
CSC242: Intro to AI
Lecture 20

Reinforcement Learning I

A Joke

A robot walks up to a
counter

and says, “I’ll have a
beer”

The human at the counter
says, “I can’t serve you a beer”

The robot says, “Is it because
you discriminate against robots?!”

The human says, “No, it’s because
this is a hardware store”

Reinforcement Learning

• Learning how to act from rewards and
punishments (reinforcement)	

• What should robot learn?	

• Not to order a beer in a hardware store?	

• Not to go to a hardware store when he
wants a beer?

Reinforcement Learning

• Learning how to act from rewards and
punishments (reinforcement)	

• What did the robot do wrong?	

• Ordering a beer?	

• Going into the hardware store?	

• Walking toward the hardware store?

Key Issues

• How to account for the delay between
actions and consequences?	

• How to simultaneously learn a model of
the environment while acting in the
environment?	

• “Imagine playing a new game whose rules
you don’t know; after hundred or so moves,
your opponent announces, ‘You lose.’”

B.F. Skinner (1904-1990)

Reinforcement Learning 14

Learning from Experience Plays a Role in …

Psychology

Artificial Intelligence

Control Theory and
Operations Research

Artificial Neural Networks

Reinforcement
Learning (RL)

Neuroscience

Reinforcement Learning 15

What is Reinforcement Learning?

Learning from interaction
Goal-oriented learning
Learning about, from, and while interacting with an
external environment
Learning what to do—how to map situations to actions
—so as to maximize a numerical reward signal

Reinforcement Learning 16

Supervised Learning

Supervised Learning
SystemInputs Outputs

Training Info = desired (target) outputs

Error = (target output – actual output)

Reinforcement Learning 17

Reinforcement Learning

RL
SystemInputs Outputs (“actions”)

Training Info = evaluations (“rewards” / “penalties”)

Objective: get as much reward as possible

Reinforcement Learning 18

Key Features of RL

Learner is not told which actions to take
Trial-and-Error search
Possibility of delayed reward (sacrifice short-term
gains for greater long-term gains)
The need to explore and exploit
Considers the whole problem of a goal-directed agent
interacting with an uncertain environment

Reinforcement Learning 19

Complete Agent

Temporally situated
Continual learning and planning
Object is to affect the environment
Environment is stochastic and uncertain

Environment

actionstate

reward
Agent

Reinforcement Learning 20

Elements of RL

Policy: what to do
Reward: what is good
Value: what is good because it predicts reward
Model: what follows what

Policy

Reward

Value
Model of

environment

Reinforcement Learning 21

An Extended Example: Tic-Tac-Toe

X XXO O

X
XO

X

O

XO

X

O

X

XO

X

O

X O

XO

X

O

X O

X

} x’s move

} x’s move

} o’s move

} x’s move

} o’s move

...

...... ...

...

x x

x

x o

x

o

xo

x

x
x

o

o

Assume an imperfect opponent: he/
she sometimes makes mistakes

Reinforcement Learning 22

An RL Approach to Tic-Tac-Toe

1. Make a table with one entry per state:

2. Now play lots of games. To
pick our moves, look ahead
one step:

State V(s) – estimated probability of winning
.5 ?
.5 ?. . .

. . .

. . .
. . .

1 win

0 loss

. . .
. . .

0 draw

x

xxx

o
o

o
o

o
x

x

oo

o o
x

x
x

x
o

current state

various possible

next states*
Just pick the next state with the highest
estimated prob. of winning — the largest V(s);
a greedy move.
!
But 10% of the time pick a move at random;
an exploratory move.

Reinforcement Learning 23

RL Learning Rule for Tic-Tac-Toe

“Exploratory” move

movegreedy our after statethe– s
movegreedy our before statethe– s

!

[])s(V)s(V)s(V)s(V
: a–)s(V toward)s(V each increment We

−"α+←

" backup

parametersize -step the
. e.g., fraction, positive smalla 1=α

Reinforcement Learning 24

How can we improve this T.T.T. player?

Take advantage of symmetries
representation/generalization
How might this backfire?

Do we need “random” moves? Why?
Do we always need a full 10%?

Can we learn from “random” moves?
Can we learn offline?

Pre-training from self play?
Using learned models of opponent?

…

Reinforcement Learning 25

e.g. Generalization

Table Generalizing Function Approximator

State VState V

s

s

s

.

.

.
!

!

!

!

!

1

2

3

N

Train

here

Reinforcement Learning 26

How is Tic-Tac-Toe Too Easy?

Finite, small number of states
One-step look-ahead is always possible
State completely observable
…

Reinforcement Learning 27

Some Notable RL Applications

TD-Gammon: Tesauro
world’s best backgammon program

Elevator Control: Crites & Barto
high performance down-peak elevator controller

Dynamic Channel Assignment: Singh & Bertsekas, Nie &
Haykin

high performance assignment of radio channels to mobile telephone calls

…

Reinforcement Learning 28

TD-Gammon

Start with a random network
Play very many games against self
Learn a value function from this simulated experience

This produces arguably the best player in the world

Action selection
by 2–3 ply searchValue

TD error
Vt+1 − Vt

Tesauro, 1992–1995

Effective branching factor 400

Reinforcement Learning 29

Evaluative Feedback

Evaluating actions vs. instructing by giving correct actions
Pure evaluative feedback depends totally on the action taken. Pure
instructive feedback depends not at all on the action taken.
Supervised learning is instructive; optimization is evaluative
Associative vs. Nonassociative:

Associative: inputs mapped to outputs; learn the best output
for each input
Nonassociative: “learn” (find) one best output

n-armed bandit (at least how we treat it) is:
Nonassociative
Evaluative feedback

Reinforcement Learning 30

The n-Armed Bandit Problem

Choose repeatedly from one of n actions; each
choice is called a play
After each play , you get a reward , where

)a(Qa|rE t
*

tt =
ta tr

These are unknown action values
Distribution of depends only on rt at

Objective is to maximize the reward in the long term,
e.g., over 1000 plays

To solve the n-armed bandit problem,
you must explore a variety of actions

and then exploit the best of them.

Reinforcement Learning 31

The Exploration/Exploitation Dilemma

Suppose you form estimates
!
!
The greedy action at t is
!
!
!
!
You can’t exploit all the time; you can’t explore all the
time
You can never stop exploring; but you should always
reduce exploring

Qt(a) ≈Q
*(a) action value estimates

at* = argmaxa Qt(a)

at = at
* ⇒ exploitation

at ≠ at* ⇒ exploration

Reinforcement Learning 32

Action-Value Methods

Methods that adapt action-value estimates and
nothing else, e.g.: suppose by the t-th play, action
had been chosen times, producing rewards
then

a

k
t k

rrr
)a(Q a

+++
=

!21

ka ,r,,r,r
ak

…21

“sample average”

)a(Q)a(Qlim *
tka

=
∞→

a

Reinforcement Learning 33

ε-Greedy Action Selection

Greedy action selection:
!
!

ε-Greedy:

)a(Qmaxargaa ta

*
tt ==

at* with probability 1 − ε
random action with probability ε{at =

… the simplest way to try to balance exploration and
exploitation

Reinforcement Learning 34

10-Armed Testbed

n = 10 possible actions
Each is chosen randomly from a normal  
distribution:
each is also normal:
1000 plays
repeat the whole thing 2000 times (with reselecting)
and average the results
Evaluative versus instructive feedback

)),a(Q(N t
* 1

),(N 10
rt

)a(Q*

)a(Q*

Reinforcement Learning 35

ε-Greedy Methods on the 10-Armed Testbed

Reinforcement Learning 36

Softmax Action Selection

Softmax action selection methods grade action probs.
by estimated values.

The most common softmax uses a Gibbs, or
Boltzmann, distribution: 
 
Choose action a on play t with probability 
 
 
 
 
 
 
where τ is the “computational temperature”

,
e

e n

b
)b(Q

)a(Q

t

t

∑ =1
τ

τ

Learning for control from
multiple demonstrations	

Andrew Ng (Stanford U)

We consider the problem of learning to follow a
desired trajectory when given a small number of
demonstrations from a sub-optimal expert. We
present an algorithm that (i) extracts the desired
trajectory from the sub-optimal expert's
demonstrations and (ii) learns a local model suitable
for control along the learned trajectory. We apply
our algorithm to the problem of autonomous
helicopter flight. In all cases, the autonomous
helicopter's performance exceeds that of our
expert helicopter pilot's demonstrations.

