
Training Conditional Random Fields using Virtual Evidence Boosting

Lin Liao Tanzeem Choudhury† Dieter Fox Henry Kautz
University of Washington † Intel Research

Department of Computer Science & Engineering 1100 NE 45th St.
Seattle, WA 98195 Seattle, WA 98105

In Proc. of the International Joint Conference on Artificial Intelligence (IJCAI), 2007.

Abstract
While conditional random fields (CRFs) have been
applied successfully in a variety of domains, their
training remains a challenging task. In this paper,
we introduce a novel training method for CRFs,
called virtual evidence boosting, which simulta-
neously performs feature selection and parameter
estimation. To achieve this, we extend standard
boosting to handle virtual evidence, where an ob-
servation can be specified as a distribution rather
than a single number. This extension allows us to
develop a unified framework for learning both local
and compatibility features in CRFs. In experiments
on synthetic data as well as real activity classifi-
cation problems, our new training algorithm out-
performs other training approaches including max-
imum likelihood, maximum pseudo-likelihood, and
the most recent boosted random fields.

1 Introduction
Conditional random fields (CRFs) are undirected graphical
models that were developed for labeling relational data [Laf-
ferty et al., 2001]. By directly modeling the conditional
distribution over hidden states given the observations, CRFs
make no assumptions on the dependency structure between
observations. CRFs are thus especially suitable for classifica-
tion tasks with complex and overlapped observations. How-
ever, training CRFs with very large numbers of features, espe-
cially continuous features, is still very challenging. Standard
training algorithms based on maximum likelihood (ML) re-
quire running inference at each iteration of the optimization,
which can be very expensive. Moreover, since exact inference
can easily become intractable in large and dense networks,
people often have to resort to approximate inference tech-
niques such as loopy belief propagation and Markov Chain
Monte Carlo. As a consequence, the ML learning procedure
could converge to suboptimal results or even diverge.

An alternative is to maximize the pseudo-likelihood of the
training data (MPL) [Besag, 1975]. The essential idea of
MPL is to convert a CRF into a set of independent patches;
each patch consists of a hidden node and the true values of its
direct neighbors. By applying ML on this simplified model,
MPL is usually very efficient and has been successful in sev-
eral domains. However, no general guidance has been given

on when MPL can be safely used, and indeed MPL has been
observed to over-estimate the dependency parameters in some
experiments [Geyer and Thompson, 1992].

In addition, neither ML nor MPL performs feature selec-
tion explicitly, and neither of them is able to adequately han-
dle continuous observations. These limitations make them
unsuitable for some tasks, such as activity recognition based
on real sensor data and identifying the set of features that
are most useful for classification. Alternatively, boosting has
been successfully used for feature selection in the context of
classification problems [Viola and Jones, 2002]. However, its
application to relational data remains an unsolved problem
since it assumes the independence of hidden labels.

In this paper, we show how to seamlessly integrate boost-
ing and CRF training, thereby combining the capabilities of
both paradigms. The integration is achieved by cutting a
CRF into individual patches, as done in MPL, and using these
patches as training instances for boosting. The key difference
to MPL, however, is that in our framework the neighbor labels
are not treated as observed, but as virtual evidences or beliefs.
Therefore, our approach can be seen as a “soft” version of
MPL, and is able to avoid over-estimating the neighborhood
dependencies, as often happens in MPL.

This paper has three main contributions. First, we extend
the standard boosting algorithm to handle input features that
are either virtual evidences in the form of likelihood values
or deterministic quantities. Second, based on the extended
boosting algorithm, we present a general approach to training
CRFs. This approach is able to

• perform feature selection and parameter estimation in a
unified and efficient manner,

• select compatibility features and thus learn dependency
structures in the relational data, and

• handle both discrete and continuous observations.

Third, we perform experimental validation of our algorithm
on real world activity classification tasks as well as synthetic
data using CRFs with different degrees of complexity. In
the comparison, our approach consistently outperforms other
training techniques.

The rest of this paper is organized as follows. We discuss
related work in the next section. In Section 3, we extend
boosting with virtual evidence. Then, in Section 4, we apply
this extension to training CRFs. Finally, we show experimen-

tal results and conclude.

2 Related Work
Several techniques have been presented that perform feature
selection during CRF training.

For discrete features, McCallum [2003] suggested an ef-
ficient method of feature induction by iteratively increasing
conditional log-likelihood. Dietterich et al. [2004] applied
gradient tree boosting to select features for CRFs; their al-
gorithm combines boosting with parameter estimation for 1D
linear-chain models.

The work closest to ours is boosted random fields
(BRFs) [Torralba et al., 2004], developed specifically for vi-
sion tasks in which graphs are often very densely connected.
Both BRFs and our approach combine boosting and belief
propagation, and both can select compatibility dependencies
as well as local features. However, there are a few key differ-
ences. First, for learning compatibility dependencies, BRFs
use linear combinations of beliefs as weak learners instead of
combinations of CRF features. So their models are not com-
patible with standard inference techniques. Second, BRFs as-
sume densely-connected graphs with weak pairwise connec-
tions. As we will show in our experiments, when the depen-
dencies are strong, BRFs could perform poorly. Third, since
BRFs formulate the inductions of local and compatibility fea-
tures differently, they have to specify the number of each type
of features separately. In contrast, our approach treats both
types of features in a consistent manner and thus the algo-
rithm can determine which type is better at a given iteration.
In our experiments, our algorithm automatically picks reli-
able local features at the beginning and starts selecting com-
patibility features after accumulating enough local evidence.

3 Boosting with Virtual Evidence
Boosting is a general approach for supervised learning [Fre-
und and Schapire, 1997]. Given the training data (x1, y1),
. . ., (xN , yN), where xi is a feature vector and yi is the la-
bel, boosting works by sequentially learning a set of weak
classifiers and combining them for final decisions. While
traditional boosting algorithms assume feature values be de-
terministic, in this section we extend them with virtual ev-
idence [Pearl, 1988], i.e., a feature could be a distribution
over its domain rather than a single, observed value. Specif-
ically, we generalize the LogitBoost algorithm [Friedman et
al., 2000], which directly handles probabilities and is closely
related to random field models. For simplicity, we will ex-
plain LogitBoost and our extension only for the binary classi-
fication case, i.e., yi ∈ {0, 1}, but both can be easily extended
to multi-class problems [Friedman et al., 2000].

3.1 LogitBoost Algorithm
LogitBoost minimizes the negative log-likelihood

−log p(y1, . . . , yN | x1, . . . ,xN) = −
N∑

i=1

log p(yi | xi) , (1)

where the right term follows from the independence between
labels. Using a logistic regression model, p(yi | xi) can be

computed as

p(yi | xi) =

{
eF (xi)

eF (xi)+e−F (xi)
if yi = 1;

e−F (xi)

eF (xi)+e−F (xi)
if yi = 0.

(2)

where eF (xi) and e−F (xi) represent the potentials for yi = 1
and 0, respectively, and F =

∑M
m=1 fm(xi) refers to the

sum of feature functions or ensemble of weak learners. Log-
itBoost minimizes the objective function (1) with respect to F
in a stepwise way. Specifically, given the current ensemble F ,
LogitBoost selects the next weak learner fm(x) using a New-
ton step and adds fm(x) to the ensemble. It has been shown
that computing the Newton step is equivalent to solving the
following weighted least-square-error (WLSE) problem:

fm(x) = argmin
f

N∑
i=1

wi (f(xi)− zi)
2

, (3)

where wi = p(yi | xi)(1 − p(yi | xi)) and zi = yi−0.5
p(yi|xi)

are
the weight and working response for sample i.

3.2 Extension with Virtual Evidence
In this section we extend LogitBoost to handle virtual ev-
idences or beliefs. That is, for each feature in the fea-
ture vector xi, the input to boosting could be a proba-
bilistic distribution over that feature’s domain, as opposed
to a single, observed value 1. We denote a distribution
over the cross-product of feature values as ve(xi) with do-
main {1, . . . , Xi}. We again aim to minimize the negative
log-likelihood, −

∑N
i=1 log p(yi|ve(xi)), where p(yi|ve(xi))

represents the posterior probability of a true label conditioned
on its virtual evidence. We can compute this term as follows:

p(yi|ve(xi)) =

PXi

xi=1 ve(xi)e
F (xi)PXi

xi=1 ve(xi)(eF (xi)+e−F (xi))
if yi = 1;PXi

xi=1 ve(xi)e
−F (xi)PXi

xi=1 ve(xi)(eF (xi)+e−F (xi))
if yi = 0.

(4)

Here
∑Xi

xi=1 ve(xi)e±F (xi) computes the expected poten-
tials, which replace the potentials in (2). It is also helpful
to think of ve(xi) as a message in random field models; thus
(4) is consistent with the belief update in belief propagation.

To determine the next weak learner fm(x), we modify
the LogitBoost error criterion (3) by taking the expectation
w.r.t. the virtual evidence:

fm(x) = argmin
f

N∑
i=1

wiE (f(xi)− zi)
2

= argmin
f

N∑
i=1

Xi∑
xi=1

wi ve(xi) (f(xi)− zi)
2
, (5)

where wi and zi can be computed as in LogitBoost, using
p(yi|ve(xi)) obtained from (4).

The algorithm is described in Alg. 1, which constructs F
in M iterations. Within each iteration, the algorithm first for-
mulates the WLSE problem (line 2 to 6), and then solves it to

1In this paper virtual evidence is always a discrete distribution,
which is enough for training CRFs with discrete hidden states.

inputs : training data (ve(xi), yi), with yi ∈ {0, 1},
1 ≤ i ≤ N , and F = 0

output: F that approximately minimizes Eq. (1)

for m = 1, 2, · · · ,M do1
for i = 1, 2, · · · , N do2
Compute likelihood p(yi|ve(xi)) using Eq. (4);3
Compute weight wi = p(yi|ve(xi))(1− p(yi|ve(xi));4

Compute working response zi = yi−0.5
p(yi|ve(xi))

;5

end6
Obtain “best” fm(x) by solving Eq. (5);7
Update F (x) = F (x) + fm(x) ;8

end9

Algorithm 1: Extending LogitBoost with virtual evidence

obtain the next weak learner (line 7). When ve(xi) is a deter-
ministic value, Eq. (4) becomes (2) and Eq. (5) becomes (3);
thus we get exactly the original LogitBoost algorithm. So our
extension is a generalization of the original LogitBoost and
is able to handle deterministic evidence as well. It can be
shown to have the same property as standard LogitBoost, i.e.,
it minimizes the objective function using Newton steps,

4 Virtual Evidence Boosting for Training
Conditional Random Fields

The boosting algorithm in previous section assumes indepen-
dence between training examples. How can they be applied
to CRFs in which the labels are dependent? Similar to the
MPL algorithm, we first convert a CRF into a set of individual
patches; each patch consists of a hidden node, its direct neigh-
bors, and the observations. The key difference with MPL
is that, instead of using the true labels of neighbors, we use
the messages from the neighbors as virtual evidences. Then
we apply extended boosting to these independent patches for
feature selection and parameter estimation. Based on these
ideas, we develop a new training algorithm for CRFs, called
virtual evidence boosting (VEB). VEB is a very general tech-
nique: It can handle both continuous and discrete observa-
tions, and can be used in CRFs with arbitrary structures. We
will explain VEB in the context of binary classification; the
algorithm can be readily extended to multi-class labeling, and
we have done that for our experiments.

4.1 The VEB Algorithm
The VEB algorithm is described in Alg. 2. The crucial dif-
ference between the VEB and extended LogitBoost algorithm
lies in the way virtual evidences are handled. The VEB con-
siders two types of evidences for a node yi. The first type is
the hard evidence given as input to the algorithm, which cor-
responds to the observations xi in the training data. The sec-
ond type is the soft evidence, corresponding to the messages
from neighboring nodes n(yi); these messages are obtained
by running belief propagation with the current ensemble (i.e.,
linear combination of feature functions) F . Our extension to
boosting allows us to treat both types as virtual evidence, de-
noted as ve(xi, n(yi)), so that we can learn the CRF’s local
features and compatibility features in a unified framework.

inputs : structure of CRF and training data (xi, yi), with
yi ∈ {0, 1}, 1 ≤ i ≤ N , and F = 0

output: Learned F

for m = 1, 2, · · · ,M do1
Run BP using F to get virtual evidences ve(xi, n(yi));2
for i = 1, 2, · · · , N do3
Compute likelihood p(yi|ve(xi, n(yi))) using Eq. (8);4
Compute weight5
wi = p(yi|ve(xi, n(yi)))(1− p(yi|ve(xi, n(yi)));
Compute working response zi = yi−0.5

p(yi|ve(xi,n(yi)))
;6

end7
Obtain “best” fm by solving Eq. (5);8
Update F = F + fm ;9

end10

Algorithm 2: Training CRFs using VEB

Note that while virtual evidences are provided as inputs
to Alg. 1, VEB must update ve(xi, n(yi)) at each iteration,
because the messages from n(yi) keep changing as VEB up-
dates F . Specifically, to compute the virtual evidence of yi

from a neighbor yk, vei(yk), we distinguish messages before
and after multiplying the compatibility potentials eF (yk,yi).
We denote these messages as λk→i(yk) and µk→i(yi), re-
spectively. These messages are computed iteratively during
belief propagation [Pearl, 1988]:

λk→i(yk) = αeF (yk,xk)
∏

j∈n(yk),j 6=i

µj→k(yk) (6)

and
µk→i(yi) = β

∑
yk

eF (yk,yi)λk→i(yk), (7)

where α and β are used for normalization. As can be seen,
λ–messages contain information about the distribution of the
sending node yk, and µ–messages contain information about
which values the recipient node yi should prefer. While the
µ–messages correspond exactly to the messages sent in reg-
ular belief propagation, we use each λk→i(yk) message as
virtual evidence vei(yk). At the end of belief propagation,
we generate the combined virtual evidence ve(xi, n(yi)) for
node yi by “stacking” the observations, xi, and the received
virtual evidence messages vei(yk). The combined virtual ev-
idence can then be used to compute the posterior distribution
p(yi|ve(xi, n(yi))) using (4). Equivalently, from belief prop-
agation we have

p(yi|ve(xi, n(yi))) = γeF (yi,xi)
∏

k∈n(yi)

µk→i(yi) (8)

where γ is used for normalization.
To summarize, at each iteration, VEB updates the vir-

tual evidences via belief propagation using only those lo-
cal features and compatibility potentials already contained
in F . Initially, when F = 0, all posterior distributions
p(yi|ve(xi, n(yi))) are uniform. It then proceeds exactly as
the extended LogitBoost algorithm in order to add one more
weak learner fm. In our experiments we found it sufficient
to run belief propagation for only one iteration per learning
cycle, which greatly increases the efficiency of the approach.

4.2 Feature Selection in VEB
A key step in Alg. 2 is step 8, which finds the “best” weak
learner fm by solving the WLSE problem. Note that since
a weak learner in CRFs is a certain kind of combination of
features, the algorithm is essentially performing feature se-
lection and parameter estimation. In this paper we only con-
sider weak learners that are linear combinations of features
and involve one single type of local attribute or neighbor 2.
In a nutshell, to determine the “best” weak learner, our ap-
proach enumerates all types of local attributes and neighbor
relations. For each type, it computes the optimal parameters
of the weak learner and the least square error. Then it picks
the one with the overall least square error as well as its opti-
mal parameters. In this section, we discuss how to formulate
weak learners for CRFs with binary labels and how to esti-
mate the optimal parameters efficiently. Specifically, we con-
sider three different cases: when the weak learner involves
a continuous attribute, a discrete attribute, or a neighbor re-
lationship. While the first two cases can be treated just like
in regular LogitBoost, we apply extended boosting for the
neighbor relationships to handle virtual evidences, with the
evidences provided by belief propagation.

First, for a continuous attribute x(k), the weak learner is
a linear combination of decision stumps:

f(x(k)) = α1δ(x(k) ≥ h) + α2δ(x(k) < h),
where h is the threshold, and α1 and α2 are the feature

weights. We get their (approximately) optimal values by solv-
ing the WLSE problem in (3). Specifically, h is determined
using some heuristic, e.g., to maximize the information gain.
Then we compute the optimal α1 and α2 analytically by set-
ting the first-order partial derivative of the square error equal
to zero. Thus we get

α1 =

PN
i=1 wiziδ(x

(k)
i ≥ h)PN

i=1 wiδ(x
(k)
i ≥ h)

and α2 =

PN
i=1 wiziδ(x

(k)
i < h)PN

i=1 wiδ(x
(k)
i < h)

Second, given a discrete attribute x(k) ∈ {1, · · · , D}, the
weak learner is expressed as

f(x(k)) =
D∑

d=1

αdδ(x(k) = d) ,

where αd is the weight for feature δ(x(k) = d), an indicator
function which is 1 if x(k) = d and 0 otherwise. The optimal
weights can be calculated similarly as:

αd =

PN
i=1 wiziδ(x

(k)
i = d)PN

i=1 wiδ(x
(k)
i = d)

Third, given a certain type of neighbor and correspond-
ing virtual evidence vei(yk), the weak learner is the weighted
sum of two indicator functions (compatibility features):

f(yk) =

1X
d=0

αdδ(yk = d).

Solving the WLSE problem with virtual evidence, as in (5),
we get the optimal weights:

αd =
∑N

i=1 wizivei(yk = d)∑N
i=1 wivei(yk = d)

2Complex weak learners, such as decision trees involving differ-
ent attributes, can also be learned in similar ways.

We can unify the three cases for computing optimal feature
weights as follows:

αd =
∑N

i=1 wizicdi∑N
i=1 wicdi

(9)

Here cdi is the count of feature d in data instance i (assume
we have cut CRFs into individual patches). cdi can be 0 and 1
for local features, or a real number between 0 and 1 for com-
patibility features. It can also be greater than 1 if we allow
parameter sharing within an instance, for example, when a
node is connected with more than one neighbor of the same
type. Thus in our approach parameter estimation is solved by
simply performing feature counting, which makes the whole
algorithm very efficient.

It is important to notice that the algorithm typically first
picks reliable local attributes since messages from neighbors
are close to uniform at the beginning. Then, after some iter-
ations, it starts picking compatibility features as those mes-
sages provide more information.

5 Experiments
We evaluate the performance of VEB and compare it with
other alternatives: boosted random fields (BRF), maximum
likelihood (ML), and maximum pseudo-likelihood (MPL).
We perform experiments using both synthetic data and two
different activity recognition datasets. In all these experi-
ments, we run VEB as well as BRF for 50 iterations, and
in each iteration we run one iteration of belief propagation.
In ML and MPL learning, we use a shrinkage prior with
zero mean and unit variance. ML and MPL optimization are
implemented using a quasi-Newton procedure. For ML we
evaluate the likelihood using the Bethe method [Yedidia et
al., 2005] and its gradient using belief propagation. All the
learned models are tested using the MAP belief propagation,
except that we have to use a specific inference algorithm for
BRF, as described in [Torralba et al., 2004]. All accuracies
are calculated based on the MAP labels. All experiments
were run on a standard desktop PC with 3.4GHz CPU and
1GB of memory.

5.1 Synthetic Data
VEB versus BRF
VEB and BRF are similar. However, BRF assumes the graphs
are densely connected and thereby each individual message
is not very informative, while VEB does not make any as-
sumption about the connectivity structure. This difference is
significant because although their assumption is often true for
the vision applications discussed in [Torralba et al., 2004], it
may be invalid for many other applications. In this experi-
ment, we examine the performance of VEB and BRF as the
dependencies between nodes get stronger.

The synthetic data is generated using a first-order Markov
chain with binary labels. To emphasize the difference on
learning compatibility features, we intentionally use weak ob-
servation models: each label is connected to 50 binary obser-
vations and the conditional probabilities in the observation
models are uniformly sampled from the range [0.45, 0.55].
We adjust the transition probabilities (from label 0 to 0 and

0.5 0.6 0.7 0.8 0.9
0.5

0.6

0.7

0.8

0.9

1

Transition Prob

Ac
cu

ra
cy

VEB
BRF

(a) 0.5

0.55

0.6

0.65

0.7

Ac
cu

ra
cy

VEB BRF MPL ML (b)
Figure 1: Classification accuracies in experiments using synthetic
data, where the error bars indicate 95% confidence intervals. (a)
VEB vs. BRF when the transition probabilities (pairwise dependen-
cies) turn from weak to strong. (b) Comparison of different learning
algorithms for feature selection.

from label 1 to 1) from 0.5 to 0.99. For each given transition
and observation model, we generate ten 2,000-labels chains
and perform leave-one-out cross-validation using a linear-
chain CRF. We additionally run the experiments several times
by randomly generating different observation models.

The running durations of both algorithms are very similar,
so we only compare the accuracies. The average accuracies
using VEB and BRF and their confidence intervals are shown
in Fig. 1(a). It is clear that when the compatibility dependen-
cies are not strong (transition probabilities range from 0.5 to
0.8), both methods give very similar accuracies. However, as
the dependencies get stronger (from 0.9 to 0.99), VEB dra-
matically outperforms BRF, mainly because the weak inter-
action assumption underlying BRF does not hold any more.

Feature Selection in Complex Models
Many real sequential estimation problems have long-range
dependencies, which can be modeled using high-order
Markov models. However in practice it is often impossible
to know the exact order, so people may have to use Markov
models that have longer dependencies than the actual data.
In this experiment, we simulate this scenario by generating
synthetic data using a high-order Markov model, whose tran-
sition probability p(yn | y1:n−1) = p(yn | yn−k), where k
is a constant (the observation model is similar as the one in
the previous experiment). That is, a label yn only depends
on one past label yn−k, but the value of k is unknown to the
CRF model. Specifically, we pick k from 1 to 5, and we set
the transition probability p(yn | yn−k) as 0.9 if yn = yn−k

and 0.1 otherwise. For a given k, we generate ten 2,000-long
chains and perform leave-one-out cross-validation. We repeat
the experiment for different k’s and compute the average.

Since the exact value of k is unknown to the CRF model,
we generate a densely-connected CRF that has connections
between each pair of nodes whose distance is less than or
equal to 5; then the CRF was trained using different algo-
rithms. In our experiments, VEB can reliably identify the
correct values of k, i.e., picking only pairwise features whose
distance is k or multiples of k. Although BRF also performs
feature selection and structure learning, it does not perform as
well as VEB. The average classification accuracies are shown
in Fig. 1(b). Because VEB can robustly extract the sparse
structures, it significantly outperforms other approaches. As
to the running time, VEB, BRF, and MPL are all quite effi-
cient; each training takes only tens of seconds. In contrast,
the training using ML takes about 20 minutes.

Training algorithm Average accuracy
VEB 94.1%
BRF 88.0%

ML + all observations 87.7%
ML + boosting 88.5%

MPL + all observations 87.9%
MPL + boosting 88.5%

Table 1: Average accuracy for indoor activities

5.2 Real Activity Recognition Data

CRFs are well-suited for the tasks of activity recognition us-
ing real sensor data, because of the overlaps between mea-
surements and the strong relationships between activities. In
this section, we compare different training approaches on
such CRFs. Although VEB and BRF can handle continuous
sensor measurements directly, doing that in ML and MPL is
not straightforward. The performance of ML and MPL is ter-
rible if we simply use the continuous measurements as fea-
ture values. This is due to the fact that such features cor-
respond to a zero-mean Gaussian assumption, which could
be far from the truth. We try two tricks to circumvent this
difficulty. One is to learn decision stumps for all observa-
tions, using the heuristics as in VEB and BRF. The other is to
use boosting (e.g., LogitBoost in our experiment) to select a
set of decision stump features and these decision stumps are
then fed into ML and MPL for weight estimation (as done in
[Friedman et al., 2007]).

Indoor Activity Recognition
In the first experiment, one person collected audio, accelera-
tion, and light sensor data as he stayed indoors using a small
wearable device. The total length of the data set is about
1,100 minutes, recorded over a period of 12 days. The goal
is to recognize the person’s major indoor activities including
computer usage, meal, meeting, TV watching and sleeping.
We segmented the data into one-minute chunks and manually
labeled the activity at each minute for the purpose of super-
vised learning and testing. For each chunk of data, we com-
puted 315 feature values, which included energy in various
frequency bands (log and linear) of the signal, autocorrela-
tion, different entropy measures, etc. These features are fed
into the CRF as observations, and one linear chain CRF is cre-
ated per day. We evaluate our algorithm using leave-one-out
cross-validation. Because the person performs different ac-
tivities in different days, the accuracies can vary significantly
from day to day. Some activities, such as meals, are hard
to recognize, while other activities, such as sleeping, are rela-
tively easy to recognize. As a result, in the leave-one-day-out-
cross-validation, the accuracies for different days vary signif-
icantly and the standard deviation is rather large. The overall
average accuracies using the different methods are shown in
Table 1, in which VEB is about 5% to 6% better than ML and
MPL, no matter how they incorporate the continuous obser-
vations. Even though the error bars of the different techniques
overlap, our approach is significantly (0.05 level) better than
its competitors when we evaluate the combination of the dif-
ferent experiments reported in the paper.

c 2 c 3c 1 c Tc T−1c T−2

s 2 s 3s 1 s Ts T−1s T−2

...

... State sequence

Context sequence

Figure 2: The CRF model for simultaneously inferring motion
states and spatial contexts (observations are omitted for simplicity).

Training algorithm Average overall accuracy
VEB 88.8± 4.4%

MPL + all observations 72.1± 3.9%
MPL + boosting 70.9± 6.5%

HMM + AdaBoost 85.8± 2.7%
Table 2: Accuracy for inferring states and contexts

Recognizing Motions and Spatial Contexts
Subramanya et al. [2006] proposed a model for simultane-
ously recognizing motion states (e.g., stationary, walking,
running, driving, and going up/down stairs) and spatial con-
texts (e.g., indoors, outdoors, vehicle) from wearable sensors.
They train local features using AdaBoost and incorporate the
boosted classifiers as observation into an HMM that infers
jointly the states and contexts. Their data set consists of 12
episodes and about 100,000 labels. In our experiment, we
perform the same task with the same data set, but using a
CRF instead of an HMM. As shown in Fig. 2, the CRF cap-
tures the pairwise relations between states and contexts. We
perform leave-one-out cross-validation using different learn-
ing approaches. In such large and loopy CRFs, ML becomes
completely intractable and does not finish in two days. MPL
and VEB take about 2 hours for training 3. The overall aver-
age accuracies and confidence intervals are shown in Table 2.
Our VEB clearly outperforms MPL, as well as the result in
the original paper.

6 Conclusions and Future Work
We presented a novel and unified training algorithm for
CRFs, called virtual evidence boosting, which can simultane-
ously select informative features (both discrete and/or contin-
uous) and estimate optimal parameters. As part of this train-
ing algorithm, we generalized the LogitBoost algorithm to
handle virtual evidence. By treating neighborhood relations
as features, our approach also learns the connectivity struc-
ture of CRFs.

Our experimental results demonstrate that virtual evidence
boosting significantly outperforms other training approaches
in both synthetic data and real world applications such as ac-
tivity recognition. In future work, we want to compare our
approach with max-margin techniques [Taskar et al., 2004]
and explore the possibility of learning feature conjunctions.

Acknowledgments
We thank Benson Limketkai for the help on preparing the last
dataset. This work was supported by the NSF under grant
numbers IIS 0433637 and IIS-0093406, and the UW CSE Ed-
ucator’s Fellowship. It has also been supported by DARPA’s

3We did not implement BRF for this task because extending BRF
to different types of hidden nodes is not straightforward.

ASSIST and CALO Programs (contract numbers: NBCH-C-
05-0137, SRI subcontract 27-000968).

References
[Besag, 1975] J. Besag. Statistical analysis of non-lattice

data. The Statistician, 24, 1975.
[Dietterich et al., 2004] T. Dietterich, A. Ashenfelter, and

Y. Bulatov. Training conditional random fields via gradi-
ent tree boosting. In Proc. of the International Conference
on Machine Learning (ICML), 2004.

[Freund and Schapire, 1997] Y. Freund and R. E. Schapire.
A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and Sys-
tem Sciences, 55(1):119–139, 1997.

[Friedman et al., 2000] Jerome Friedman, Trevor Hastie,
and Robert Tibshirani. Additive logistic regression: a
statistical view of boosting. The Annals of Statistics,
38(2):337–374, 2000.

[Friedman et al., 2007] S. Friedman, D. Fox, and H. Pasula.
Voronoi random fields: Extracting the topological struc-
ture of indoor environments via place labeling. In Proc. of
the International Joint Conference on Artificial Intelli-
gence (IJCAI), 2007.

[Geyer and Thompson, 1992] C. J. Geyer and E. A. Thomp-
son. Constrained Monte Carlo Maximum Likelihood for
dependent data. Journal of Royal Statistical Society, 1992.

[Lafferty et al., 2001] J. Lafferty, A. McCallum, and
F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data.
In Proc. of the International Conference on Machine
Learning (ICML), 2001.

[McCallum, 2003] Andrew McCallum. Efficiently inducing
features or conditional random fields. In Proc. of the Con-
ference on Uncertainty in Artificial Intelligence, 2003.

[Pearl, 1988] Judea Pearl. Probabilistic Reasoning in Intel-
ligent Systems: Networks of Plausible Inference. Morgan
Kaufmann, 1988.

[Subramanya et al., 2006] A. Subramanya, A. Raj,
J. Bilmes, and D. Fox. Recognizing activities and
spatial context using wearable sensors. In Proc. of the
Conference on Uncertainty in Artificial Intelligence, 2006.

[Taskar et al., 2004] B. Taskar, C. Guestrin, V. Chatalbashev,
and D. Koller. Max-margin Markov networks. In Ad-
vances in Neural Information Processing Systems (NIPS),
2004.

[Torralba et al., 2004] A. Torralba, K. P. Murphy, and W. T.
Freeman. Contextual models for object detection using
boosted random fields. In Advances in Neural Information
Processing Systems (NIPS), 2004.

[Viola and Jones, 2002] P. Viola and M. Jones. Robust real-
time object detection. International Journal of Computer
Vision, 2002.

[Yedidia et al., 2005] J.S. Yedidia, W.T. Freeman, and
Y. Weiss. Constructing free-energy approximations and
generalized belief propagation algorithms. IEEE Transac-
tions on Information Theory, 51(7):2282–2312, 2005.

