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Exam Problem 3(d)
True or False, and explain why: It is okay to use a non-admissible heuristic that 
over-estimates the distance to the goal by up to C units if you would be happy 
with a solution path that is not more than C units longer than the optimal path.!
Solution: True. !
Suppose that h(n) ≤  h*(n)+c, where h* is the minimal cost to a goal node (that is, 
it's the optimal heuristic function, which is obviously admissible). Let C* be the 
path cost of an optimal goal, that is, C* = g(n*) for an optimal goal node n*. !
Let G be a goal node that is suboptimal by more than c, that is, !
g(G) > C* + c. Now consider any node n on a path to an optimal goal. We have:!
f(n) = g(n) + h(n)           defn. of f!
≤ g(n) + h*(n) + c          because h does not overestimate by more than c!
≤ C* + c                         because n is on an optimal path to a goal!
≤ g(G)                            because g(G) > C* + c!
Thus G will never be expanded before n is expanded.  Since this holds for every n 
on an optimal path to a goal, an entire optimal path to a goal is expanded before 
G is expanded.
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Coming Up

• Planning 2: Planning as Satisfiability 

• Results of Phase I Othello Tournament (???) 

• Homework 3 solutions given out in class 

• Have a (warm?) March Break 

• Tuesday March 18 - Exam 2: Logic
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▪ The goal of planning is to choose actions and ordering 
relations among these actions to achieve specified goals 

▪ Search-based problem solving (e.g. 8-puzzle) was one 
example of planning, but our description of this problem 
used specific data structures and functions 

▪ Here, we will develop a non-specific, logic-based 
language to represent knowledge about actions, states, 
and goals, and we will study how search algorithms can 
exploit this representation
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Knowledge Representation Tradeoff
▪ Expressiveness vs. computational efficiency 
▪ STRIPS: a simple, still  

reasonably expressive  
planning language based  
on propositional logic 
1) Examples of planning  

problems in STRIPS 
2) Planning methods  
3) Extensions of STRIPS 

▪ Like programming, knowledge representation is still 
an art 

SHAKEY 
the robot
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STRIPS Language 
through Examples
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Vacuum-Robot Example

▪ Two rooms: R1 and R2 

▪ A vacuum robot 
▪ Dust

R1 R2
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State Representation

Propositions 
that “hold”  
(i.e. are true) 
in the state

Logical “and” 
connective

R1 R2

In(Robot, R1) ∧ Clean(R1)
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State Representation

In(Robot, R1) ∧ Clean(R1)

R1 R2

▪  Conjunction of propositions 
▪  No negated proposition, such as ¬Clean(R2) 
▪  Closed-world assumption: Every proposition that is  
    not listed in a state is false in that state 
▪  No “or” connective, such as In(Robot,R1)∨In(Robot,R2) 
▪  No quantified variables, e.g., ∃x Clean(x)

No uncertainty
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Goal Representation

A goal G is achieved in a state S if all  
the propositions in G (called sub-goals)  
are also in S 

Example:       Clean(R1) ∧ Clean(R2)
▪  Conjunction of propositions 
▪  No negated proposition 
▪  No “or” connective 
▪  No variable
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Action Representation
Right 
▪ Precondition = In(Robot, R1) 
▪ Delete-list = In(Robot, R1) 
▪ Add-list = In(Robot, R2)

R1 R2 R1 R2

In(Robot, R1) ∧ Clean(R1) In(Robot, R2) ∧ Clean(R1)

Right
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Action Representation
Right 
▪ Precondition = In(Robot, R1) 
▪ Delete-list = In(Robot, R1) 
▪ Add-list = In(Robot, R2)

Same form as a goal: conjunction of propositions

Sets of propositions



11

Action Representation

▪ An action A is applicable to a state S if the 
propositions in its precondition are all in S 

▪ The application of A to S is a new state obtained 
by deleting the propositions in the delete list 
from S and adding those in the add list

Right 
▪ Precondition = In(Robot, R1) 
▪ Delete-list = In(Robot, R1) 
▪ Add-list = In(Robot, R2)
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Other Actions
Left 
▪ P = In(Robot, R2) 
▪ D = In(Robot, R2) 
▪ A = In(Robot, R1) 
!

Suck(R1) 
▪ P = In(Robot, R1) 
▪ D = ∅ [empty set] 

▪ A = Clean(R1)

Left 
▪ P = In(Robot, R2) 
▪ D = In(Robot, R2) 
▪ A = In(Robot, R1) 
!

Suck(R2) 
▪ P = In(Robot, R2) 
▪ D = ∅ [empty set] 

▪ A = Clean(R2)
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Action Schema
Left 
▪ P = In(Robot, R2) 
▪ D = In(Robot, R2) 
▪ A = In(Robot, R1) 
!

Suck(r) 
▪ P = In(Robot, r) 
▪ D = ∅ 
▪ A = Clean(r)

Parameter that will get “instantiated” by  
matching the precondition against a state

It describes several actions, here: Suck(R1) and Suck(R2)
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Action Schema
Left 
▪ P = In(Robot, R2) 
▪ D = In(Robot, R2) 
▪ A = In(Robot, R1) 
Suck(r) 
▪ P = In(Robot, r) 
▪ D = ∅ 
▪ A = Clean(r)

R1 R2

In(Robot, R2) ∧ Clean(R1)

R1 R2

In(Robot, R2) ∧ Clean(R1) 
           ∧ Clean(R2)

Suck(R2)

r ß R2
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Action Schema
Left 
▪ P = In(Robot, R2) 
▪ D = In(Robot, R2) 
▪ A = In(Robot, R1) 
Suck(r) 
▪ P = In(Robot, r) 
▪ D = ∅ 
▪ A = Clean(r)

In(Robot, R1) ∧ Clean(R1)

R1 R2

In(Robot, R1) ∧ Clean(R1)

Suck(R1)
R1 R2

r ß R1
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Blocks-World Example

▪ A robot hand can move blocks on a table 
▪ The hand cannot hold more than one block at a time 
▪ No two blocks can fit directly on the same block 
▪ The table is arbitrarily large

A B
C

TABLE
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State

Block(A) ∧ Block(B) ∧ Block(C) ∧ 
On(A,TABLE) ∧ On(B,TABLE) ∧ On(C,A) ∧ 
Clear(B) ∧ Clear(C) ∧ Handempty

A B
C

TABLE
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Goal

A
B
C

On(A,TABLE) ∧ On(B,A) ∧ On(C,B) ∧ Clear(C)
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Goal

A
B
C

On(A,TABLE) ∧ On(B,A) ∧ On(C,B) ∧ Clear(C)



21

Goal

A B
C

On(A,TABLE) ∧ On(C,B)

A
B
C
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Action
Unstack(x,y) 
P =  Handempty∧ Block(x) ∧ Block(y) ∧ Clear(x) ∧ On(x,y)    
D = Handempty, Clear(x), On(x,y) 
A =   Holding(x), Clear(y)  
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Action
Unstack(x,y) 
P =  Handempty∧ Block(x) ∧ Block(y) ∧ Clear(x) ∧ On(x,y)    
D = Handempty, Clear(x), On(x,y) 
A =   Holding(x), Clear(y)  

A B
C

Block(A) ∧ Block(B) ∧ Block(C) ∧ On(A,TABLE) ∧ 
On(B,TABLE) ∧ On(C,A) ∧ Clear(B) ∧ Clear(C) ∧ 
Handempty

Unstack(C,A) 
P =  Handempty∧ Block(C) ∧ Block(A) ∧ Clear(C) ∧ On(C,A)    
D = Handempty, Clear(C), On(C,A) 
A =   Holding(C), Clear(A)  
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C

Action
Unstack(x,y) 
P =  Handempty∧ Block(x) ∧ Block(y) ∧ Clear(x) ∧ On(x,y)    
D = Handempty, Clear(x), On(x,y) 
A =   Holding(x), Clear(y)  

Block(A) ∧ Block(B) ∧ Block(C) ∧ On(A,TABLE) ∧ 
On(B,TABLE) ∧ On(C,A) ∧ Clear(B) ∧ Clear(C) ∧ 
Handempty 
∧ Holding(C) ∧ Clear(A)

Unstack(C,A) 
P =  Handempty∧ Block(C) ∧ Block(A) ∧ Clear(C) ∧ On(C,A)    
D = Handempty, Clear(C), On(C,A) 
A =   Holding(C), Clear(A)  

C
A B
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All Actions
Unstack(x,y) 
P  =  Handempty ∧ Block(x) ∧ Block(y) ∧ Clear(x) ∧ On(x,y)  
D =  Handempty, Clear(x), On(x,y) 
A =  Holding(x), Clear(y)  
!
Stack(x,y) 
P =   Holding(x) ∧ Block(x) ∧ Block(y) ∧ Clear(y) 
D =  Clear(y), Holding(x) 
A =  On(x,y), Clear(x), Handempty 
!
Pickup(x) 
P =   Handempty  ∧ Block(x)  ∧ Clear(x)  ∧ On(x,Table) 
D =  Handempty, Clear(x), On(x,Table) 
A =  Holding(x) 
!
Putdown(x) 
P = Holding(x), ∧ Block(x) 
D = Holding(x) 
A = On(x,Table), Clear(x), Handempty
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All Actions
Unstack(x,y) 
P  =  Handempty ∧ Block(x) ∧ Block(y) ∧ Clear(x) ∧ On(x,y)  
D =  Handempty, Clear(x), On(x,y) 
A =  Holding(x), Clear(y)  
!
Stack(x,y) 
P =   Holding(x) ∧ Block(x) ∧ Block(y) ∧ Clear(y) 
D =  Clear(y), Holding(x),  
A =  On(x,y), Clear(x), Handempty 
!
Pickup(x) 
P =   Handempty  ∧ Block(x)  ∧ Clear(x)  ∧ On(x,Table) 
D =  Handempty, Clear(x), On(x,TABLE) 
A =  Holding(x) 
!
Putdown(x) 
P = Holding(x), ∧ Block(x) 
D = Holding(x) 
A = On(x,TABLE), Clear(x), Handempty

A block can always fit 
on the table
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Key-in-Box Example

▪ The robot must lock the door and put the key in the box 
▪ The key is needed to lock and unlock the door  
▪ Once the key is in the box, the robot can’t get it back

R1 R2
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Initial State

In(Robot,R2) ∧ In(Key,R2) ∧ Unlocked(Door)

R1 R2
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Goal

Locked(Door) ∧ In(Key,Box) 
!

[The robot’s location isn’t specified in the goal]

R1 R2
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Actions
Grasp-Key-in-R2 

 P  = In(Robot,R2) ∧ In(Key,R2)        
 D = ∅         
 A  = Holding(Key)       
Lock-Door 
 P  = Holding(Key)        
 D  = ∅       
 A  = Locked(Door)       
Move-Key-from-R2-into-R1 

 P  = In(Robot,R2) ∧ Holding(Key) ∧ Unlocked(Door)        
 D  = In(Robot,R2), In(Key,R2)       
 A  = In(Robot,R1), In(Key,R1)       
Put-Key-Into-Box 
 P  = In(Robot,R1) ∧ Holding(Key)        
 D  = Holding(Key), In(Key,R1)       
 A  = In(Key,Box)      

R1 R2
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Planning Methods
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R1 R2 R1 R2

R1 R2

Right

Suck(R2)

Forward Planning

Left
Initial state

Goal: Clean(R1) ∧ Clean(R2)

Suck(R1)
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Forward Planning

A B
C

A B
C

A B C A C

B

A C
B

A

C

B

A

C
B

A

B

C

A B

C

Unstack(C,A))

Pickup(B)

Goal: On(B,A) ∧ On(C,B)
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Need for an Accurate Heuristic

▪ Forward planning simply searches the space of 
world states from the initial to the goal state 

▪ Imagine an agent with a large library of actions, 
whose goal is G, e.g., G = Have(Milk) 

▪ In general, many actions are applicable to any given 
state, so the branching factor is huge 

▪ In any given state, most applicable actions are 
irrelevant to reaching the goal Have(Milk) 

▪ Fortunately, an accurate consistent heuristic can 
be computed using planning graphs
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R1 R2

Planning Graph for a State of the Vacuum 
Robot

In(Robot,R1) 
Clean(R1) 
In(Robot,R2)  
Clean(R2)

Left 
!
Suck(R2)

A1 S2

In(Robot,R1) 
Clean(R1)

S0

Right 
!
Suck(R1)

In(Robot,R1) 
Clean(R1)  
In(Robot,R2)  

S1A0

▪ S0 contains the state’s propositions (here, the initial state) 
▪ A0 contains all actions whose preconditions appear in S0 
▪ S1 contains all propositions that were in S0 or are contained in the add lists of the 

actions in A0 
▪ So, S1 contains all propositions that may be true in the state reached after the 

first action 
▪ A1 contains all actions not already in A0 whose preconditions appear in S1, hence 

that may be executable in the state reached after executing the first action. 
Etc...

persistence 
actions
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Planning Graph for a State of the Vacuum 
Robot

In(Robot,R1) 
Clean(R1) 
In(Robot,R2)  
Clean(R2)

Left 
!
Suck(R2)

A1 S2

In(Robot,R1) 
Clean(R1)

S0

Right 
!
Suck(R1)

In(Robot,R1) 
Clean(R1)  
In(Robot,R2)  

S1A0

▪ The smallest value of i such that Si contains all the goal propositions is 
called the level cost of the goal (here i=2)  

▪ By construction of the planning graph, it is a lower bound on the number of 
actions needed to reach the goal 

▪ In this case, 2 is the actual length of the shortest path to the goal

R1 R2



38

Planning Graph for Another State

In(Robot,R2) 
Clean(R1)

S0

Left 
!
Suck(R2)

In(Robot,R2) 
Clean(R1)  
In(Robot,R1) 
Clean(R2) 

S1A0

▪ The level cost of the goal is 1, which again is the actual length of the 
shortest path to the goal

R1 R2
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Application of Planning Graphs to Forward 
Planning

▪ Whenever a new node is generated, compute the planning 
graph of its state [update the planning graph at the parent node] !

▪ Stop computing the planning graph when: 
•   Either the goal propositions are in a set Si   

 [then i is the level cost of the goal] 
•   Or when Si+1 = Si (the planning graph has leveled off) 

 [then the generated node is not on a solution path] !
▪ Set the heuristic h(N) of a node N to the level cost of the 

goal for the state of N !
▪ h is a consistent heuristic for unit-cost actions !
▪ Hence, A* using h yields a solution with minimum number of 

actions 
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Size of Planning Graph

In(Robot,R1) 
Clean(R1) 
In(Robot,R2)  
Clean(R2)

Left 
!
Suck(R2)

A1 S2

In(Robot,R1) 
Clean(R1)

S0

Right 
!
Suck(R1)

In(Robot,R1) 
Clean(R1)  
In(Robot,R2)  

S1A0

▪ An action appears at most once 
▪ A proposition is added at most once and each Sk (k ≠ i) is a strict 

superset of Sk-1 
▪ So, the number of levels is bounded by  

        Min{number of actions, number of propositions} 
▪ In contrast, the state space can be exponential in the number of 

propositions (why?) 
▪ The computation of the planning graph may save a lot of 

unnecessary search work
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Improvement of Planning Graph:  
 Mutual Exclusions

▪ Goal: Refine the level cost of the goal to be 
a more accurate estimate of the number of 
actions needed to reach it 

▪ Method: Detect obvious exclusions among 
propositions at the same level (see R&N) 

▪ It usually leads to more accurate 
heuristics, but the planning graphs can be 
bigger and more expensive to compute
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▪ Forward planning can still suffer from an 
excessive branching factor 

!

▪ In general, there are much fewer actions 
that are relevant to achieving a goal than 
actions that are applicable to a state 

!

▪ How to determine which actions are 
relevant? How to use them? 

!

▪ à Backward planning
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Goal-Relevant Action
▪ An action is relevant to achieving a goal if 

a proposition in its add list matches a sub-
goal proposition 

▪ For example: 
  Stack(B,A)         

 P  = Holding(B) ∧ Block(B) ∧ Block(A) ∧ Clear(A) 
 D = Clear(A), Holding(B),  
  A = On(B,A), Clear(B), Handempty            

is relevant to achieving On(B,A)∧On(C,B)
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Regression of a Goal

The regression of a goal G through an  
action A is the least constraining 
precondition R[G,A] such that: 
!

If a state S satisfies R[G,A] then: 
1. The precondition of A is satisfied in S 
2. Applying A to S yields a state that  

satisfies G
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Example

▪ G = On(B,A) ∧ On(C,B) 
!

▪ Stack(C,B) 
P  = Holding(C) ∧ Block(C) ∧ Block(B) ∧ Clear(B) 
D = Clear(B), Holding(C)  
A = On(C,B), Clear(C), Handempty 
!

▪ R[G,Stack(C,B)] =  
    On(B,A) ∧  
    Holding(C) ∧ Block(C)  ∧ Block(B) ∧ Clear(B)



46

Example

▪ G = On(B,A) ∧ On(C,B) 
!

▪ Stack(C,B) 
P  = Holding(C) ∧ Block(C) ∧ Block(B) ∧ Clear(B) 
D = Clear(B), Holding(C)  
A = On(C,B), Clear(C), Handempty 
!

▪ R[G,Stack(C,B)] =  
    On(B,A) ∧  
    Holding(C) ∧ Block(C)  ∧ Block(B) ∧ Clear(B)
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Another Example
▪ G = In(key,Box) ∧ Holding(Key) 
!
▪ Put-Key-Into-Box 
   P = In(Robot,R1) ∧ Holding(Key) 
   D = Holding(Key), In(Key,R1) 
   A = In(Key,Box) 

!
▪ R[G,Put-Key-Into-Box] = ??

R1 R2
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Another Example

R1 R2

▪ G = In(key,Box) ∧ Holding(Key) 
!
▪ Put-Key-Into-Box 
   P = In(Robot,R1) ∧ Holding(Key) 
   D = Holding(Key), In(Key,R1) 
   A = In(Key,Box) 

!
▪ R[G,Put-Key-Into-Box] = False 

 
where False is the un-achievable goal 

!
▪ This means that In(key,Box) ∧ Holding(Key) can’t be 

achieved by executing Put-Key-Into-Box
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Computation of R[G,A]

1. If any sub-goal of G is in A’s delete list 
then return False 

2. Else 
a. G’ ß Precondition of A 
b. For every sub-goal SG of G do 
  If SG is not in A’s add list then add SG to G’          

3. Return G’



50

Backward Planning

On(B,A) ∧ On(C,B)

A B
C

Initial state
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Backward Planning

On(B,A) ∧ On(C,B)
Stack(C,B)

On(B,A) ∧ Holding(C) ∧ Clear(B)

Clear(C) ∧ On(C,Table) ∧ Clear(A) ∧ Handempty ∧ Clear(B) ∧ On(B,Table)

Clear(C) ∧ On(C,TABLE) ∧ Holding(B) ∧ Clear(A)
Stack(B,A)

Pickup(B)

Putdown(C)

Clear(A) ∧ Clear(B) ∧ On(B,Table) ∧ Holding(C)
Unstack(C,A)

Clear(B) ∧ On(B,Table) ∧ Clear(C) ∧ Handempty ∧ On(C,A)

Pickup(C)

On(B,A) ∧ Clear(B) ∧ Handempty ∧ Clear(C) ∧ On(C,Table)

A B
C

Initial state



52

Backward Planning

On(B,A) ∧ On(C,B)
Stack(C,B)

On(B,A) ∧ Holding(C) ∧ Clear(B)

Clear(C) ∧ On(C,Table) ∧ Clear(A) ∧ Handempty ∧ Clear(B) ∧ On(B,Table)

Clear(C) ∧ On(C,TABLE) ∧ Holding(B) ∧ Clear(A)
Stack(B,A)

Pickup(B)

Putdown(C)

Clear(A) ∧ Clear(B) ∧ On(B,Table) ∧ Holding(C)
Unstack(C,A)

Clear(B) ∧ On(B,Table) ∧ Clear(C) ∧ Handempty ∧ On(C,A)

Pickup(C)

On(B,A) ∧ Clear(B) ∧ Handempty ∧ Clear(C) ∧ On(C,Table)

A B
C

Initial state
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▪ Backward planning searches a space of goals 
from the original goal of the problem to a goal 
that is satisfied in the initial state 

▪ There are often much fewer actions relevant to 
a goal than there are actions applicable to a 
state à smaller branching factor than in 
forward planning 

▪ The lengths of the solution paths are the same

Search Tree
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A consistent heuristic is obtained as follows : 
!

1. Pre-compute the planning graph of the initial state 
until it levels off  

2. For each node N added to the search tree, set h(N) 
to the level cost of the goal associated with N 

!

If the goal associated with N can’t be satisfied in any set 
Sk of the planning graph, it can’t be achieved, so prune it! 
!

A single planning graph is computed

Consistent Heuristic for Backward Planning
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How Does Backward Planning Detect Dead-
Ends?

On(B,A) ∧ On(C,B)
Stack(C,B)
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How Does Backward Planning Detect Dead-
Ends?

On(B,A) ∧ On(C,B)
Stack(B,A)

Holding(B) ∧ Clear(A) ∧ On(C,B) 
Stack(C,B)

Holding(B) ∧ Clear(A) ∧ Holding(C) ∧  Clear (B) 
Pick(B)   [delete list contains Clear(B)]

False
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How Does Backward Planning Detect Dead-
Ends?

On(B,A) ∧ On(C,B)
Stack(B,A)

Holding(B) ∧ Clear(A) ∧ On(C,B) 

A state constraint such as  
Holding(x) à ¬(∃y)On(y,x) 
would have made it possible  
to prune the path earlier
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Some Extensions of STRIPS 
Language
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Extensions of STRIPS  
1. Negated propositions in a state

Dump-Dirt(r) 
 P = In(Robot, r) ∧ Clean(r) 
 E = ¬Clean(r) 
!
• Q in E means delete ¬Q and add Q to the state 
• ¬Q in E means delete Q and add ¬Q  
!
Open world assumption: A proposition in a state is true if it appears positively and false 
otherwise. A non-present proposition is unknown  
   
Planning methods can be extended rather easily to handle negated proposition (see 
R&N), but state descriptions are often much longer (e.g., imagine if there were 10 rooms 
in the above example)

R1 R2

In(Robot, R1) ∧ ¬In(Robot, R2) ∧ Clean(R1) ∧ ¬Clean(R2)

Suck(r) 
  P = In(Robot, r) ∧ ¬Clean(r)      
  E = Clean(r)     
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Blocks world: 
!
Move(x,y,z) 
 P = Block(x) ∧ Block(y) ∧ Block(z) ∧ On(x,y) ∧ Clear(x)  

 ∧ Clear(z) ∧ (x≠z) 
 D = On(x,y), Clear(z) 
 A = On(x,z), Clear(y) 
!
Move(x,Table,z)  
 P = Block(x) ∧ Block(z) ∧ On(x,Table) ∧ Clear(x)  

 ∧ Clear(z) ∧ (x≠z) 
 D = On(x,y), Clear(z) 
 A = On(x,z) 
!
Move(x,y,Table) 
 P = Block(x) ∧ Block(y) ∧ On(x,y) ∧ Clear(x)  
 D = On(x,y) 
 A = On(x,Table), Clear(y)

Extensions of STRIPS  
2. Equality/Inequality Predicates 
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Blocks world: 
!
Move(x,y,z) 
 P = Block(x) ∧ Block(y) ∧ Block(z) ∧ On(x,y) ∧ Clear(x)  

 ∧ Clear(z) ∧ (x≠z) 
 D = On(x,y), Clear(z) 
 A = On(x,z), Clear(y) 
!
Move(x,Table,z)  
 P = Block(x) ∧ Block(z) ∧ On(x,Table) ∧ Clear(x)  

 ∧ Clear(z) ∧ (x≠z) 
 D = On(x,y), Clear(z) 
 A = On(x,z) 
!
Move(x,y,Table) 
 P = Block(x) ∧ Block(y) ∧ On(x,y) ∧ Clear(x)  
 D = On(x,y) 
 A = On(x,Table), Clear(y)

Extensions of STRIPS  
2. Equality/Inequality Predicates 

Planning methods simply evaluate (x≠z) when the 
two variables are instantiated 
!
This is equivalent to considering that propositions 
(A ≠ B) , (A ≠ C) , ... are implicitly true in every 
state  
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Extensions of STRIPS  
3. Algebraic expressions 

Two flasks F1 and F2 have volume capacities of 30 and 50, 
respectively 
F1 contains volume 20 of some liquid 
F2 contains volume 15 of this liquid 
!
State: 
 Cap(F1,30) ∧ Cont (F1,20) ∧ Cap(F2, 50) ∧ Cont (F2,15)      
!
Action of pouring a flask into the other: 
!
Pour(f,f’) 
 P = Cont(f,x)  ∧ Cap(f’,c’) ∧ Cont(f’,y) ∧ (f ≠ f’)      
 D = Cont(f,x), Cont(f’,y),       
 A = Cont(f,max{x+y-c’,0}), Cont(f’,min{x+y,c’})     
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Extensions of STRIPS  
3. Algebraic expressions 

Two flasks F1 and F2 have volume capacities of 30 and 50, 
respectively 
F1 contains volume 20 of some liquid 
F2 contains volume 15 of this liquid 
!
State: 
 Cap(F1,30) ∧ Cont (F1,20) ∧ Cap(F2, 50) ∧ Cont (F2,15)      
!
Action of pouring a flask into the other: 
!
Pour(f,f’) 
 P = Cont(f,x)  ∧ Cap(f’,c’) ∧ Cont(f’,y) ∧ (f ≠ f’)      
 D = Cont(f,x), Cont(f’,y),       
 A = Cont(f,max{x+y-c’,0}), Cont(f’,min{x+y,c’})     

This extension requires planning 
methods equipped with algebraic 
manipulation capabilities
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Extensions of STRIPS  
4. State Constraints 

State: 
 Adj(1,2)  ∧ Adj(2,1) ∧ ... ∧ Adj(8,9) ∧ Adj(9,8) ∧  
 At(h,1) ∧ At(b,2) ∧ At(c,4) ∧ ... ∧ At(f,9) ∧ Empty(3) 
!
!
!
!
Move(x,y,z) 
 P  = At(x,y) ∧ Empty(z) ∧ Adj(y,z) 
 D = At(x,y), Empty(z) 
 A = At(x,z), Empty(y)

a

b

c d

e f

g

h
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Extensions of STRIPS  
4. State Constraints 

State: 
 Adj(1,2)  ∧ Adj(2,1) ∧ ... ∧ Adj(8,9) ∧ Adj(9,8) ∧  
 At(h,1) ∧ At(b,2) ∧ At(c,4) ∧ ... ∧ At(f,9) ∧ Empty(3) 
!
State constraint: 
 Adj(x,y) à Adj(y,x) 
!
Move(x,y,z) 
 P  = At(x,y) ∧ Empty(z) ∧ Adj(y,z) 
 D = At(x,y), Empty(z) 
 A = At(x,z), Empty(y)

a

b

c d

e f

g

h
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More Complex State Constraints 
in 1st-Order Predicate Logic

Blocks world: 
!
(∀x)[Block(x)  ∧ ¬(∃y)On(y,x) ∧ ¬Holding(x)]  → Clear(x) 
!
(∀x)[Block(x)  ∧ Clear(x)] → ¬(∃y)On(y,x) ∧ ¬Holding(x)  
!
Handempty ↔ ¬(∃x)Holding(x)  
!
would simplify greatly the description of the actions

State constraints require planning methods  
with logical deduction capabilities, to 
determine whether goals are achieved or  
preconditions are satisfied
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Some Applications of AI Planning

▪ Military operations 
▪ Operations in container  

ports  
▪ Construction tasks 
▪ Machining and  

manufacturing 
▪ Autonomous control  

of satellites and other  
spacecrafts
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Started:  January 1996 
Launch: October 15th, 1998
http://ic.arc.nasa.gov/projects/remote-agent/pstext.html


