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The modern knowledge worker has become very adept at working with desk-
top computers through familiar user interface devices such as keyboards, mice
and screens. This interaction has relied on human adaptation for people to enter
into the digital world by learning to type, double-click, etc. This paradigm has
been sufficient to assist people in an enormous number of tasks, but at the same
time has limited the breadth of tasks in which a computer can assist.

In order for general–purpose computers to extend their assistance further, it
is necessary for them to adapt to the non-digital world. Laptops and personal
digital assistants (PDAs) are the first wave of this adaptation. While miniatur-
ization and mobilization have enable this adaptation and provided new func-
tionality, these devices generally remain blind to the world around them. As a
result they have become intrusive in our daily lives as cell-phones ring in movie
theaters, laptops interrupt presentations with instant messages, and PDAs rattle
and beep for our attention in meetings.

Intel Research Seattle (IRS) [1] and the Assisted Cognition project [2, 3] at
the University of Washington in Seattle are jointly developing a system entitled
Guide whose goal is to probabilistically infer human activity. It is designed to be
scalable to many thousands of activities, to be robust to noise, and to be adaptive
to new behaviors. Such a system is valuable simply for its ability to record
diaries of daily activities. This would, for example, greatly assist the monitoring
of Activities of Daily Living (ADLs) [4, 5]; a task that currently burdens medical
caregivers of the elderly. Eventually such a system would be useful as a basis
for providing information with more contextual sensitivity, for giving proactive
advice to avoid safety and security errors and for training workers in the best
known methods of manufacturing operations.

Our approach relies heavily on Radio Frequency Identification (RFID) tags.
RFID tags are small computer chips embedded in a sticker the size of a postage
stamp. There is no power supply associated with an RFID tag, but when a special
antenna broadcasts an information request, the tag collects the energy from the
request and re-broadcasts a uniquely identifying number that is embedded within



it. The querying antenna listens for the id numbers of any tags which respond
and processes the information. Versions of this technology are familiar from
their use in retail anti-shopping-lifting systems. RFID tags are cheap, durable,
low-maintenance and have very little noise associated with their localization.

We have prototyped an antenna embedded in a glove which is able to see all
tags that are located within three inches of the palm of the wearer. This closely
approximates sensing when an object is touched and is compelling because it does
not require external infrastructure, has a small form factor and effectively guards
user privacy with a single point of information control. Guide uses information
obtained from this RFID sensor stream, coupled with models of human activity
and a powerful inference engine, to probabilistically reason about likely activities
in the environment. Once a sensor stream has been recorded, the system is
then able to update its models using unsupervised machine learning techniques
developed in the context of transportation activity inference [6].

The system relies on three software components to accomplish this, a data
miner, an activity inference engine and a visualizer. The data mining component
is critical to achieving scalability of the system. Given the wide range of human
activity it would be problematic to require an expert to generate a model of
every interesting activity that a person could perform. Instead we model ordered
compound activities by mining “how-to” sites [7, 8] and interpret the textual
order of the steps as sequential constraints. We augment these sequential models
with prior probabilities of object touches given an activity by leveraging features
of the Google programming API [9]. To date, we have mined the sequential
structure of roughly fifteen thousand activities.

The activity inference engine accepts the models from the data miner, con-
verts them to Dynamic Bayesian Networks [10] and uses particle filters [11, 12] to
infer activities given an RFID sensor stream. The visualizer gives insight into the
reasoning process by showing how the sensors affect the inference engine’s belief
state and allow a user to improve and debug the generated models. By using
Expectation-Maximization the activity inference engine also has the capability
to learn model parameters in an unsupervised manner.

In preliminary experiments we asked 14 individuals to wear the RFID glove
and go into a home instrumented with RFID tags to perform ADLs. We asked
each subject to perform 12 out of 14 activities in the way that they normally
would and record the sequence. Example activities included making a snack,
making tea, shaving and applying make-up. Under these circumstances and us-
ing hand-made models, the system performs well, correctly recognizing 70% of
activities performed.

As we continue to integrate and extend the components of our system, we
are actively seeking input about how to best support the proactive software
components that we regard as the consumers of our reasoning. Understanding
the applications and needs of these components will further drive our research
agenda and inform our development efforts.
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