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Abstract

Most formal theories of default inference have very poor compu-
tational properties, and are easily shown to be intractable, or worse,
undecidable. We are therefore investigating limited but efficiently com-
putable theories of default reasoning. This paper defines systems of
Propositional Model-Preference Defaults, which provide a true model-
theoretic account of default inference with exceptions.

The most general system of Model-Preference Defaults is decidable
but still intractable. Inspired by the very good (linear) complexity
of propositional Horn theories, we consider systems of Horn Defaults.
Surprisingly, finding a most-preferred model in even this very limited
system is shown to be NP-hard. Tractability can be achieved in two
ways: by eliminating the “specificity ordering” among default rules,
thus limiting the system’s expressive power; and by restricting our
attention to systems of Acyclic Horn Defaults. These acyclic theories
can encode acyclic defeasible inheritance hierarchies, but are strictly
more general.

This analysis suggests several directions for future research: finding
other syntactic restrictions which permit efficient computation; or more

∗This is a much longer version of a paper entitled “The Complexity of Model-Preference

Default Theories” presented at the Seventh Biennial Conference of the Canadian Society

for Computational Studies of Intelligence, Edmonton, June 1988.
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daringly, investigation of default systems whose implementations do
not require checking global consistency – that is, fast “approximate”
inference.

To appear in Artificial Intelligence, 1990.

1 Introduction

An agent need not, indeed cannot, have absolute justification for all of his
or her beliefs. For example, an agent often assumes that a member of a
particular kind (e.g., Tweety the bird) has a particular property (e.g., the
ability to fly) simply because it is typically true that entities of that kind
have that property. When formulating a plan of action, an agent often
assumes that certain acts will lead to certain consequences, when in fact
those consequences are not guaranteed because the world maybe in some
unusual state. In order to assimilate information about its environment,
an agent will often use a strategy of “hypothesize and test”, and adopt a
particular model of those inputs, rather than maintaining a representation
of all logically possible interpretations.

Such default reasoning seems to offer several advantages. It allows an
agent to come to a decision and act in the face of incomplete information. It
provides a way of cutting off the possibly endless amount of reasoning and
observation that the agent might have to perform in order to gain perfect
confidence in its beliefs. And, as Levesque (1986) argues, default reasoning
may greatly reduce the complexity of regular deduction. Defaults can be
used to “flesh out” an incomplete knowledge base to a vivid one; that is,
a set of atomic formulas which completely characterize a domain. Once a
vivid knowledge base is obtained, deduction reduces to standard database
lookup.

A satisfactory formal theory of default reasoning should therefore both
model what an agent could come to believe on the basis of given facts and
default assumptions, and precisely characterize the very real efficiency of
default reasoning over pure deduction. While there is some dispute (Hanks
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and McDermott 1986) as to the representational adequacy of such proposed
formal systems as Default Logic (Reiter 1980) or Circumscription (McCarthy
1980), no one is prepared to defend their abysmal computational properties.
All are easily shown to be undecidable in the first-order case, and badly
intractable in the propositional case.

We are therefore investigating limited but efficiently computable theories
of default reasoning. Such results are of interest even if one intends to
implement the default reasoning system on a massively parallel machine. As
Levesque (1986) points out, the processing requirements of an exponentially-
hard problem can quickly overwhelm even enormous arrays of processors,
equal in size to the number of neurons of the brain.

Our interest in using defaults to generate vivid models is a particular
reason for our concern with complexity results. It is hardly of interest to
eliminate the exponential component of deductive reasoning by introducing
an even more costly process of transforming the representation into a vivid
form. A number of encouraging results have been developed for non-default
vivification, which eliminates explicit disjunctive information through the
use of abstraction (Borgida and Etherington, 1989). At some stage, however,
it not sufficient to either hide incompleteness through abstraction or by
making arbitrary choices; default information must be applied to produce a
reasonable and useful vivid model (Etherington et al. 1989; Selman 1989).

The number and variety of formal default systems presents an imme-
diate obstacle to the problem of determining the complexity of the task of
default inference itself. Who is to say, for example, that a problem which is
intractable when formulated in theory A is not tractable when formulated
in theory B? Etherington (1986) has demonstrated that one should not sim-
ply lump all default theories together, as they differ significantly in both
their expressive power and the kinds of conclusions they justify. Part of the
problem in comparing default theories is their primarily syntactic character-
ization; indeed, even the semantic accounts provided in the literature retain
a strong syntactic flavor (Etherington 1987).

This paper defines a straightforward way of encoding defaults by stating
a preference ordering over the space of all possible models. This ordering is
defined by statements of the form, “a model where α holds is to be preferred
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over one where β holds.” The details of this system of Model-Preference
Defaults are spelled out below. The task of the default inference process is
to find a most preferred model.

This theory provides a true semantic characterization of default infer-
ence; it is important to note that it is not a “semantics” which simply
mimics the sequential application of syntactic rules. One benefit of this
model-theoretic foundation is the ease with which one can incorporate a
general specificity ordering over defaults. As will be seen, this ordering al-
lows more specific defaults (such as the default that penguins don’t fly) to
override a less specific one (such as the default that birds fly). This notion of
specificity is an important part of practically all known systems of defeasible
and uncertain reasoning, including probability theory (Kyburg 1983).

The propositional version of Model-Preference Default theory is decid-
able but still intractable. Inspired by the very good (linear) complexity of
propositional Horn theories, we next consider systems of specificity ordered
Horn Defaults over initially-empty knowledge bases. Surprisingly, finding a
most-preferred model in even this very limited system is shown to be NP-
hard. Tractability is finally achieved by restricting our attention to systems
of Acyclic Horn Defaults. These acyclic theories can encode acyclic defea-
sible inheritance hierarchies, but are strictly more general. Following our
complexity analysis we will compare our model-preference default formal-
ism with default logic. It will be shown how model-preference default rules
of a certain form can be translated into semi-normal default logic rules.

The final section of this paper considers the consequences of this com-
plexity analysis. One reaction may be to search for other syntactic restric-
tions on default theories which permit efficient computation. A more daring
venture would be to investigate default systems which do not require the
existence of a single model of the entire theory. Such systems might be able
to perform fast “approximate” inference.

2 Model-Preference Defaults

What is the meaning of a default rule? A common approach (e.g., Reiter’s
default logic) is to take it to be similar to a deductive rule, but with the
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odd property of possessing a global (and perhaps non-computable) appli-
cability condition. The conclusions of such a system can only be defined
by examining the syntactic structure of particular proofs. There is a very
different interpretation of default rules, however, with a natural and intu-
itive semantics, which is independent of the details of the proof theory. This
approach is to use rules to define constraints on the set of preferred (or most
likely) models of a situation. The goal of default inference is then to find
a most preferred model (of which there may be many), but the details of
the syntactic processes employed are separate from the model’s semantic
characterization.

Unlike previous approaches, the result of Model-Preference Default in-
ference is always a complete model; an appropriate result given our goal of
obtaining a vivid representation as described above. By contrast, a default
logic proof arrives at an extension, that is, a set of formulas which only
partially characterizes a situation.

The model theory for Circumscription is similar to that for Model-
Preference Defaults, in that it involves considering models which are maxi-
mal w.r.t. some order relation. They differ, however, in that the conclusions
of a circumscriptive proof must hold in all maximal models, and in the fact
that the order relation in a circumscriptive theory is defined solely in terms
of minimizing predicates. The first difference makes circumscriptive theory
(perhaps too) cautious, while the second leads, at times, to unnatural com-
plexity in encoding default knowledge in terms of predicate minimization.
The work of Shoham (1986) on default reasoning involving time and his
unifying framework for nonmonotonic reasoning (Shoham 1987) appear to
be quite similar to our own, in the emphasis on a semantic theory based on
partially-ordered models. While we have studied systems which arbitrar-
ily choose one of the most preferred models, Shoham has concentrated on
tightly-constrained domains which have a unique most preferred model. It
remains to be seen how comparable our systems are in expressive power.

We hope that model-preference defaults will allow us to construct a pre-
cise semantic account of the vivification process described above. A rough
characterization would be that the vivid model is simply a most preferred
model of the non-vivid theory. The use of abstraction complicates the situa-

5



tion, since the loss of information by abstraction may introduce new models.
This issue is currently under investigation.

Model-preference default systems may have applications beyond reason-
ing with uncertainty. As their name implies, they may prove useful for
expressing an agent’s desires and preferences, and thus provide the basis
for a non-numeric utility theory. Other potential applications are in prob-
lems of design and configuration, where default rules express favored design
heuristics, which are not absolute constraints on the final solution.

We define a series of default systems, beginning with a general but weak
system D, add a specificity ordering over defaults to obtain D+, then re-
strict to Horn defaults to yield DH and DH+, and finally consider acyclic
sets of default rules DH+

a . This paper considers only purely propositional
systems; a later paper will provide a straightforward extension to include
propositional schemas.

Definitions

Let P = {p1, p2, ....pn} be a set of propositional letters, and L be a propo-
sitional language built up in the usual way ¿from the letters in P and the
connectives ¬ and ∧ (the others will also be used freely as syntactic abbrevi-
ations). Also, let x and xi be single literals (a literal is either a propositional
letter p ∈ P , called a positive literal, or its negation ¬p written as p, called
a negative literal), and α and β be (possibly empty) sets of literals.

Definition: Model
A model (or truth assignment) M for P is a function t : P → {T,F} (T for
true; F for false). M satisfies a set S of formulas of L (written as M |= S)
iff M assigns T to each formula in the set. Complex formulas are evaluated
with respect to M in the standard manner.

A model is represented by the complete set of literals that is satisfied
by the model. For example, if P = {p1, p2}, then the model represented by
the set {p1, p2} assigns F to p1 and T to p2. Note that the mapping from
models to complete sets of literals is one-to-one and onto.

Let γ be a single literal or a set of literals. We will use the notation M |γ
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to denote a model identical to M with the possible exception of the truth
assignment for the letters in γ; the truth assignment of those letters is such
that M |γ |= γ.

Definition: Default Rule
A default rule d is an expression of the form α → x. The rule d is a Horn
default rule iff α contains only positive literals. Default rules that have a
positive literal on the right-hand side will be called a positive default rules,
the other rules will be referred to as negative default rules.

Definition: Applicability
A default rule d, of the form α→ x, is applicable at a model M iff

1. M |= α, and

2. d is not blocked at M . (For the definition of blocking see the descrip-
tion of the Specificity Condition given below.)

If d is applicable at M , then the application of rule d at M leads to a model
M ′, we will write M

d→M ′. The model M ′ is identical to M with the possible
exception of the truth assignment to the letter corresponding to the literal
x; this letter is assigned a truth value such that M ′ |= x.

Definition: Model-Preference Relation
Given a set of default rules D, we will write M→DM ′ if there exists some
rule d in D such that M

d→M ′. The model-preference relation ≤D is the
reflexive, transitive closure of →D. When the set of defaults to which we
refer is obvious, we write M→M ′ instead of M→DM ′ and M≤M ′ instead
of M≤DM ′.

Given a set of defaults, we will say that model M ′ is preferred over M iff
M≤M ′, and that M ′ is strictly preferred over M iff M≤M ′ and ¬(M ′≤M).
Two models M and M ′ are called equivalent w.r.t. the model-preference
relation iff M≤M ′ and M ′≤M . Note that the preference relation induces a
partial order on equivalence classes of models.
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Definition: Maximal Model
M is a maximal model w.r.t. a set of defaults D iff there does not exist a
model that is strictly preferred over M .

Definition: Default System D.
In default system D we consider problems of the the following form: given
a set of defaults and a set of propositional letters P that includes those in
the default rules, find an arbitrary maximal model for P w.r.t. the set of
defaults, temporarily ignoring condition 2 of the definition of applicability.

For example, suppose that P is {student, adult, employed}, with the in-
tended interpretations “this person is a university student”, “this person is
an adult”, and “this person is employed” (example from Reiter and Criscuolo
1983). Then the defaults “Typically university students are adults”, “Typ-
ically adults are employed”, and “Typically university students are not em-
ployed” can be captured as follows:1

1) student→ adult

2) adult→ employed

3) student→ employed

So, for example, rule 1 says that when given two models that assign T to
student and that differ only in the truth assignment of adult, give preference
to the model with adult assigned T. The default which says this person is a
university student can be encoded by:2

4) ∅ → student

Figure 1 gives the preference ordering on the models as defined by these
defaults rules. We use the obvious abbreviations for the propositional letters
in P . Thus, for example, sae stands for the model in which both student and
adult are assigned T and employed is assigned F. A path from a model M

to a model M ′ indicates that M≤M ′. The numbers alongside the directed
edges indicate the corresponding default rules.

1We omit the set braces in the left-hand side of the default rules.
2Instead of adding default rule 4 to the set of defaults, one can express the fact that this

person is a university student by having the propositional formula student in the theory.

Below, we define a maximal model w.r.t. a set of defaults and a non-empty theory.
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Figure 1: The preference ordering on models as given by the default rules
1) – 4).

We see that the model sae is maximal, since there is no model that is
strictly preferred over this model (as a matter of fact, for all other models
M , such as for example sae, we have M≤sae).

There is a maximal model in this system, however, that does not corre-
spond to our intuitive understanding of the situation. This model is related
to the “multiple extension” problem which has created much trouble in pre-
vious work on default reasoning (Hanks and McDermott 1986). Because D
does not capture the notion that the third rule above should override the
second, the model sae is also maximal.

Therefore we define a stronger default system which includes the notion
that a more specific default overrides a less specific one.

Definition: Specificity Condition
Given a set of defaults D, a default rule d of the form α → x is blocked at
M iff ∃d′ ∈ D of the form (β ∪ α)→ x and M |= (β ∪ α).

Definition: Default System D+

In default system D+ we consider problems of the following form: find an
arbitrary model for a given set of propositional letters P which is a maximal
model according to a given set of defaults, where rules may be blocked by the
specificity condition (i.e., both conditions of the definition of applicability
are taken into account).
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The first example is now more completely captured in D+ as follows.

student→ adult

adult→ employed

student, adult→ employed

∅ → student

The only maximal model is now sae.3 (The graph representing the prefer-
ence ordering is identical to the one in figure 1, without the arc labeled 2
from sae to sae and the arc labeled 3 from sae to sae.)

While D+ appears to have adequate expressive power to handle the stan-
dard examples of default reasoning, we will see that it does not succumb to
a tractable algorithm. Therefore we define the following restricted classes of
default problems.

Definition: Default Systems DH and DH+

In DH we are concerned with the set of problems in system D involving only
Horn default rules; and likewise for DH+ w.r.t. D+.

Definition: Acyclic Defaults
Define the directed graph G(D) = (V,E) associated with a set of default
rules D as follows:4 the V contains a vertex labeled pi for each propositional
letter pi in P , and E = {(pi, pj) | ∃d ∈ D of the form α → x s.t. {[(pi ∈
α)∨ (p̄i ∈ α)]∧ [(pj = x)∨ (p̄j = x)]}}. A set of defaults D is called acyclic
iff the G(D) is an acyclic directed graph.

The two sets of defaults discussed above are examples of sets of acyclic
defaults. They encode defeasible inheritance hierarchies (Touretzky 1986).
Acyclic theories can encode such hierarchies, but are strictly more general.

3In this example a different solution to the the problem of multiple extensions that

does not rely on specificity ordering would be to instead replace rule 2 by adult,

student → employed. However, specificity ordering captures nicely the intuition behind

property inheritance, namely that properties inherited from more general concepts can

be overridden by properties inherited from more specific concepts (more generally: more

specific defaults should override less specific ones).
4This graph should not be confused with a graph like the one in figure 1 which makes

explicit the ordering on the models.
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Note, however, that we encode exceptions explicitly using more specific de-
faults. This is similar to the use of semi-normal defaults in the default logic
encoding of defeasible inheritance reasoning (Etherington 1986).

Note that there are also natural examples that do not fall into the class
of acyclic default systems, such as those obtained by adding the default rule
adult→ student to the sets of defaults given above.

Definition: Default System DH+
a

In DH+
a we are concerned with the set of problems in system DH+ involving

only acyclic sets of defaults.

While problems of property inheritance fall within DH+
a , they do not com-

pletely circumscribe it.
Finally, we consider the case in which we have apart from a set of defaults

D also a non-empty set of facts Th.

Definition: Maximal model w.r.t. D and Th
Let D be a set of defaults and Th a set of propositional formulas. A model
M is maximal w.r.t. D and Th iff (M |= Th) ∧ ¬∃M ′ ((M ′ |= Th) ∧ (M ′ is
strictly preferred over M)).

3 Computational Complexity

We defined a notion of default reasoning based on a model-preference or-
dering. As stated above, the goal of default inference is to find a maximal
model given a set of facts and a partial ordering on the models as defined by
a set of default rules. Because of our interest in tractable forms of default
reasoning, a central question is: what is the computational cost of finding
such a model?

Whenever there are only finitely many models, the problem of finding a
maximal model is clearly decidable, since one can simply scan the directed
graph representing the partial order on models for a maximal model w.r.t.
the defaults and the set of facts. We proceed by analyzing the computational
complexity of finding such a model. First we consider the general system D.
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We are interested in the complexity of algorithms that handle arbitrary
problems in D. Therefore, we consider the search problem (Garey and John-
son 1979) associated with D. A search problem Π is defined as a set of finite
objects SΠ called instances, and for each instance I ∈ SΠ a set of finite
objects S[I] called solutions of I. An algorithm is said to solve a search
problem if it returns the answer “no” whenever S[I] is empty and otherwise
returns some arbitrary solution belonging to S[I].

With each system of defaults X defined in section 2 one can associate in
a straightforward manner a search problem Xs. E.g., an instance I of the
search problem Ds associated with Problem Class D is a set of propositional
letters P and a set of default rules D. S[I] is the set of maximal models for
P w.r.t. D (ignoring condition 2 in the definition of applicability).

The following theorem shows that there does not exist a polynomial
algorithm, provided P 6= NP, that, given as input a set of defaults D, finds
an arbitrary maximal model (ignoring the specificity ordering):

Theorem 1 The search problem Ds is NP-hard.

In the proof of this theorem (Borgida 1987) we use the following definition
and lemma.

Definition: fD

The function fD maps a formula in 3CNF (conjunctive normal form with
exactly three literals per clause) to a set of default rules in the following
manner. If c is a single clause {xi, xj , xk},5 then the set fD(c) contains the
following defaults:

xi xj→xk, xj xk→xi, xk xi→xj .6

If γ is a propositional formula in 3CNF consisting of n clauses c1, c2, ...cn,
then fD(γ) =

⋃
i=1,..n fD(ci).

Lemma 1 For any satisfiable 3CNF formula γ, M is a maximal model of
fD(γ) iff M |= γ.

5A clause is a disjunction of literals, and is represented by the set of literals occurring

in it.
6We use a simplified notation, e.g., xi xj→xk stands for the default rule {xi, xj}→xk.
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Proof: (if) Let M be a model such that M |= γ. It follows from the
definition of fD(γ) that none of the default rules in this set will lead
to a truth assignment different from M (note that each clause in γ is
satisfied). Therefore, M is a maximal model of fD(γ).
(only if) Let M be a model such that M 6|= γ. We will show that
M is not a maximal model of fD(γ). Since M does not satisfy γ,
it follows that there is at least one clause c = {x1, x2, x3} such that
M 6|= c. Let Msat be a model such that Msat |= γ. Thus, Msat |= c,
and therefore, Msat satisfies at least one literal in c. Without loss of
generality we assume that Msat |= x1. Since M 6|= c, we have M 6|= xi

for i = 1, 2, 3. It follows that the rule d1 : x2 x3→x1 in fD(γ) is
applicable at M , leading to a model M1 such that M1 |= x1. Note
that M1 agrees with Msat on the truth assignment of at least one
propositional letter, namely the one in the literal x1. If M1 6|= γ, then,
by a similar argument, there exists a rule d2 in fD(γ) that leads from
M1 to a model M2 that agrees on the truth assignment of at least
two letters with Msat. In general, in k steps we can reach from M a
model Mk such that Mk agrees on at least k letters with Msat. And
thus, for some k ≤ n (n the number of distinct letters in γ) we have
Mk |= γ. Now, as argued above, there does not exist a rule in fD(γ)
that leads from this model to a different one. Thus, we have M≤Mk

and ¬(Mk≤M) for some k ≤ n. Therefore, M is not a maximal model.

Proof of theorem 1: The proof is based on a Turing reduction from 3-
satisfiability. Consider an algorithm that takes as input a formula γ in
3CNF (i.e., an instance of 3-Satisfiability) and constructs fD(γ) (note
that this can be done in polynomial time), then calls an oracle that
returns in constant time a maximal model M of this set of defaults,
and, finally, returns “yes” if M |= γ and “no” otherwise. If γ is
satisfiable it follows from lemma 1 that the algorithm will return “yes”.
Otherwise, the algorithm returns “no”, as can be seen directly from
the algorithm. So, the algorithm returns “yes” iff γ is satisfiable.
Moreover, it runs in polynomial time. Therefore, finding a maximal
model is NP-hard.

Given the very good complexity (linear, Dowling and Gallier 1984) of propo-
sitional Horn theories, we now turn our attention to the default system DH.
According to the following theorem such defaults can indeed be handled
efficiently:

Theorem 2 Let D be a set of Horn defaults, P be a set of propositional
letters that includes those in D, and M0 be a model such that M0 |= {p |
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procedure POS(M,D)
if exists d : (α→p) ∈ D such that M |= (α ∪ p)

then return POS(M |p, D)
else return M

Figure 2: A procedure for finding a maximal model of a set of Horn defaults
(no specificity ordering). Note that the procedure ignores negative default
rules, i.e., rules of the form α→p.

p ∈ P}. With parameters M0 an D the procedure POS (figure 2) returns a
maximal model for D in time O(nk), where n is the number of literals7 in
D and k is the number of letters in P .

The correctness proof of the procedure POS is rather tedious, and does
not provide much additional insight concerning the complexity of model-
preference default theories. We therefore placed the proof of theorem 2 and
subsequent correctness proofs of algorithms in appendix A.

Theorem 2 shows that there is an polynomial time algorithm that finds a
maximal model of a set of Horn default rules. We now consider the problem
of finding a maximal model w.r.t. such defaults and a theory consisting of a
set of literals. The following theorem shows that also in this case a maximal
model can be found in polynomial time.

Theorem 3 Let DH be a set of Horn defaults, Th be a consistent set of
literals,8 and P be a set of propositional letters that includes those in DH
and Th. The Max-Model-DH algorithm (figure 3) finds a maximal model of
DH and Th in time O(nk2), where n is the number of literals in DH and k

is the number of letters in P .

In figure 3 we use the notation β, where β is a set of literals, to denote the
set {x | x ∈ β}. See appendix A for the correctness proof of this algorithm.

7Counting each occurrence of a literal separately.
8A set of literals Th is consistent iff it does not contain a pair of complementary literals

such as p and p.
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Max-Model-DH Algorithm

Input: a set of propositional letters P , set of Horn defaults DH,
and a consistent set of literals Th (the theory).

Output: a maximal model Mmax of DH and Th.
begin

M0 ←Th ∪ {p | p ∈ P and p 6∈ Th} ; δ←∅
loop

D ← DH− {d ∈ DH | d : α→p with p ∈ δ}
Mpos ← POS(M0, D)
β ← {p | p ∈ Th and Mpos |= p}
γ ← β−NEG(β, Mpos, D)
if (γ = ∅) then Mmax←Mpos|β; exit

else δ←δ ∪ γ

end loop
end
procedure NEG(β, M, D)
if exists d : (α→p) ∈ D such that [(p ∈ β) ∧ (M |= α) ∧ (α ∩ (β − {p})) = ∅]

then return {p} ∪NEG(β − {p},M,D)
else return ∅

Figure 3: A polynomial algorithm for the search problem DHs. The algo-
rithm allows for a non-empty theory Th consisting of a set of literals.

We will now consider the influence of the specificity condition (used to
handle exceptions properly in default reasoning). This leads to the following
surprising result:

Theorem 4 The search problem DH+
s is NP-hard.9

The essence of the proof lies in transforming the set of default rules as used
in the proof of theorem 1 into a set of Horn defaults. We therefore replace
negative literals by new letters, e.g., p is replaced by p′. We then add extra
sets of Horn default rules that guarantee that when the original formula α

9As a direct consequence it follows that the search problem D+
s is NP-hard.
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is satisfiable, no maximal model will assign the same truth value to a pair
of corresponding letters, such as p and p′. The details of this process are
spelled out below. The following notation, definitions, and lemmas will be
used in the proof of theorem 4.

Let γ be a 3CNF formula containing the set of propositional letters P =
{p1, p2, ..., pn}. W.l.o.g., we assume that no clause in γ contains a pair
of complementary literals, such as p and p, and each clause contains only
distinct literals.

Definition: fDH+

The function fDH+ maps a formula in 3CNF to a set of Horn default rules in
the following manner. The set fDH+(γ) contains the rules from the following
groups:

Group A. The rules obtained from fD(γ) by replacing each occur-
rence of pi by a new letter p′

i (for i = 1, 2, ...n).
Group B. The rules: pi → p′

i (for i = 1, 2, ...n).
Group C. The rules: p′

i → pi (for i = 1, 2, ...n).
Group D. The rules: p′

i (for i = 1, 2, ...n).

Let Pext be the set of propositional letters {p1, p
′
1, p2, p

′
2, ...pn, p′

n}.

Definition: Consistent Model
The truth assignment for the pair of letters pi, p

′
i (1 ≤ i ≤ n) in a model M

for Pext is consistent iff either M |= (pi ∧ p′
i), or M |= (pi ∧ p′

i). A model M

for Pext is called consistent iff each pair of letters pi, p
′
i in Pext is assigned

consistently. If M is not consistent, then the model is inconsistent.

In the lemmas 2 to 5 and the proof of theorem 4, the models are truth
assignments for Pext, and the preference relation is w.r.t. fDH+(γ). Note
that, since we are dealing with problems in default system DH+, we have
to consider the possibility of default rules being blocked by other defaults
(see the definition of applicability in section 2).

Lemma 2 If M is inconsistent, then ∃M ′ ((M ′ is consistent) ∧ (M≤M ′)).
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Proof: Let M be an inconsistent model for Pext. Therefore there are k
(1 ≤ k ≤ n) pairs of corresponding letters pi and p′

i inconsistently
assigned in M . Without loss of generality, we assume that the pair
p1, p

′
1 is assigned inconsistently in M . We will show how one can reach

a model M1 via a default rule in fDH+(γ) such that M1 is identical
to M except for the truth assignment of the pair p1 and p′

1. This pair
will have a consistent truth assignment in M1. Thus, M1 will have
k − 1 inconsistently assigned pairs. Therefore, after k default rule
applications one can reach, starting from M , a consistent model.
Let the pair of letters p1 and p′

1 be inconsistently assigned in M . We
have to consider the following two cases. Case a) — M |= (p1∧p′

1). In
this case, rule p′

1 in group D will apply. Leading to a model M1 such
that M1 |= (p1 ∧ p′

1), i.e., consistent w.r.t. this pair of letters. Note
that this rule cannot be blocked, since only the rule p1 → p′

1 in group
B could potentially block this rule. However, this rule is not applicable
at M . Case b) — M |= (p1 ∧ p′

1). In this case, both rule p1 → p′
1 in

group B and rule p′
1 → p1 in group C will lead to a consistent truth

assignment for p1. Note that neither of these rules can be blocked
since there are no rules of the form (β ∪ {p1}) → p′

1 or of the form
(β ∪ {p′

1}) → p1, where β is an arbitrary set of literals, in fDH+(γ).

Lemma 3 If M is consistent and M |= γ, then ¬∃M ′ ((M 6= M ′) ∧
(M≤M ′)).

Proof: Let M be a consistent model that satisfies γ. We will show that
none of the rules in fDH+(γ) leads to a model different from M . Since
M is consistent, we only have to consider rules in group A. This can
be seen as follows. Let M be a consistent model. We will show that
none of the rules in the groups B, C, or D will lead to another model.
Consider a rule d : pi → p′

i in group B. If this rule is applicable at
M , then M |= pi. And therefore, since M is consistent, M |= p′

i.
So, this rule will not lead to a model different from M . By a similar
argument it follows that none of the rules in group C will lead to a
model different from M . Finally, consider a rule d : p′

i in group D.
If, M |= p′

i, then rule d does not lead to a model different from M .
Otherwise, if M 6|= p′

i, then M |= pi, since M is consistent. Therefore,
the the rule d will be blocked by rule pi → p′

i in group B.10

We will now consider the rules in group A. These rules are obtained
from those in fD(γ) with occurrences of pi replaced by p′

i (for i =
10Note the fact that the rules in group D can be blocked by more specific ones in group

B is essential here.
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1, 2, ..., n). Since M |= γ, the truth assignment of the letters p1, p2, ..., pn

will satisfy γ. And thus, as argued in the proof of lemma 1, none of the
rules in fD(γ) leads to a different truth assignment to those letters.
Now, since M is consistent, we have for each letter p′

i (1 ≤ i ≤ n) that
M |= p′

i iff M |= pi. And thus, by the definition of the rules in group
A, none of these rules will lead to a truth assignment different from
M .

Lemma 4 For any satisfiable 3CNF formula γ, if M is a consistent model
and M 6|= γ, then ∃M ′ (M ′ is strictly preferred over M).

Proof: Let γ be a satisfiable 3CNF formula and M be a consistent model
such that M 6|= γ. Since M does not satisfy γ, there exists at least one
clause c such that M 6|= c. Without loss of generality, we assume that
c = {p1, p2, p3}. Let Msat be a consistent model such that Msat |= γ.
So, Msat satisfies at least one literal in c. Without loss of generality,
we assume that Msat |= p1. Since M does not satisfy c, we have
M |= (p1 ∧ p2 ∧ p3). Since M is consistent, it follows that the rule
d1 : p2p

′
3→p1 in fDH+(γ) is applicable at M , i.e., M

d1→M |p1. (Note
that this rule cannot be blocked since rules in group A are the most
specific ones, and moreover, they cannot block each other, since all
of them are positive.) ¿From the inconsistent model M |p1 we can
reach a consistent one via the application of the rule d2 : p1→p′

1 in

group B, i.e., M |p1
d2→M |{p1, p′

1}. (Note this rule cannot be blocked,
as argued in the proof of of lemma 2.) So now, we have obtained a
consistent model that agrees on the truth assignment of at least two
letters with Msat. If this model does not satisfy γ, it follows, by the
above argument, that one can reach a consistent model that agrees
in the truth assignment of at least four letters with Msat. And thus,
after at most 2n default rule applications we obtain a consistent model
M ′ such that M≤M ′ and M ′ |= γ. And, by lemma 3, it follows that
¬(M ′≤M).

We can now state the analogue of lemma 1 for the set of defaults fDH+(γ).

Lemma 5 For any satisfiable 3CNF formula γ, M is a maximal model of
fDH+(γ) iff M is consistent and M |= γ.

Proof: (if) Let γ be a satisfiable 3CNF formula and M be a consistent
model that satisfies γ. Therefore, by lemma 3, M is maximal.
(only if) Let γ be a satisfiable 3CNF formula and M be a maximal
model of fDH+(γ). Assume that M is inconsistent. ¿From lemma 2, it
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follows that there exists a consistent M ′ such that M≤M ′. If M ′ |= γ,
then, by lemma 3, it follows that ¬(M ′≤M), so M is not maximal,
a contradiction. Otherwise, by lemma 4, there will exist a model M ′′

such that M ′≤M ′′ and ¬(M ′′≤M ′). Since, M≤M ′, it follows that
M≤M ′′ and ¬(M ′′≤M). Thus, M is not maximal, a contradiction.
Finally, assume that M is consistent and M 6|= γ. It follows, by
lemma 4, that M is not a maximal model, a contradiction. So, M is
a consistent model that satisfies γ.

Proof of theorem 4: According to lemma 5 the set of Horn defaults
fDH+(γ) has a property similar the one stated in lemma 1 for the set
fD(γ), namely for any satisfiable 3CNF formula γ, M is a maximal
model of fDH+(γ) iff M is consistent and M |= γ. Therefore, the
fact that the search problem DH+

s is NP-hard follows from a Turing
reduction from 3SAT as given in the proof of theorem 1 with fD(γ)
replaced by fDH+(γ) and an oracle that takes the second condition of
the applicability definition into account.

Theorems 2 and 4 show how a relatively small change in expressive power of
a tractable representation can lead to a computationally intractable system.
Results like this show the importance of a detailed analysis of the com-
putational properties of knowledge representation and reasoning systems
(Levesque and Brachman 1985). The following result is another illustration
of the tradeoff between expressiveness and tractability:

Theorem 5 Given a set of Horn defaults DH and a theory TH consisting
of a set of Horn formulas, the problem of finding a maximal model w.r.t.
DH and TH while ignoring condition 2 of the definition of applicability is
NP-hard.

This result is of interest because of the fact that both propositional Horn
defaults without specificity ordering (theorem 2) and Horn theories by them-
selves are linear. We will use the following notation, definition, and lemmas
in the proof of theorem 5.

Let γ be a 3CNF formula containing the set of propositional letters
P = {p1, p2, ..., pn}, and fDH(γ) be the set of default rules containing exactly
the same rules as fDH+(γ) defined above. (In applying these defaults we
will now ignore condition 2 of the definition of applicability.)

19



Definition: fTH

The function fTH maps a formula in 3CNF to a set of Horn formulas in the
following manner. The set fTH(γ) is the union of the following groups of
formulas:

Group A. From the set containing all clauses in γ we obtain a set of
Horn clauses11 by replacing each occurrence of a positive
literal pi by the negation of a new letter p′

i, i.e., p′
i (for

i = 1, 2, ...n). (Thus, we obtain a set of Horn clauses
containing only negative literals.)

Group B. The formulas: pi → p′
i (for i = 1, 2, ...n).

Let Pext again be the set of propositional letters {p1, p
′
1, p2, p

′
2, ...pn, p′

n}. The
definition of a consistent model M for Pext is as given above.

Lemma 6 For any consistent model M for Pext, M |= γ iff M |= fTH(γ).

Proof: (only if) Let M be a consistent model such that M |= γ. Since M is
consistent, it will satisfy the formulas in group B. Let c = {p′

i, p
′
j , pk}

be an arbitrary clause in fTH(γ) (the particular choice of literals is
not relevant). By the definition of fTH it follows that c is obtained
from the clause c′ = {pi, pj , pk} in γ. It can easily be seen that M |= c
because M |= c′ and M is consistent. It follows that M |= fTH(γ).
(if) If M for Pext is a consistent model and M |= fTH(γ), it follows,
by an argument similar to the one given for the only if direction, that
M |= γ (Note that the rules in group A are essential here.)

Lemma 7 For any satisfiable 3CNF formula γ, if M is a maximal model
of fDH(γ) and fTH(γ), then M |= γ.

Proof: Let γ be a satisfiable 3CNF formula and M be a maximal model of
fDH(γ) and fTH(γ). We will show that M |= γ.
Since M is a maximal model of fDH(γ) and fTH(γ), M will satisfy
fTH(γ). Therefore, because of the formulas in group B, M cannot
contain a pair of corresponding letters, such as p1 and p′

1, with both
letters assigned T. Moreover, as we will show below, M cannot contain
a pair of corresponding letters that are both assigned F. Therefore, M

11A Horn clause is clause containing at most one positive literal.
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is a consistent model. Since M |= fTH(γ) and is consistent, it follows,
by lemma 6, that M |= γ.
We will now show that M cannot contain a pair of corresponding
letters both assigned F. Assume that M assigns F to pk and p′

k (1 ≤
k ≤ n). According to lemma 2, there exists a consistent model M ′ such
that M≤M ′. Moreover, since there are no rules in fDH(γ) that can
lead ¿from M ′ to a truth assignment with both pk and p′

k assigned F,
we have ¬(M ′≤M). If M ′ satisfies fTH(γ), then M is not a maximal
model of fDH(γ) and fTH(γ), contradiction. Otherwise, assume that
M ′ does not satisfy fTH(γ). Now, as argued in the proof of lemma 4,
there will exist a consistent model M∗ such that M ′≤M∗ and M∗ |= γ.
By lemma 6, it follows that M∗ |= fTH(γ). Since there are no rules
that can lead from M∗ to an assignment of F to both pk and p′

k, we
have ¬(M∗≤M). Therefore, M is not a maximal model of fDH(γ)
and fTH(γ), contradiction. Thus, if γ is satisfiable, then there does
not exist a maximal model for fDH(γ) and fTH(γ) that assigns F to
both letters of a corresponding pair of letters.

Proof of theorem 5: The proof is based on a Turing reduction from
3SAT similar to the one given in the proof of theorem 1. Consider
an algorithm that takes as input a 3CNF formula γ and constructs in
polynomial time a set of defaults fDH(γ) and a Horn theory fTH(γ),
then calls an oracle that returns in constant time a maximal model
M for the set of defaults and the theory (temporarily ignoring the
specificity ordering);12 and finally, returns “yes” if M satisfies γ, and
“no” otherwise. From lemma 7 it follows that the algorithm returns
“yes” iff γ is satisfiable. Therefore, since it runs in polynomial time, it
follows that the search problem for DH and a Horn theory is NP-hard.

Finally, we consider again specificity ordered Horn defaults. We can
obtain a tractable system by limiting our default systems to acyclic ones:

Theorem 6 Let DH+
a be a set of acyclic Horn defaults, and P be a set

of propositional letters that includes those in DH+
a . The Max-Model-DH+

a

algorithm (figure 4) finds a maximal model of DH in time O(kn2), where n

is the number of literals in DH+
a and k is the number of letters in P .

12Note that for each input γ there exists at least one maximal model since fTH(γ) is

satisfiable, e.g., the model that assigns F to all propositional letters in Pext is a satisfiable

assignment.
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Max-Model-DH+
a Algorithm

Input: A set of acyclic Horn defaults DH+
a and a set of proposi-

tional letters P = {p1, p2, ...pn} that includes those in DH+
a .

Output: a maximal model Mmax of DH+
a

begin
p remain ← ORDER(P , DH+

a )
Mpart ←∅
loop

if (ELEM(p remain) = ∅) then exit
p← HEAD(p remain) ; p remain ← TAIL(p remain)
set t ← false ; set f ← false
for all d : (α→x) with x = p or p do

blocked ← false
if (Mpart satisfies α) then

Mmin←{x | x = (if (p ∈Mpart ∪ α) then p else p), p ∈ P}
for all r : (β ∪ α→x)do

if (Mmin satisfies β) then blocked ← true
end for
if (¬blocked) then

if (x = p) then set t ← true
else set f ← true

end for
if ¬set t then Mpart←Mpart ∪ {p}

else if ¬set f then Mpart←Mpart ∪ {p}
end loop
Mmax←{x | x = ( if (p ∈Mpart) then p else p) , p ∈ P}

end

procedure ORDER(P,D)
Input: A set of acyclic Horn defaults DH+

a and a set of proposi-
tional letters P = {p1, p2, ...pn} that includes those in DH+

a .

Output: a list of letters in P , (pi1 , pi2 , ..., pin), such that for each
pair of letters pik , pil in P , if k < l then there does not exist
a path from pil to pik in the graph G(DH+

a ) associated
with DH+

a (see definition of acyclic defaults).

Figure 4: A polynomial algorithm for the search problem DH+
a,s.
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In figure 4 the functions ELEM, HEAD, and TAIL each take as argument a
list and return, respectively, the set of elements in the list, the first element
of the list, and the list obtained after removing the first element. Mpart is a
partial model for P , defined as follows:

Definition: Partial Model
A partial model (or partial truth assignment) Mpart for P is a partial func-
tion t : P → {T,F}.

In the Max-Model-DH+
a algorithm we represent a partial model by a set S of

literals in the following manner: if S contains the literal p, then p is assigned
T in Mpart, if S contains the literal p, then p is assigned F in Mpart, and, if
S contains neither p nor p, then Mpart does not assign a truth value to p.
A partial model represented by the set S satisfies a literal x iff x is not an
element of S. See appendix A for the proof of theorem 6.

The algorithm can be adapted to handle non-empty theories consisting
of a set of literals.13

4 A Comparison to Default Logic

In this section we compare model-preference defaults to default logic (Reiter
1980). More specifically, given a model-preference default theory, we will
consider whether there exists a set of propositional default logic rules such
that there is a one-to-one and onto correspondence between maximal models
and extensions. Since an extension of a default logic theory need not contain
a complete set of literals, it is clear that given such a theory, there does in
general not exist a corresponding model-preference default theory. However,
as we will see below, for a large class of model-preference theories one can
find a corresponding default logic theory. In our analysis, we assume an
empty set of facts. For a comparison to circumscription see Boddy et al.
(1989).

We will first discuss an example. Consider the set of defaults D used in
the example illustrating specificity ordering (section 2). The corresponding

13Although we expect that theories consisting of Horn formulas can also be handled

efficiently, we have yet to find a polynomial-time algorithm for this case.
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set of default logic rules Ddl contains two groups of rules. The first group
consists of rules that correspond directly to the model-preference defaults:14{

: a ∧ s

a
,

: e ∧ a ∧ s

e
,

: e ∧ s ∧ a

e
,

: s

s

}
.

Note how s in second rule enforces the specificity ordering. The second
group of rules guarantees that the only extensions of Ddl are complete sets
of literals: {

: a

a
,

: a ∧ s

a
,

: e ∧ (s ∧ a)
e

,
: e ∧ a

e

}
.

These defaults can be viewed as a set of closed world assumptions (Reiter
1978) that “force” the system to decide on the truth assignment of each
letter, but unlike other cases of closed world assumptions, no preference is
given to negative information. Ddl has only one extension,15 Th{s, a, e},
corresponding to the only maximal model of D. Thus, we have a one-to-one
and onto mapping between the maximal models and the extensions.

In general, the translation into default logic is given by a function fDL

which maps a set of specificity ordered Horn defaults DH+ to a set of default
logic rules.

Definition: fDL

The set fDL(DH+) contains the rules from the following groups:

Group A. For each model-preference default α→q a default logic rule:

: q ∧ α ∧ β1 ∧ ... ∧ βk

q

where each βi corresponds to a model-preference default (α ∪
βi)→q.16

14Again, we use the obvious abbreviations.
15Here Th denotes closure under logical consequence.
16We use semi-normal defaults without prerequisites. It might be more natural to

have α as a prerequisite instead of as a justification. To do so, however, we would need

more complicated closure rules (group B) because extensions in default logic must be

“grounded,” i.e., there must be some sequence of rules that “constructs” the extension.
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Group B. For each literal q such that (∅→q) 6∈ DH+ a rule:

: q ∧ δ1 ∧ ... ∧ δl

q

where each δi corresponds to a model-preference default δi→q.

The translation from model-preference defaults into default logic rules is
somewhat complicated by the fact that a maximal model is defined as a
model for which there does not exist a model that is strictly preferred.
Therefore, the models on a cycle in the graph corresponding to the pref-
erence relation on models can all be maximal. In that case, a translation
like the one given above may lead to a set of semi-normal defaults with no
extensions. However, given some, relatively weak, restrictions on our model-
preference theories, we do obtain a correspondence between maximal models
and extensions as shown by the following theorem.

Theorem 7 Let DH+ be a set of specificity ordered model-preference de-
faults that does not contain a mutually blocking pair of defaults such as
α→q and α→q or a self-supporting default such as (α ∪ q)→q. If the
preference relation induced by DH+ is a partial order, then M is a max-
imal model of DH+ iff Th(M) is an extension of the default logic theory
< fDL(DH+), ∅ >. (In Th(M), M is taken to be a propositional theory; in
this case, the set of literals representing the maximal model.)

See appendix B for the proof of this theorem.
The main restriction is the requirement that the preference relation is a

partial ordering; self-supporting defaults and mutually blocking pairs could
be allowed but would require a more complicated translation procedure. The
correspondence between sets of model-preference defaults and default logic
rules can be used to show the intractability of certain classes of semi-normal
default rules by reductions ¿from intractable model-preference systems. We
will not explore this here since direct methods provide more general complex-
ity results for default logic theories, as demonstrated in Kautz and Selman
(1989).
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In conclusion, our analysis shows that a partial ordering induced by a
set of model-preference defaults can be captured by a semi-normal default
logic theory by introducing defaults that force the system to decide on the
truth assignment of each letter.

5 Conclusions

We introduced a system for default reasoning based on a model-preference
relation. A maximal model in such a system is a complete description of
a preferred or most likely state of affairs, based on incomplete information
and a set of defaults. Unlike most other approaches to default reasoning,
ours is purely semantic, and is defined independent of syntactic notions.

The goal of our work is to develop tractable methods of default reason-
ing, for use in fast reasoning systems which represent knowledge in a vivid
form. Therefore, we only allow complete models as default conclusions.
Model-preference theories seem to be of interest, however, beyond this one
application. The specificity ordering on defaults, a crucial component of
any kind of default reasoning, is neatly captured in D+ and its subtheo-
ries. Another natural application for model-preference theories is to encode
a logic of choice, whereby an an agent chooses which of his goal states is
most preferred.

We presented a detailed analysis of complexity properties of the various
model-preference default systems. The analysis indicates that only systems
with quite limited expressive power lead to tractable reasoning (e.g., DH
and DH+

a ). We also gave an example of how a relatively small change in
the expressive power of a tractable system can lead to intractability (from
DH to the intractable DH+).

Acyclic inheritance hierarchies can be represented in the tractable sys-
tem DH+

a . Classes of acyclic rules have also been singled out by others
(e.g., Touretzky (1986) on acyclic inheritance hierarchies, and related work
by Etherington (1986) on ordered default theories) for their relatively good
computational properties. A direct comparison with our approach is com-
plicated by the fact that we do not allow for partial models. Selman and
Levesque (1989) give a complexity analysis of highly specialized forms of
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defeasible reasoning such as Touretzky’s inheritance reasoner.
The nature of model-preference defaults was further illustrated by a com-

parison with default logic (Reiter 1980). In this comparison we showed how
a set of semi-normal rules, which can be viewed as representing a special
form of closed world assumptions, can be added to a set of default logic
rules in a way that guarantees the extensions to be complete models.

This work suggests several directions for future research. One is the de-
velopment of a first-order version of model-preference defaults. Another is
to allow for more expressive power and introduce some form of “approxi-
mate reasoning” to keep the system tractable. A search for other tractable
sub-classes would be in order. And, finally, to determine the usefulness of
the tractable systems we have identified, a further study of the forms of
defaults necessary in real world domains, e.g., conventions in cooperative
conversation (Perrault 1987), is needed.
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A Correctness proofs and complexity of algorithms

and procedures

Theorem 2: Let D be a set of Horn defaults, P be a set of propositional letters
that includes those in D, and M0 be a model such that M0 |= {p | p ∈ P}. With
parameters M0 an D the procedure POS (figure 2) returns a maximal model for D

in time O(nk), where n is the number of literals in D and k is the number of letters
in P .

We will use the following definition and lemma in the proof of theorem 2.

Definition: �+

The �+ relation defines a partial order on models: for any two models M and M ′ for
a set of propositional letters P , M�+M ′ iff {p ∈ P |M |= p} ⊆ {p ∈ P |M ′ |= p}.
(Informally, M�+M ′ iff M ′ is as true as M .)
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The lemma states two properties of the procedure POS. These properties are
more general than strictly needed for the proof of theorem2. We will use them in
their full generality in the correctness proof of an algorithm that finds a maximal
model for a set of Horn defaults and a non-empty theory (theorem 3).

Lemma 8 Let D be a set of Horn defaults, P be a set of propositional letters that
includes those in D, and M be a truth assignment for P . With parameters M and
D the procedure POS returns a truth assignment with the following properties:

1. M≤POS (M, D)
2. ∀M ′ (POS (M, D)≤M ′) ∧ (M�+M ′))=⇒(M ′≤POS (M, D))

Proof: First we will show that POS does return a truth assignment on all inputs.
In each recursive call the number of letters assigned T in the truth assignment
will be increased by one. Therefore, after at most |P| recursive calls the
algorithm will return a truth assignment. We now consider the two properties
of POS(M, D).
Property 1: By a straightforward finite induction on the number of letters
assigned F in M . We omit the details of this induction. (Note that the
number of letters assigned F in M decreases by one in each recursive call,
and in each call, except for the final one, a rule is found that satisfies the
condition of the if statement. A sequence of these rules leads from M to
POS(M, D).)
Property 2: We first consider the special case in which there does not exist
a rule in D that satisfies the condition in the if statement. It follows that
POS(M,D) = M and that any model M ′ reachable from M will be such
that M ′�+M . Now, if M ′ also satisfies M�+M ′, then M ′ = M . Thus,
M ′ = POS(M, D), and therefore, M ′≤POS(M,D). We now prove property
2 by finite induction on the number of letters assigned F in M . Base: Let
M be the model such that M |= P . It follows that there does not exist a
rule in D that satisfies the condition in the if-statement. Therefore, from the
case discussed above, property 2 holds. Induction Step: Assume property 2
holds for all M with k (0 ≤ k < |P |) letters assigned F. We will show that
property 2 holds for all M with k + 1 letters assigned F. Let M be a model
with k + 1 letters assigned F. If there does not exist a rule in D that satis-
fies the condition in the if statement, then property 2 follows from the case
discussed above. Otherwise, let d : α→p be the first rule found that satisfies
the condition of the if statement. Therefore, we have that POS(M,D) =
POS(M |p, D) and M

d→M |p. ¿From the induction hypothesis it follows that
∀M ′ ((POS(M, D)≤M ′) ∧ (M |p�+M ′))=⇒(M ′≤POS(M, D)). Now, let M ′

be a model such that POS(M, D)≤M ′ and M�+M ′. Application of rule d

to M ′ leads to the model M ′|p, i.e., M ′ d→M ′|p (note that d is applicable at
M ′ since M�+M ′ and d is applicable at M). It follows that M ′|p is such
that POS(M,D)≤M ′|p. We also have that M |p�+M ′|p, since M�+M ′.
Thus, by the induction hypothesis, M ′|p≤POS(M,D), and therefore, since
M ′ d→M ′|p, we have M ′≤POS(M,D).
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Proof of theorem 2: Let M0 be the model such that M0 |= {p | p ∈ P}. Note
that for any model M we have M0�+M . We will now show that there does
not exist a model that is strictly preferred over POS(M0, D). Let M be a
model such that POS(M0, D)≤M . It follows, directly form lemma 8 property
2, that M≤POS(M0, D). Thus there does not exist a model M such that
POS(M0, D)≤M and ¬(M≤POS(M0, D)). And therefore, POS(M0, D) is a
maximal model.
Finally, we show that POS finds a maximal model in time O(nk), where n
is the number of literals in D and k the number of letters in P . This follows
directly from the fact that there will be at most k recursive calls, as argued
in the proof of lemma 8, and checking the condition of the if statement may
require checking each rule which takes time O(n).

Theorem 3: Let DH be a set of Horn defaults, Th be a consistent set of literals,17

and P be a set of propositional letters that includes those in DH and Th. The
Max-Model-DH algorithm (figure 3) finds a maximal model of DH and Th in time
O(nk2), where n is the number of literals in DH and k is the number of letters in
P .

In figure 3 we use the notation β, where β is a set of literals, to denote the set
{x | x ∈ β}. Before giving a correctness proof of the Max-Model-DH algorithm,
we will first discuss, in general terms, the method used in the algorithm to find
a maximal model. The basic idea is the same as for the procedure POS. I.e., we
start with a minimal model M0 w.r.t. �+ that satisfies the theory and search
for a maximal model by applying positive defaults as often as possible using the
procedure POS. If the model returned by POS, Mpos, satisfies the theory Th, then
this is indeed a maximal model w.r.t. the defaults and the theory. This follows
from lemma 8 property 2. However, in case the theory contains negative literals,
the procedure POS may return a model that does not satisfy the theory. (Note that
since M0 satisfies the theory, the model returned by POS will satisfy at least the
positive literals in the theory.) If so, the algorithm proceeds by testing, using the
procedure NEG, whether negative rules can lead from the model returned by POS
to a model that does satisfy the theory. If such a model can be reached, then that
model is again maximal w.r.t. the defaults and the theory. Otherwise, consider the
case in which no model that satisfies the theory can be reached from the model Mpos.
This means that there is a non-empty set of letters γ such that γ ⊆ Th, Mpos |= γ,
and there is no sequence of rules that leads from Mpos to a model that satisfies
γ. The algorithm now continues the search for a maximal model by repeating the
above process starting from M0 and applying a proper subset of the default rules.

17A set of literals Th is consistent iff there does not exist a propositional letter p such

that both p and p are elements of Th.
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This subset is obtained from the original set of rules by removing all positive rules
that have a letter from γ on the right-hand side (note that in the algorithm δ is
the union of the γ’s obtained each time through the loop). That we can safely
restrict ourselves to this subset in the search for a maximal model, starting from
M0, follows from the following argument. The application of a positive rule with
a letter in γ on the right-hand side leads to a model M such that M 6|= γ. It
follows from lemma 10 below, that from the model M one cannot reach a model
that satisfies the theory (note that γ ⊆ Th). Therefore, we can ignore such rules in
our search for a maximal model. After at most |Th | alternations of POS and NEG
the algorithm will find a maximal model w.r.t. the defaults and the theory. (Note
that since M0 satisfies the theory, at least one maximal model w.r.t. the defaults
and the theory is reachable from this model.) Before we prove theorem 3 we first
consider several lemmas. The first one states a basic property of the procedure
NEG.

Lemma 9 Let M be a truth assignment for the set of propositional letters P , β

be a subset of P , and D be a set of Horn defaults. The set η =NEG(β, M,D) is a
subset of P with the following property:

M≤M |η

Proof: By a straightforward induction on |β|. We omit the details of this induc-
tion. (Note that |β| decreases by one in each recursive call, and in each call,
except for the final one, a rule is found that satisfies the condition of the if
statement. A sequence of these rules leads from M to M |η.)

The following lemma is central to the correctness proof of the algorithm Max-
Model-DH, it concerns the set of letters returned by NEG when applied to a model
Mpos obtained by POS with parameters M0 and D. In the algorithm, β is the
set of letters that occur negated in the theory and are assigned T in the model
Mpos. The procedure NEG with parameters β , Mpos, and D will return a subset
of letters in β for which the truth assignment can be changed via a sequence of
application of default rules (lemma 9). Lemma 10 shows how the search for a
maximal model starting from the model M0 using the procedure POS can now be
pruned by removing all default rules that lead to models that assign T to any of
the letters in the set γ = β−NEG(β, Mpos, D).

Lemma 10 Let M0 be truth assignments for the set of propositional letters P , D

be a set of Horn defaults, Mpos be the model returned by POS(M0, D), β be a subset
of P . The set γ = β−NEG(β, Mpos, D) has the following property:

∀M ((M0≤M) ∧ (M 6|= γ))=⇒¬∃M ′ ((M≤M ′) ∧ (M ′ |= γ))
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Proof: By finite induction on |β|. Base: |β| = 0, thus γ = ∅, and the property
holds vacuously. Induction Step: Assume that the property holds for all β
with |β| = k (0 ≤ k < |P |). We will show that the property holds for for all
β with |β| = k +1. Let β be a subset of P with |β| = k +1. We first consider
the case in which there exists at least one rule that satisfies the condition of
the if statement in the procedure NEG. Let d : α→p be the first such rule
found. ¿From the procedure NEG it follows that NEG(β, Mpos, D) = {p}∪
NEG(β − {p},Mpos, D). Let β′ = β − {p} and γ′ = β′−NEG(β′,Mpos, D).
Since γ = β−NEG(β, Mpos, D), we have γ = γ′, and the property for γ
follows directly from the induction hypothesis.
Finally, we consider the case in which there does not exist a rule d : α→p in
D such that [(p ∈ β ∧ (Mpos |= α) ∧ (α ∩ (β − {p})) = ∅)]. It follows that
γ = β. Let M be a model such that M0≤M and M 6|= γ. We will show that
there does not exist a model M ′ such that M≤M ′ and M ′ |= γ. Assume that
such a model M ′ does exist. Since M≤M ′, there exists a sequence of default
rule applications that leads from M to M ′. Let M ′′ be the first model in this
sequence such that M ′′ |= γ, M ′′

prec the preceding one, and d be the rule that

leads from M ′′
precto M ′′, i.e., M ′′

prec
d→M ′′. The rule d must be of the form

α→p with p ∈ γ and (α− (γ−{p})) = ∅, since M ′′
prec |= α and M ′′

prec satisfies
γ except for the letter p. Since M0≤M and M≤M ′′

prec, we have M0≤M ′′
prec.

And therefore, M ′′
prec�+Mpos. (This can easily be shown by induction on

the length of the sequence of rule applications that leads from M0 to M ′′
prec.)

Thus, Mpos |= α. Now, since γ = β for this case, the rule d : α→p is such
that p ∈ β, Mpos |= α, and (α ∩ (β − {p})) = ∅, a contradiction. Therefore,
such an M ′ does not exist.

The following lemma gives two properties of the set δ in the Max-Model-DH
algorithm. The first property follows directly from the algorithm, and the second
one extends the property for γ, as stated in lemma 10, to the set δ.

Lemma 11 Let DH be a set of Horn defaults, Th be a consistent set of literals,
P be a set of propositional letters that includes those in DH and Th, and M0 =
Th ∪ {p | p ∈ P and p 6∈ Th}. The set δ in the Max-Model-DH algorithm, after
being initialized, has the following properties:

1. δ ⊆ Th
2. ∀M ((M0≤M) ∧ (M 6|= δ))=⇒¬∃M ′ ((M≤M ′) ∧ (M ′ |= δ))

Proof: By a course of values induction on |δ|.
Property 1. Trivial.
Property 2. Induction assumption: property 2 holds for δ with |δ| < k
(0 ≤ k). We will show that property 2 holds for δ with |δ| = k. If, k = 0
than δ = ∅ and property 2 holds vacuously. Otherwise, if k > 0 then, from
the Max-Model-DH algorithm, it follows that δ is given by δ = δprev ∪γ with
δprev the previous value of δ, |δprev| < k, and γ = β− NEG(β, Mpos, D) 6= ∅,
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in which Mpos = POS(M0, D), D = DH−{d ∈ DH | d : α→p with p ∈ δprev},
and β = {p | p ∈ Th and Mpos |= p}. Let M be a model such that M0≤M

and M 6|= δ. We distinguish between the following two cases.
Case a) — Assume that ¬(M0≤DM). Then the sequence of rule applications
that leads from M0 to M will contain a rule in DH−D. In the sequence, this
rule leads to a model M ′ such that M ′ 6|= δprev. Therefore, by the induction
assumption and the fact that δprev ⊆ δ we have ¬∃M ′′ ((M ′≤M ′′)∧ (M ′′ |=
δ)). And thus, since M ′≤M , ¬∃M ′′ ((M≤M ′′) ∧ (M ′′ |= δ)).
Case b) — Assume that M0≤DM . Then, because M0 |= δprev (by the
definition of M0 and property 1) and by the definition of D, we have M |=
δprev. And thus, M 6|= γ, since M 6|= δ and δ = γ ∪ δprev. Now, from
lemma 10, it now follows that ¬∃M ′ ((M≤DM ′) ∧ (M ′ |= δ)). Finally, we
have to consider the possibility that there exists a model M ′ that satisfies δ
and is reachable from M via a sequence of rules that includes at least one
rule in DH − D. Assume that such a model exists. Consider the sequence
of rule applications that leads from M to M ′. In this sequence, a rule in
DH−D will lead to a model M ′′ such that M ′′ 6|= δprev. ¿From the induction
hypothesis and the fact that δprev ⊆ δ, it follows that there does not exists a
model M ′′′ such that M ′′≤M ′′′ and M ′′′ |= δ. Therefore, since M ′′≤M ′, we
have M ′ 6|= δ, a contradiction.

Proof of theorem 3: Firstly, we will show that the algorithm halts on all inputs,
and that Mmax is a maximal model w.r.t. DH and Th.
The algorithm halts on all inputs and returns a truth assignment because δ
monotonically increases each time through the loop, as can be seen ¿from
the algorithm, and |δ| ≤ |Th | (lemma 11 property 1). (Note that at the
execution of the assignment statement for β, β is assigned a set of letters
that do not yet occur in γ.)
We now show that Mmax is indeed a maximal model w.r.t. DH and Th. Let
M0, D, Mpos, Mmax, δ, and β be as in the Max-Model-DH algorithm just
before execution of the exit statement in the loop statement. Thus, we have
M0 = Th ∪ {p | p ∈ P and p 6∈ Th}, D = DH − {d ∈ DH | d : α→p with
p ∈ δ}, Mpos = POS(M0, D), Mmax = Mpos|β, and β = {p ∈ P | p ∈ Th and
Mpos |= p} = NEG(β, M, D) (since γ = ∅).
We first show that Mmax |= Th. Let A be the set {p | p ∈ Th} and B be
the set {p | p ∈ Th}. It follows directly that Mmax |= A. Also, from the
procedure POS and the fact that M0 |= B, we have Mpos |= B. Therefore,
since (β∩B) = ∅ because Th is consistent, it follows that Mpos|β |= B. Thus,
Mmax |= Th.
We now proceed to show that ¬∃M ′((M ′ |= Th)∧(Mmax≤M ′)∧¬(M ′≤Mmax)).
Let M ′ be a truth assignment such that ((M ′ |= Th)∧(Mmax≤M ′)). We will
show that it follows that (M ′≤Mmax). By lemma 8 property 1 and lemma 9
we have M0≤Mpos≤Mmax≤M ′. If M ′ is obtained via a sequence of rules in
D, it follows ¿from lemma 8 property 2 that M ′≤DMpos, since Mpos≤DM ′

and M0�+M ′ because M ′ |= Th and M0 = Th ∪ {p | p ∈ P and p 6∈ Th}.
Therefore, we have that M ′≤Mmax, since D ⊆ DH and Mpos≤Mmax. (Note
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that when we do not indicate a particular set of rules, the preference rela-
tion is w.r.t. DH.) Otherwise, assume that M ′ is obtained from Mmax via a
sequence s of rules that contains at least one rule d : α→p with p ∈ δ. There-
fore, in the corresponding sequence of truth assignments there is a model
M ′′ such that M ′′ 6|= δ. Since M0≤Mmax, we have M0≤M ′′. Therefore, by
lemma 11 property 2 and the fact that δ ⊆ Th by lemma 11 property 1, it
follows that M ′ 6|= Th, a contradiction. Thus, such an M ′ does not exist. It
follows that Mmax is a maximal model w.r.t. DH and Th.
Finally, we show that Max-Model-DH algorithm finds Mmax in time O(nk2),
where n is the number of literals in DH and k the number of letters in P . Like
the procedure POS, the procedure NEG will take time O(nk). The body of
the loop statement will be executed at most k times, since δ monotonically
increases and is bounded by Th. The procedures POS and NEG are the most
time consuming steps in the body of the loop, so executing the loop will take
time O(nk). Thus, the Max-Model-DH algorithm will find a maximal model
in time O(nk2).

Theorem 6: Let DH+
a be a set of acyclic Horn defaults, and P be a set of propo-

sitional letters that includes those in DH+
a . The Max-Model-DH+

a algorithm (figure
4) finds a maximal model of DH in time O(kn2), where n is the number of literals
in DH+

a and k is the number of letters in P .

In figure 4 the functions ELEM, HEAD, and TAIL each take as argument a list
and return, respectively, the set of elements in the list, the first element of the list,
and the list obtained after removing the first element. Mpart is a partial model for
P , defined as follows:

Definition: Partial Model
A partial model (or partial truth assignment) Mpart for P is a partial function
t : P → {T,F}.

In the Max-Model-DH+
a algorithm we represent a partial model by a set S of literals

in the following manner: if S contains the literal p, then p is assigned T in Mpart,
if S contains the literal p, then p is assigned F in Mpart, and, if S contains neither
p nor p, then Mpart does not assign a truth value to p.

A partial model represented by the set S satisfies a literal x iff x is not an
element of S. We will say that two (partial) models agree on the truth assignment
of a letter p iff they both assign the same truth value to p or at least one of the
models does not assign a truth value to p. A (partial) model M for P agrees with a
(partial) model MR for R ⊆ P iff M and MR agree on the truth assignment of the
letters in P . Note that M and MR by definition agree on letters in the set P −R,
since MR does not assign a truth value to those letters. Unless explicitly stated
otherwise, models are not partial.

35



The following lemma states properties of of the set of models for P that agree
with the partial model Mpart as constructed in the algorithm and with an arbitrary,
fixed truth assignment for the letters in the set R = ELEM(p remain). Note that
the size of R decreases by one each time through the main loop.

Lemma 12 In the Max-Model-DH+
a algorithm upon entering the loop-statement,

Mpart has the following properties (let R = ELEM(p remain)):

1. Let MR be an arbitrary model for R. If the model M for P agrees with
both Mpart and MR, and the model M ′ for P agrees with MR, then
(M≤M ′) iff M ′ agrees with Mpart

2. If R = ∅, then any M for P that agrees with Mpart is a maximal
model.

Proof: Property 1: Proof by finite induction on |P − R|. Base: |P − R| = 0,
therefore P = R. Let MR be an arbitrary truth assignment for R. ¿From the
algorithm it follows that Mpart= ∅. Since P = R, it follows that MR is the
only model for P that agrees with Mpart and MR, and MR also is the only
model for P that agrees with MR. Thus, by the reflexivity of ≤, property
1 follows. Induction Step: Assume property 1 holds upon entering the loop
statement with |P−R| = k (0 ≤ k < |P |). We will show that property 1 holds
upon the next entrance of the loop statement with |P − R| = k + 1. Below,
we will use the subscript prev to refer to the previous value of a variable in
the algorithm.
Let |P − R| = k + 1 and consider Mpart upon entering the loop statement.
Mpart is given by:

1. If set t is assigned false, then Mpart = Mpart,prev ∪ {p}
2. If set t is assigned true and set f is assigned false, Mpart = Mpart,prev∪
{p}

3. If both set t and set f are assigned true, then Mpart = Mpart,prev

¿From the algorithm we also have that Rprev = R ∪ {p} (note Rprev =
ELEM(p remain,prev)). Let MR be an arbitrary truth assignment for R,
M+

Rprev
be a model for Rprev that agrees with MR and assigns T to p and

M−
Rprev

be a model for Rprev that agrees with MR and assigns F to p. By the
induction hypothesis, we have that if M is a model for P that agrees with
both Mpart,prev and M+

Rprev
, and M ′ a model for P that agrees with M+

Rprev
,

then (M≤M ′) iff M ′ agrees with Mpart,prev. And a similar property w.r.t.
M−

Rprev
. We will now show that property 1 holds for Mpart given by each of

the cases listed above.
Consider the first case. It follows form the notion of “agrees with,” and the
fact that Mpart = Mpart,prev∪{p} that the set of models for P that agree with
Mpart and MR is identical to the set of models that agree with Mpart,prev

and M−
Rprev

. Now let M be a model for P that agrees with both Mpart and
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MR ; so, M agrees with Mpart,prev and M−
Rprev

. And, let M ′ be a model that
agrees with MR. We will show that (M≤M ′) iff M ′ agrees with Mpart.
(if) Assume that M ′ agrees with Mpart. So, M ′ agrees with Mpart,prev. Also,
since M ′ assigns F to p and M ′ agrees with MR, it follows that M ′ agrees
with M−

Rprev
. Now because, M agrees with both Mpart,prev and M−

Rprev
, it

follows from the induction hypothesis that M≤M ′.
(only if) Assume that M≤M ′. If M ′ assigns F to p, then M ′ agrees with
M−

Rprev
. So, since M agrees with both Mpart,prev and M−

Rprev
, it follows

from the induction hypothesis that M ′ agrees with Mpart,prev. And since,
Mpart = Mpart,prev ∪ {p}, M ′ agrees with Mpart. Otherwise, assume that
M ′ assigns T to p. We will show that this assumption is inconsistent with
the assumption that M≤M ′. ¿From M≤M ′ it follows that there exists a
sequence s of rules that leads from M to M ′. Let M ′′ be the first model
in this sequence that assigns T to p, and let d : α→p be the rule in s that
leads to this model from a model M ′′′ (note that α ∈ P − R − {p}). If
Mpart,prev satisfies α and d is not blocked at Mmin,prev (see algorithm), then
the algorithm will assign true to set t , contradiction. If Mpart,prev satisfies
α and d is blocked at Mmin,prev by a rule d0 : (β ∪ α)→p, then there is
at least one letter p0 ∈ β such that p0 is assigned T in Mmin,prev, while
p must be assigned F in M ′′′ because we can assume w.l.o.g. that d is not
blocked at M ′′′. Since p0 must be an element of P − R − {p}, it follows
that M ′′′ does not agree with Mpart,prev. And therefore, by the induction
hypothesis, ¬(M≤M ′′′), contradiction. Finally, if Mpart,prev does not satisfy
α, then there exists a letter p0 ∈ α assigned F in Mpart,prev. Let M ′′ be
the first model in the sequence s that assigns T to p0. Since M ′′ does not
agree with Mpart,prev it follows by the induction hypothesis that ¬(M≤M ′′),
contradiction.
We now consider the second case. Property 1 follows by an argument similar
to the one given for the first case. Note that the condition that set t is
assigned true prevents a potential overlap with the first case. An algorithm
that assigns p to T instead of F in case both set t and set f are assigned false
will also converge on a maximal model.
Finally, we consider the third case: assume that both set t and set f are
assigned true, then Mpart = Mpart,prev. When we ignore potential blocking
for a moment, it follows form the algorithm that given a model M that
agrees on Mpart,prev, there exists a rule d : α→p such that d leads to a model
M ′ = M |p. In general, taking blocking into account, it can be shown that
there exists a sequence of rules that leads from M to M ′. Similarly, one can
reach a model M ′′ = M |p from M .
Let M be a model for P that agrees with Mpart = Mpart,prev and with MR.
W.l.o.g. we will assume that M assigns p to T. So, M agrees with M+

Rprev
.

Let M ′ be a model that agrees with MR. We will show that (M≤M ′) iff M ′

agrees with Mpart. Let M ′′ = M |p. Thus, as argued above, we have M ′′≤M
and M≤M ′′.
(if) Assume that M ′ agrees with Mpart = Mpart,prev. Now if M ′ assigns T
to p, it follows that M ′ agrees with M+

Rprev
, and therefore, by the induction
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hypothesis we have (M≤M ′). Otherwise, if M ′ assigns F to p, it follows that
M ′ agrees with M−

Rprev
. Thus, by the induction hypothesis, M ′′≤M ′. And,

because M≤M ′′, we have M≤M ′.
(only if) Assume that M≤M ′. If M ′ assigns T to p, then M ′ agrees with
M+

Rprev
. Therefore, by the induction hypothesis M ′ agrees with Mpart,prev =

Mpart. Otherwise, if M ′assigns F to p, then M ′ agrees with M−
Rprev

. Now,
since M ′′≤M , we have M ′′≤M ′. And therefore, again by the induction
hypothesis, it follows that M ′ agrees with Mpart,prev = Mpart.
Property 2. Let R = ∅. Property 1 becomes: given an arbitrary model M ′ for
P , if M is a model for P that agrees on Mpart, then (M≤M ′) iff M ′ agrees
with Mpart. Now, let M be a model for P that agrees on Mpart, and let
M ′′ be a model such that M≤M ′′. By property 1, it follows M ′′ agrees with
Mpart. And therefore, again by property 1, M ′′≤M . So, M is a maximal
model. A direct consequence of this property is that we can arbitrarily assign
truth values to the letter not assigned in Mpart when the main loop is exited;
any model thus obtained will be a maximal model.

Proof of theorem 6: The algorithm will terminate when R = ∅. Mmax returned
by the algorithm agrees with Mpart. So, by property 2 of lemma 12, Mmax

is a maximal model of DH+
a .

Finally, we show that Max-Model-DH+
a finds a maximal model in time

O(kn2), where n is the number of literals in D and k the number of let-
ters in P . This follows directly from the fact that the loop statement is
executed at most k times, and each of the for statements requires at most
time O(n).

B Proof of theorem on the relation to default logic

Theorem 7: Let DH+ be a set of specificity ordered model-preference defaults
that does not contain a mutually blocking pair of defaults such as α→q and α→q

or a self-supporting default such as (α ∪ q)→q. If the preference relation induced
by DH+ is a partial order, then M is a maximal model of DH+ iff Th(M) is an
extension of the default logic theory < fDL(DH+), ∅ >. (In Th(M), M is taken to
be a propositional theory; in this case, the set of literals representing the maximal
model.)

We will use the following lemmas in the proof of this theorem. For the defini-
tions and terminology regarding default logic we refer to Reiter (1980) and Ether-
ington (1986).

Lemma 13 Let α1, ..., αk, and φ be conjunctions of literals. If α1∧ ...∧αk does not
contain a complementary pair of literals such as q and q, then φ |= (α1 ∨ ... ∨ αk)
iff ∃i. φ |= αi.
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Proof: (if) Trivial. (only if) Proof by contradiction. Let φ |= (α1 ∨ ... ∨ αk).
Assume that φ 6|= αi for 1 ≤ i ≤ k. ¿From φ 6|= αi it follows that there exists
a truth assignment that assigns T to each literal in φ and to at least one
literal in αi. Since α1 ∧ ... ∧ αk does not contain a pair of complementary
literals, it follows that there exists a model M that assigns T to each literal
in φ and T to at least one literal in each αi. So, M |= φ ∧ α1 ∧ ... ∧ αk.
Therefore, φ 6|= α1 ∨ ... ∨ αk, contradiction. Thus, ∃i. φ |= αi.

Lemma 14 Let d be a default logic rule of the following form:

: q ∧ α ∧ β1 ∧ ... ∧ βk

q

where q is a single literal, α is a conjunction of literals, each βi is a conjunction of
positive literals none of which share a letter with literals in q or α, and E = Th{φ}
where φ is a set of literals. The following properties hold:

(a) If d is a generating default for E w.r.t. ∅, then φ 6|= q, φ 6|= α, and ∀i.E 6|= βi.
(b) If d is not a generating default for E w.r.t. ∅, then φ |= q, φ |= α, or
∃i. E |= βi.

Proof: (a) Given that d is a generating default for E w.r.t. ∅, it follows that
¬(q ∧ α ∧ β1 ∧ ... ∧ βk) 6∈ E. Thus, ¬[φ |= (q ∨ α ∨ β1 ∨ ... ∨ βk)]. Therefore,
φ 6|= q, φ 6|= α, and ∀i.E 6|= βi.
(b) Given that d is not a generating default for E w.r.t. ∅, it follows that
¬[¬(q ∧ α ∧ β1 ∧ ... ∧ βk) 6∈ E]. Thus, φ |= (q ∨ α ∨ β1 ∨ ... ∨ βk), and thus
by lemma 13, it follows that φ |= q, φ |= α, or ∃i. E |= βi.

Proof of theorem 7: (if) Let M be an extension of of < fDL(DH+), ∅ >. ¿From
the form of the defaults it follows that any extension can be represented as
the deductive closure of a set of literals. So, let E = Th{M} with M a set
of literals represent an extension. We will show that (a) M is a complete set
of literals, and, subsequently, that (b) M is a maximal model of DH+.
(a) We will show by contradiction that M is a complete set of literals. Assume
that neither p nor p occurs in M . Consider the following cases: 1) There
does not exists a rule for p in group B. Therefore, (∅→p) ∈ DH+ with
corresponding default rule d1 = [: p ∧ β1 ∧ ... ∧ βk/p] in group A. This rule
cannot be a generating default for E w.r.t. ∅ because p is not in E. So, by
lemma 14 and since p 6∈ E it follows that there exists a bi such that M |= βi.
Now, consider the default logic rule d2 = [: p∧βi∧γ1∧...∧γl/p] corresponding
to the model-preference default βi→p. Again, this rule cannot be a generating
default, so there must exist a default βi ∧ γj→p with M |= βi ∧ γj . By
repeating this argument one will obtain a model-preference default δ→p (or
p) for which no more specific default exists. The associated default logic rule
will be a generating default for E w.r.t. ∅, bringing in p (or p) (Note that this
argument relies on the fact that rules can be blocked only by a rule with a
more specific left-hand side, i.e., on the absence of pairs of mutually blocking
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rules such as α→q and α→q.) 2) There does exist a rule for p in group B.
By again considering a sequence of default logic rules corresponding to more
and more specific model-preference rules, just as argued in case 1), we obtain
a contradiction. ¿From 1) and 2), it follows that M must be a complete set
of literals.
(b) We will now show that M corresponds to a maximal model of DH+. Let
E = Th{M} be an extension of fDL(DH+). By (a), it follows that M is a
complete set of literals. Assume that M is not a maximal model of DH+.
Therefore, there exists a rule d : (α→q) ∈ DH+ that is applicable at M and
leads to model M ′ distinct from M . Since M is an extension of fDL(DH+),
it follows that q is supported by some generating default. Assume that q is
supported by a rule in group B [: q∧γ1∧ ...∧γk/q]. From lemma 14 it follows
that M 6|= γi for 1 ≤ i ≤ k. Now, since α = γi for some i, it follows M 6|= α,
contradiction. Therefore, q is supported by some generating default in group
A. Assume q is supported by the rule dDL = [: q∧β∧δ1∧...∧δo] corresponding
to the model-preference default d′ : β→q. Since dDL is a generating default
and M is a complete set of literals, it follows using lemma 14 that M |=
q ∧ β ∧ δ1 ∧ ... ∧ δo. Consider the model M ′ = M |q. It follows that d′ is
applicable at M ′ (note that q does not occur in β since we do not allow
self-supporting rules such as α ∧ q→q). So, we have M ≤ M ′ (by rule d)
and M ′ ≤ M (by rule d′). Contradiction, since the preference ordering is a
partial ordering. So, M is a maximal model of DH+.
(only if) Let M be a maximal model of DH+. We will show that each
literal is supported by a generating default. Since the rules have empty
prerequisites, this means that there exists a converging sequence of default
rule applications that brings in all the literals in M . Moreover, since M is
a complete set of literals no other literals can be brought in, and therefore
Th(M) is an extension fDL(DH+).
We will now show that each literal M is supported by some generating default
for Th{M} w.r.t. ∅. Let q be an arbitrary literal in M . Consider the following
possibilities: 1) There exists a rule d : α→q ∈ DH+ and d is applicable at M .
Consider the corresponding default logic rule dDL = [: q∧α ∧β1∧ ...∧βk/q]
in group A. Since d is applicable at M , it follows that dDL is a generating
default for Th{M} and supports q. 2) There does not exist a rule in DH+

that is applicable at M . Consider the following rule in group B: dDL = [:
q ∧ γ1 ∧ ... ∧ γl/q] in which for each γi there exists a rule γi→q in DH+.
(Below we will consider the case where no such rule exists.) We will show by
contradiction that dDL is a generating default for Th{M}. Assume that dDL

is not a generating default for Th{M}. Therefore, by lemma 14, it follows
that there exists a γi such that M |= γi. Now, if d : γi→q is applicable at M
then M is not a maximal model (note that preference ordering is a partial
ordering), contradiction. So, d is blocked at M by a more specific default
d′ : γi ∧ δ→q and M |= (γi ∧ q). Since, by assumption, no rule of the form
α→q is applicable at M , the rule d′ must be blocked by a more specific default
in DH+. After, a certain number of repetitions of the above argument, one
will encounter a most specific rule which cannot be blocked by a more specific
rule. Since by assumption no rule of the form α→q is applicable at M , the
rule must be of the form δ→q with M |= δ. But, this would imply that M is
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not maximal since the preference relation is a partial ordering, contradiction.
(As in the (if) direction, argument relies on the absence of pairs of mutually
blocking defaults.) Finally, assume there does not exist a default for q in
group B. Therefore, ∅→q ∈ DH+. Since M is maximal this rule must be
blocked by a rule of the form β→q. Now, by a similar argument as used
above, we obtain a contradiction. ¿From 1) and 2) it follows that each literal
in M is supported by some generating default for Th{M} w.r.t. ∅.
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