previous heuristics, we develop a new hybrid branching heuristic, VSADS,
which appears to be a good choice for model counting algorithms involving compo-
nent caching. We also observe that the right application of variable-selection heuristics
is secondary to component selection, and we use a new method for selecting compo-
nents that reduces the amount of wasted effort when the component cache must be
flushed. Our experiments also show that the more liberal method for controlling cross-
component implications has only a relatively small impact on almost all problems.

Finally, we show how our tuned version of Cachet can be extended to compute
all marginal probabilities of variables in random 3-CNF formulas of 150+ variables
(at sufficiently high clause-variable ratios). This allows us to discover a new pattern in
these marginals. At a clause-variable ratio of roughly 3.4 the conditional probability that
a randomly-chosen variable in a satisfying assignment is true is uniformly distributed
between 0 and 1. Moreover we derive curves that allow us to predict these probabilities
at other ratios. Such results may have explanatory power in the analysis of simple DPLL
algorithms.

In the next section we give an overview of Cachet. In Section 3 we discuss the im-
pact of branching heuristics, followed by randomization in Section 4, cross-component
implications in Section 5, and non-chronological backtracking in Section 6. Finally, we
discuss our methods and results in computing marginal probabilities in Section 7.

2 Overview of Cachet

Cachet, presented in [10], is a practical tool for solving #SAT. It is implemented as a
modification and extension of the state-of-the-art SAT solver zChaff [14]. In addition
to the 1UIP clause learning of zChaff, Cachet adds two other features that are critical
to its performance: an explicit on-the-fly calculation of the connected components of
the residual formula at each node in the search tree, and a cache to store the compo-
nents’ model counts so that they do not need to be recalculated when those components
reappear later in the search.

Although SAT solvers typically eschew explicit computation of residual formulas,
the higher complexity of #SAT complexity means that the sizes of the residual formulas
we can deal with are smaller and the benefits of explicit computation outweigh its costs.
For the #SAT problems that we can solve using Cachet, the entire overhead of main-
taining the residual formulas and calculating connected components is usually roughly
half of the total runtime. The learned clauses are used for unit propagations but not
considered in the component computation, because their large number would make the
component computation much more expensive, and because they would connect sub-
formulas that would otherwise be disjoint components, reducing the advantage of the
component decomposition.

2

Cached components are represented explicitly together with their values in a hash
table. The size of this hash table is fixed via an input parameter, and a lazy deletion
scheme based on the age of a cached entry is used to keep the table small.

As shown in [10], there can be a very subtle interaction between the component
decomposition and unit propagation involving learned clauses. To avoid this, in the
original version of Cachet we disallowed any unit propagation inference between two
connected components of the residual formula. However, we also showed that this re-
striction is not strictly necessary and determined the general conditions under which
such cross-component unit propagation is safe.

In the original version of Cachet, we also did not use certain features of zChaff,
including non-chronological backtracking and its VSIDS variable selection heuristic.
Some aspects of non-chronological backtracking as implemented in zChaff are not
suitable for model counting. For example, zChaff uses unit propagation from learned
clauses rather than explicitly flipping values of decision variables, which works for SAT
because all previously explored branches are unsatisfiable; this is not the case for #SAT.
We also happened not to use VSIDS because we were exploring heuristics that took
advantage of the explicit connected component computation.

In this paper we study the range of options usually considered for SAT solvers and
see how they apply in Cachet. These heuristics include branching heuristics as well
as randomization and non-chronological backtracking. We also analyze the importance
of cross-component implications in component caching context. Finally, we present an
extension to Cachet that computes all marginals for satisfiable CNF formulas.

3 Branching

3.1 The Role of Components in Branching Decisions

At any decision-making point, Cachet explicitly maintains the residual formula deter-
mined by the current variable assignment, in the form of disjoint components. Thus, at
any such point, Cachet can use this partition of variables as part of its branching deci-
sions, information that is not usually available to SAT solvers. Moreover, because these
components are disjoint, each component is largely independent of the others. (There is
some cross-component information available in the form of learned clauses but, as we
will see in section 5, exploiting this information does not have a major impact on the
performance of the algorithm.)

Therefore, we separate branching heuristics into two parts: the choice of component
and the choice of decision variable/literal within that component. The component selec-
tion strategy that the version of Cachet from [10] applied was a pure DFS strategy; that
is, only a child of the most recently branched component can be selected as the next
component to branch on.

If a component is satisfiable, then all of its child components are satisfiable and it
does not matter which child is chosen first; eventually every child component needs
to be analyzed, and cached component values are not helpful to their disjoint siblings.
However, if a component is unsatisfiable, then at least one of its child components must
be unsatisfiable and the values of the others are irrelevant. Naturally, it is preferable

3

to find such a child component first to avoid unnecessary work on satisfiable children.
Moreover, not only is the work done on those satisfiable child components useless, but
as shown in [10], the calculated values stored in the cache for these components can
actually be corrupted by the existence of their not-yet-discovered unsatisfiable sibling
and must be explicitly removed from the cache.

Unfortunately, there is no easy predictor for which component will be unsatisfiable.
We tried choosing the component with the largest clause/variable ratio, but that was
not particularly effective. The solution we have settled on is simple: select thesmallest
component first, measured by number of variables. Because calculating the value of a
smaller component is easier, if we do indeed have to abandon this work later because
of an unsatisfiable sibling, the amount of wasted effort will be minimized.

We also modified the pure DFS branching order described in [10] so that Cachet at-
tempts to discover unsatisfiable sibling components as quickly as possible. If there are
a number of branchable components available, Cachet selects the smallest component
C and applies the variable branching heuristics to begin the exploration ofC. However,
once the first satisfying assignment is found forC, further search in that component is
temporarily halted and search within the next smallest remaining component is initiated
from that point in the search tree. Once the last child component is found to be satisfi-
able its analysis is completed and the algorithm backtracks to complete the next-to-last
child component, etc. If one of the child components is found to be unsatisfiable, the al-
gorithm backtracks to the point in the search tree where the components were generated.
The amount of work in the satisfiable case is still only the sum of the costs of analyzing
each component and substantial work may have been saved in the unsatisfiable case.

3.2 Variable Branching Heuristics

Good variable branching heuristics can be critical to the performance of DPLL-based
SAT solvers and, since Cachet is a DPLL-based #SAT solver, it is natural that its per-
formance also depends on a good variable branching heuristic. We explore a number
of the different branching heuristics available including dynamic literal count heuris-
tics, conflict driven heuristics, and unit-propagation based heuristics. We also develop
a new heuristic, VSADS, that seems to be well-suited for #SAT. All these heuristics are
currently implemented in Cachet and can be selected by a command line argument. We
first review these heuristics.

Literal Count HeuristicsLiteral count heuristics [12], make their branching decision
based only on the number of occurrences of a variable in the residual formula. If the
positive literal+v appearsVp times and the negative literal−v appearsVn times in the
residual formula, using a score for variablesv as eitherVp +Vn or max(Vp, Vn) results,
respectively, in the Dynamic Largest Combined Sum (DLCS) and Dynamic Largest In-
dividual Sum (DLIS) heuristics. The highest scoredv is selected as the decision vari-
able, and its value is set to true ifVp > Vn, false otherwise. The goal is to eliminate as
many clauses as possible without considering the impact of unit propagation.

Our original version of Cachet used only these simple heuristics, which are easy to
evaluate during component detection. We tried several versions and in our experiments

4

observed that the best was to choose the highest DLCS score with DLIS as a tie-breaker;
we refer to this as DLCS-DLIS in our tables of results.

Exact Unit Propagation Count (EUPC) HeuristicsVarious unit-propagation-based
heuristics have been widely used since early SAT solvers. Such heuristics compute
the score of a variable by some magic function over the weights of its positive and
negative forms, where a literal’s weight is obtained by considering the amount of sim-
plification it yields in unit propagations. Setting proper parameters for such a function
is a bit of a black art. In Cachet we tested an EUPC procedure similar to that described
for relsat [4]. To compute the score of variablev, the EUPC heuristic in ideal form
will select a literal whose unit propagation will generate a conflict, and otherwise will
choose the best variable score given by the following formula:

score(v) = |UP (+v)| × |UP (−v)|+ |UP (+v)|+ |UP (−v)|

whereUP (`) is the number of unit propagations induced by setting` to true. Evaluating
exact unit propagations for many variables is very expensive, so we also use a prepro-
cessing step as described in [4]. That is, for every variable we compute its approximate
score with|UP (+v)| approximated by the number of binary clauses containing literal
−v and|UP (−v)| approximated by the number of binary clauses containing literal+v.
Then the unit propagations and exact scores are computed only for the 10 variables with
the best approximate scores.

Approximate Unit Propagation Count (AUPC) HeuristicsBy computing a better esti-
mate of the amount of unit propagation that will take place, the AUPC heuristic, sug-
gested in the paper on Berkmin [6], avoids any explicit unit propagations and can be
computed more efficiently. The idea is simple: to estimate the impact of assigningv = 0
more correctly, not only should the binary clauses containing literal+v be counted, but
the binary clauses touching the literals whose negated forms are in binary clauses withv
should also be counted. For example, if there is a binary clause(−u, v), when estimat-
ing unit propagations resulting from assigningv = 0, all the binary clauses containing
literal +u should be counted too. The score of a variable is defined as the sum of the
scores of its positive form and negative form, and the variable with highest score is
chosen as decision variable.

Variable State Independent Decaying Sum (VSIDS)The VSIDS selection heuristic is
one of the major successes of Chaff [9, 14]. It takes the history of the search into account
but does not analyze the residual formula directly. (This is the reason for the word
‘Independent’ in its name.) Initially, all variable scores are their literal counts in the
original formula. When a conflict is encountered, the scores of all literals in the learned
conflict clause are incremented. All variable scores are divided by a constant factor
periodically. The idea is to give a higher priority to the literals satisfying recent conflict
clauses, which are believed to be more important and necessarily satisfied first. An
advantage of VSIDS is its easy score-computing procedure, because it does not require
any information from the current residual formula. In fact zChaff does not need to
maintain a residual formula.

5

After many decaying periods, the influence of initial variable scores and old con-
flicts decay to negligible values and variable scores only depend on recent conflict
clauses. If there are very few recent conflicts, then most variables will have very low
or even 0 scores, thus decision-making can be quite random. For SAT-solving pur-
poses, this is not a serious problem, because it probably means the formula is under-
constrained and thus easily satisfied. However, in the context of model counting, it is
often the case that there are few conflicts in some part of the search tree and in these
parts VSIDS will make random decisions.

Variable State Aware Decaying Sum (VSADS)VSADS combines the merits of both
VSIDS and DLCS. It is expressly suited for Cachet and can benefit from both conflict-
driven learning and dynamic greedy heuristics based on the residual formula. Since all
literal counts can be obtained during component detection with little extra overhead,
there is no reason for the algorithm not to be “Aware” of this important information for
decision-making when most variables have very low VSIDS scores. The VSADS score
of a variable is the combined weighted sum of its VSIDS score and its DLCS score:

score(V SADS) = p× score(V SIDS) + q × score(DLCS)

wherep andq are some constant factors. Within a component, the variable with the best
VSADS score is selected as decision variable. With this derivation, VSADS is expected
to be more like VSIDS when there are many conflicts discovered and more like DLCS
when there are few conflicts. We report experimental results forp = 1 andq = 0.5, but
the runtime is not particularly sensitive to these precise values.

Experimental Results Figure 1 shows the results of different heuristics on a num-
ber of benchmark problems, including logistics problems produced by Blackbox, sat-
isfiable grid-pebbling problems [10], and benchmarks from SATLIB including circuit
problems, flat-200 (graph coloring) and uf200 (3-SAT). The last two sets each contain
100 instances, and the average runtime and the median runtime are given respectively.

Despite being a simple combination of VSIDS and DLCS, VSADS frequently out-
performs each of them alone by a large margin. The superiority of VSADS over VSIDS
is particularly evident in cases in which VSIDS does not even finish. This is likely
because of the random decisions that VSIDS makes when there are few conflicts. In
most instances VSADS also significantly improves on DLCS alone. Unit-propagation-
count based heuristics EUPC and AUPC are often quite good too, especially on flat-200,
uf200 and some logistics problems, but VSADS usually outperforms them and seems
to be the most stable one overall. For the remainder of our experiments we report on
results using the VSADS heuristic.

4 Randomization

Randomization is commonly used in SAT solvers and appears to be helpful on many
problems. In fact, every heuristic discussed before can be randomized easily. The ran-
domization can be either on a tie-breaker among variables with the same score or a
random selection of variables whose scores are close to the highest.

6

Problems variables clauses solutions DLCS VSIDS VSADS EUPC AUPC

Circuit
2bitcomp6 150 370 9.41E+20 121 43 15 92 112
2bitmax6 252 766 2.07E+29 189 22 2 21 35

rand1 304 578 1.86E+54 9 X 23 10 16
ra 1236 11416 1.87E+286 3.2 X 3.4 8.2 3.9
rb 1854 11324 5.39E+371 7.1 X 7.5 23 7.9
rc 2472 17942 7.71E+393 172 X 189 736 271
ri 4170 32106 1.30E+719 206 78 119 1296 1571

Grid-Pebbling
grid-pbl-8 72 121 4.46E+14 0.10 0.10 0.06 0.21 0.15
grid-pbl-9 90 154 6.95E+18 1.1 0.44 0.35 0.35 0.27
grid-pbl-10 110 191 5.94E+23 4.6 0.58 0.37 12 3.2
Logistics
prob001 939 3785 5.64E+20 0.19 0.13 0.06 0.11 0.06
prob002 1337 24777 3.23E+10 30 10 8 16 21
prob003 1413 29487 2.80E+11 63 15 9 20 35
prob004 2303 20963 2.34E+28 116 68 44 32 133
prob005 2701 29534 7.24E+38 464 11924 331 456 215
prob012 2324 31857 8.29E+36 341 X 304 231 145

flat-200(100) 600 2337
average - - 2.22E+13 102 4.5 4.8 4.6 6.8
median - - 4.83E+11 63 2.8 2.9 2.7 3.9

uf200(100) 200 860
average - - 1.57E+9 21 7.1 7.2 3.0 4.8
median - - 3074825 18 6.6 6.5 2.5 3.7

Fig. 1.Runtime in seconds of Cachet on a 2.8 GHz Pentium 4 processor with 2 GB memory using
various dynamic branching heuristics (X=time out after 12 hours).

We expected that randomization would be somewhat less of a help to #SAT search
than for SAT search. One of the major advantages that randomization gives SAT solvers
is the ability to find easily searchable portions of the space and avoid getting stuck in
hard parts of the space. #SAT solvers, however, cannot avoid searching the entire space
and thus might not benefit from this ability. However, it was a little surprising to us
that randomization almost always hurts model counting. Figure 2 shows the impact of
using randomized VSADS on some problems. VSADS-rand computes variable scores
the same way as VSADS does, but it selects a decision variable randomly from the
variables whose scores are within 25% of the best score. On the first three problems,
we ran VSADS-rand 100 times and used statistical results. Since there are already 100
instances of randomly chosen problems in flat-200 and uf200, we just run VSADS-rand
on each problem once. We tried a number of other experiments using other fractions and
other heuristics such as EUPC but the results were similar. It is very clear that the effect
of randomization is uniformly quite negative. In fact the minimum runtime found in
100 trials is often worse than the deterministic algorithm.

While we do not have a complete explanation for this negative effect, a major rea-
son for this is the impact of randomization on component caching. Using randomiza-

7

Problems grid-pbl-10 prob004 2bitcomp6 flat-200(100) uf200(100)

VSADS 0.37 44 15 4.8 / 2.9 7.2 / 6.5
VSADS-rand

average 6.8 433 54 7.0 12
median 3.7 402 54 3.7 11

maximum 29 1073 81 N/A N/A
minimum 0.24 145 38 N/A N/A
STDEV 7.7 200 12 N/A N/A

Fig. 2.Runtimes in seconds of VSADS versus randomized VSADS on selected problems.

tion would seem to lower the likelihood of getting repeated components. Consider the
search tree on formulaF in which there are two large residual formulasA andB that
have many variables and clauses in common but are not exactly the same. SinceA and
B have similar structure, a deterministic branching heuristic is likely to have similar
variable scores and make similar choices that could easily lead to cache hits involving
subproblems ofA and B. A randomized heuristic is more likely to create subprob-
lems that diverge from each other and only leads to cache hits on smaller subformulas.
Although our experiments showed similar total numbers of cache hits in using random-
ization, there seemed to be fewer cache hits at high levels in the search tree.

5 Cross-Component Implications

As discussed in our overview, in combining clause learning and component caching
we only determine components on the residual formula, not on the the learned clauses.
Learned clauses that cross between components can become unit clauses by instantia-
tions of variables within the current component. Unit implications generated in this way
are called cross-component implications.

In [10], it was shown that cross-component implications can lead to incorrect val-
ues for other components. To guarantee correctness cross-component implications were
prohibited; each unit propagation from learned clauses was generated but if the variable
was not in the current component the unit propagation was ignored.

However, it was also shown that any implications of literals within the current com-
ponent that result from further propagations of the literals found in cross-component
implications are indeed sound. In prohibiting all cross-component implications, these
sound inferences that could help simplify the formula were lost.

In the current version of Cachet such sound implications of cross-component unit
propagation are optionally allowed by maintaining a list of cross-component impli-
cations. Cross-component implications are detected at the unit-propagation stage, and
stored in the list. When branching on a component, it is checked to see if it contains
any variable in the list. If the current component has been changed by previous cross-
component implications, before branching on it, a new component detection is per-
formed over it, which will update the related data structures correctly. This solution
is easy to implement but the overhead can be high, for every element of the cross-
component implication list needs to be checked at every decision-making point. For-

8

Problems cross-component total time without time with
implications implications cross-implications cross-implications

2bitcomp6 13 3454480 15 15
rand1 6195 5131281 23 23

grid-pbl-8 25 5713 0.06 0.06
prob001 49 16671 0.06 0.06
prob002 225 474770 8 8
prob003 133 426881 9 9
prob004 8988 6575820 50 44
prob005 20607 39391726 482 331
prob012 3674 31862649 313 304

flat-200(100)
average 277 1010086 4.9 4.8
median 239 767136 2.9 2.9

Fig. 3.Runtime in seconds of VSADS with and without cross-component implications.

tunately, the ratio of cross-component implications is very small, at most 0.14% of all
implications in our tested formulas, so the overhead is negligible.

Figure 3 shows the impact of cross-component implications. We ran experiments
on a much larger suite of problems than are listed; all those not shown have fewer than
5 cross-component implications, mostly none. There was one instance in which the
speedup using cross-component implications was 46%, but most others were negligible.
We conclude that cross-component implication is not an important factor in general.

6 Chronological vs. Non-chronological Backtracking

Non-chronological backtracking is one of the most successful techniques used in SAT
solvers. When a clause is learned, the search backtracks to the highest level in the search
tree at which the learned clause yields a unit propagation. All decisions made between
the level at which the clause is learned and the backtrack level are abandoned since
they are in some sense irrelevant to the cause of the conflict found. Since no satisfying
assignments have yet been found in that subtree, the only information lost by this aban-
donment is the path from the backtracking destination to the conflict point, which does
not take much time to recover.

However, in the model counting scenario, a direct implementation of the above non-
chronological backtracking scheme would abandon work on subtrees of the search tree
in which satisfying assignments have already been found and tabulated, and this tab-
ulation would have to be re-computed. This is even worse in the component caching
context in which the conflict found may be in a completely separate component from
the work being abandoned. Moreover, redoing dynamic component detection and cache
checking has an even more significant cost.

As discussed earlier, the basic version of Cachet does have some form of non-
chronological backtracking in that finding unsatisfiable components can cause a back-
track that abandons work on sibling components. In contrast to this we use the term far-
backtracking to refer to the form of non-chronological backtracking described above.

9

Problems # of far total #conflicts total #conflicts time with time w/o
backtracks with far-back w/o far-back far-back far-back

Circuit
2bitcomp6 930 1212 1393 15 15
2bitmax6 1031 1501 1222 6 2

rand1 1270 2114 4095 18 23
ra 0 0 0 3.4 3.4
rb 101 176 220 9 7.5
rc 353 502 511 199 189
ri 13010 13070 10212 164 119

Grid-Pebbling
grid-pbl-8 75 122 286 0.15 0.06
grid-pbl-9 275 388 773 0.22 0.35
grid-pbl-10 355 506 730 1.8 0.37
Logistics
prob001 355 506 730 0.07 0.06
prob002 1968 2042 2416 10 8
prob003 2117 2176 2022 14 9
prob004 5657 6694 5492 1062 44
prob005 26233 31392 21951 10121 331
prob012 12020 13563 15677 2860 304

flat-200(100)
average 6884 6958 7119 4.9 4.8
median 5150 5188 5105 3.0 2.9

uf200(100)
average 24101 24144 26469 7.5 7.2
median 23014 23067 25778 6.9 6.5

Fig. 4.Runtimes in seconds and number of backtracks using VSADS in Cachet with and without
far-backtracking.

We considered two forms of far-backtracking, the full original far-backtracking and
one in which the backtrack moves up to the highest level below the far backtrack level
at which the subtree does not already have a satisfying assignment found. This latter
approach eliminates the problem of abandoned satisfying assignments but it does not
backtrack very far and creates additional overhead. It did not make a significant differ-
ence so we do not report the numbers for it.

Figure 4 shows the comparison of Cachet with and without far-backtracking. Even
with far-backtracking enabled, some of the backtracks are the same as they would be
without it, and we report the number of far backtracks separately from the total num-
ber of backtracks that are due to conflicts in the case that far-backtracking is turned
on. (In SAT algorithms all backtracks are due to conflicts but in model counting most
backtracks involve satisfiable left subtrees.)

While far-backtracking occasionally provides a significant improvement in runtime
when the input formula is indeed unsatisfiable, overall it typically performed worse than
without far-backtracking. As a result, we do not use far-backtracking as the default but
we allow it as an option.

10

Algorithm marginalizeAll
marginalizeAll(Φ, Marginals)
// returns satisfying probability of formulaφ
// marginals of all variables are returned in vectorMarginals as well

if Φ is empty, return 1
if Φ has an empty clause, return 0
LeftV alue = RightV alue = 1/2 // initializing
initializeV ector(LeftMarginals, 0)
initializeV ector(RightMarginals, 0)
select a variablev in Φ to branch // branching
extractComponents(Φ|v=0)
for each componentφ of Φ|v=0

LeftV alue × = marginalizeAll(φ, LeftMarginals)
for each variablex ∈ Φ

if x ∈ Φ|v=0

LeftMarginals[x] × = LeftV alue // adjusting
else

LeftMarginals[x] = LeftV alue/2
LeftMarginals[v] = 0
extractComponents(Φ|v=1)
for each componentφ of Φ|v=1

RightV alue × = marginalizeAll(φ, RightMarginals)
for each variablex ∈ Φ

if x ∈ Φ|v=1

RightMarginals[x] × = RightV alue // adjusting
else

RightMarginals[x] = RightV alue/2
RightMarginals[v] = RightV alue
Marginals = sumV ector(LeftMarginals, RightMarginals)
Marginals / = (LeftV alue + RightV alue) // normalizing
returnLeftV alue + RightV alue

Fig. 5.Simplified version of algorithm to compute marginal probabilities of all variables.

7 Computing All Marginals

We now show how our basic exact model counting algorithm Cachet can be modified
to compute marginal probabilities for all variables, that is, the fraction of satisfying as-
signments in which each variable is true. Although Cachet does not maintain explicit
information about the satisfying assignments found, we can maintain enough statistics
as we analyze each component to determine the overall marginal probabilities. The ba-
sic idea requires that each component is associated not only with a weight representing
the fraction of all assignments that satisfy it but also with a vector of marginal proba-
bilities for each of its variables.

In Figure 5 we show a simplified recursive algorithmmarginalizeAll that returns
the count and passes up the marginal probabilities as well as the count. In this sim-
plified version, the left branch is assumed to correspond to the assignmentv = 0
and the parameterMarginals is passed by reference. Variables in different compo-

11

nents are disjoint, so their marginals can be calculated separately but finally need to
be adjusted by the overall satisfying probability. The marginal of any variable that has
disappeared in the simplified formula is just equal to half of the satisfying probabil-
ity by definition. For the decision variable, only its positive branch should be counted.
LeftV alue+RightV alue is the satisfying probability ofΦ and the normalizing factor
for all marginals ofΦ.

Though described in a recursive fashion, the real implementation of this algorithm
works with component caching in the context of non-recursive backtracking that it in-
herits from zChaff. Moreover, in this simplified version we have ignored the issue of
unit propagations. Variables following via unit propagation do not appear in the formula
on which a recursive call is made so their marginals are not computed recursively but
must be set based on the fraction of satisfying assignments found in the recursive call.
The details of this calculation and extension to using arbitrary weights is addressed in
[11] where Cachet is extended to handle Bayesian inference.

The overhead of computing all marginals is proportional to the number of variables
in the components, rather than the total number of variables, because at a node in the
search where the model count is returned, only those relevant variables need to be exam-
ined. But it may need a significant amount of memory for caching the marginal vectors.
In this way, we are able to compute all marginals quite efficiently, usually with only
10% to 30% extra overhead if the problem fits in the memory.

7.1 Marginals of Random 3-CNF Formulas

In this section we show how the extension of Cachet for computing all marginal prob-
abilities allows us to study new features of random 3-SAT problems. This problem has
received a great deal of interest both algorithmically and theoretically. It is known ex-
perimentally that there is a sharp satisfiability threshold for random 3-SAT at a ratio
of roughly 4.3 clauses per variable. However, the largest proved lower bound on the
satisfiability threshold for such formulas is at ratio 3.42 [1] using a very restricted ver-
sion of DPLL that does not backtrack but makes irrevocable choices as it proceeds. (In
fact, almost all analyses of the lower bounds on the satisfiability thresholds for random
3-SAT are based on such restricted DPLL algorithms.)

In Figures 6 and 7 we show the the experimental cumulative distribution of
marginals of random 3-CNF formulas of 75 and 150 variables respectively at differ-
ent ratios. The plots are the result of running experiments with 100 random formulas
at each ratio, sorting the variables by their marginals, and taking a subsample of 150
equally-spaced points in this sorted list for ease of plotting the results. Thus the X-axis
represents the fraction of all variables considered and the Y-axis represents the marginal
probability that a variable is true in satisfying assignments of the formula in which it
appears. (Although this is plotted in aggregate, individual formulas have similar plots
to these aggregate plots.)

For a cumulative distribution derived in this manner (sometimes called a QQ or
quantile-quantile plot), a uniform distribution would be represented as a straight line
from (0, 0) to (1, 1). Moreover, we can read off simple properties from these plots.
For example, for 75 variables at ratio 4.1, more than 20% of variables were virtually
always false in all satisfying assignments and a similar fraction were virtually always

12

true. Since randomly chosen formulas are chosen symmetrically with respect to the
signs of their literals, we should expect that the cumulative distribution functions will
be symmetric about the point(0.5, 0.5) as is borne out in our experiments.

Our experiments show, not surprisingly, that at low ratios the biases of variables
are rarely extreme and that variables become significantly more biased as the ratios
increase. At the lowest ratio, 0.6, in Figure 6, a constant fraction of variables do not
appear in the formula so the flat section of the curve shows that a constant fraction of
variables is completely unbiased at marginal probability 0.5.

In other plots of curves for fixed ratios and varying numbers of variables, we ob-
served that the shape of the curves of the cumulative distribution function seemed to
be nearly the same at a given ratio, independent of the number of variables. For exam-
ple, at ratio 3.9, the lack of smoothness in the plots due to experimental noise almost
compensated for any differences in the shapes of the curves.

One interesting property of these cumulative distribution functions is the precise
ratio at which the marginal probabilities are uniform. As can be seen from both the
75 variable and 150 variable plots, this point appears to be somewhere around ratio
3.4, although it is a bit difficult to pinpoint precisely. Above this ratio, the marginal
probabilities of variables are skewed more towards being biased than unbiased. It seems
plausible that the distribution of marginal probabilities is particularly significant for
the behavior of non-backtracking DPLL algorithms like the one analyzed in [1]. Is it
merely a coincidence that the best ratio at which that algorithm succeeds is very close
to the ratio at which the distribution of variable biases becomes skewed towards biased
variables?

Fig. 6.Cumulative distribution (QQ plot) of marginal probabilities of variables in random 3-CNF
formulas of 75 variables at various ratios

13

Fig. 7.Cumulative distribution (QQ plot) of marginal probabilities of variables in random 3-CNF
formulas of 150 variables at ratios≥ 3.4

8 Conclusion

Many of the techniques that apply to SAT solvers have natural counterparts in exact
#SAT solvers such as Cachet but their utility in SAT solvers may not be indicative of
their utility in #SAT solvers.

We have shown that popular techniques for SAT solvers such as randomization and
aggressive non-chronological backtracking are often detrimental to the performance of
Cachet. We have developed a new hybrid branching heuristic, VSADS, that in conjunc-
tion with a careful component selection scheme seems to be the best overall choice
for Cachet. Furthermore, based on experiments, more sophisticated methods for cross-
component implications appear to be of only very marginal utility.

Finally, we observed that #SAT solutions are merely the start of what can be ob-
tained easily using Cachet by demonstrating the ability to obtain interesting results on
the marginal probabilities of random 3-CNF formulas.

References

1. G. Lalas A. Kaporis, L. Kirousis. The probabilistics analysis of a greedy satisfiability algo-
rithm. In European Symposium on Algorithms, volume 2461 ofLecture Notes in Computer
Science, pages 574–585, 2002.

14

2. F. Bacchus, S. Dalmao, and T. Pitassi. Algorithms and Complexity Results for #SAT and
Bayesian inference. InProceedings 44th Annual Symposium on Foundations of Computer
Science, Boston, MA, October 2003. IEEE.

3. F. Bacchus, S. Dalmao, and T. Pitassi. Value elimination: Bayesian inference via backtrack-
ing search. InUncertainty in Artificial Intelligence (UAI-2003), pages 20–28, 2003.

4. Roberto J. Bayardo Jr. and Joseph D. Pehoushek. Counting models using connected compo-
nents. InProceedings, AAAI-00: 17th National Conference on Artificial Intelligence, pages
157–162, 2000.

5. Paul Beame, Russell Impagliazzo, Toniann Pitassi, and Nathan Segerlind. Memoization and
DPLL: Formula Caching proof systems. InProceedings Eighteenth Annual IEEE Conference
on Computational Complexity, pages 225–236, Aarhus, Denmark, July 2003.

6. E. Goldberg and Y. Novikov. Berkmin: a fast and robust sat-solver. InProceedings of the
Design and Test in Europe Conference, pages 142–149, March 2002.

7. S. M. Majercik and M. L. Littman. Using caching to solve larger probabilistic planning
problems. InProceedings of the 14th AAAI, pages 954–959, 1998.

8. J. P. Marques-Silva and K. A. Sakallah. GRASP – a new search algorithm for satisfiability.
In Proceedings of the International Conference on Computer Aided Design, pages 220–227,
San Jose, CA, November 1996. ACM/IEEE.

9. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient SAT solver. InProceedings of the 38th Design Automation
Conference, pages 530–535, Las Vegas, NV, June 2001. ACM/IEEE.

10. Tian Sang, Fahiem Bacchus, Paul Beame, Henry Kautz, and Toniann Pitassi. Combining
component caching and clause learning for effective model counting. InSeventh Interna-
tional Conference on Theory and Applications of Satisfiability Testing, 2004.

11. Tian Sang, Paul Beame, and Henry Kautz. Solving bayesian networks by weighted model
counting. Submitted, 2005.

12. Joo P. Marques Silva. The impact of branching heuristics in propositional satisfiability algo-
rithms. InProceedings of the 9th Portuguese Conference on Artificial Intelligence: Progress
in Artificial Intelligence, pages 62–74, 1999.

13. Hantao Zhang. SATO: An efficient propositional prover. InProceedings of the International
Conference on Automated Deduction, LNAI, volume 1249, pages 272–275, July 1997.

14. L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient conflict driven learning
in a boolean satisfiability solver. InProceedings of the International Conference on Com-
puter Aided Design, pages 279–285, San Jose, CA, November 2001. ACM/IEEE.

15

