CSC242: Intro to Al

Lecture 20
Reinforcement Learning I

A Joke

A robot walks up to a
counter

and says, ‘I'll have a

beer’”

The human at the counter
says, | can’t serve you a beer”

The robot says, “Is it because
you discriminate against robots?!”

The human says, “No, it's because
this is a hardware store”

Reinforcement Learning

® | earning how to act from rewards and
punishments (reinforcement)

® VWhat should robot learn?
® Not to order a beer in a hardware store?

® Not to go to a hardware store when he
wants a beer!

Reinforcement Learning

® | earning how to act from rewards and
punishments (reinforcement)

® What did the robot do wrong!
® Ordering a beer?
® Going into the hardware store!

® Walking toward the hardware store?

Key Issues

® How to account for the delay between
actions and consequences!

® How to simultaneously learn a model of
the environment while acting in the
environment!?

® “Imagine playing a new game whose rules
you don’t know; after hundred or so moves,

'

your opponent announces, You lose.

B.F. Skinner (1904-1990)

1

2 1%2

N

C) v W

Learning from Experience Plays a Role in ...

Artificial Intelligence

Control Theory and
Psychology Operations Research

—— Reinforcement
Learning (RL)

/

Neuroscience
Artificial Neural Networks

Reinforcement Learning

14

What is Reinforcement Learning?

B Learning from interaction
B Goal-oriented learning

B Learning about, from, and while interacting with an
external environment

Il Learning what to do—how to map situations to actions
—s0 as to maximize a numerical reward signal

Reinforcement Learning

15

Reinforcement Learning

Supervised Learning

Training Info = desired (target) outputs

!

Supervised Learning
Inputs D> Systom I Outputs

Error

(target output — actual output)

16

Reinforcement Learning

Reinforcement Learning

Training Info = evaluations (“rewards” / “penalties”)

!

Inputs D> Syit:m I Outputs (“actions”)

Objective: get as much reward as possible

17

Key Features of RL

B Learner is not told which actions to take
B Trial-and-Error search

I Possibility of delayed reward (sacrifice short-term
gains for greater long-term gains)

I The need to explore and exploit

B Considers the whole problem of a goal-directed agent
interacting with an uncertain environment

Reinforcement Learning

18

Complete Agent

Il Temporally situated

B Continual learning and planning

Il Object is to affect the environment

B Environment is stochastic and uncertain

Environment

10N

Reinforcement Learning

19

Elements of RL

Model of
environment

I Policy: what to do

B Reward: what is good
B Value: what is good because it predicts reward
Il Model: what follows what

Reinforcement Learning

20

An Extended Example: Tic-Tac-Toe

| } X's move
ey < . w4 N } 0's move
7 A N ,
} X’'s move
AMMMAAM A \/ﬁ M
} 0's move
Assume ar_1 imperfect opponent: he/ /Ci\ N
she sometimes makes mistakes 1 x’s move

An RL Approach to Tic-Tac-Toe

1. Make a table with one entry per state:

St _
D ?
5 ? 2. Now play lots of games. To
: pick our moves, look ahead
1T win one step:
0 loss wﬁte
: O/./C/ various possible

*

0 draw
< next states
Just pick the next state with the highest
estimated prob. of winning — the largest V(s);
a greedy move.

But 10% of the time pick a move at random;

an exploratory move.

Reinforcement Learning 22

RL Learning Rule for Tic-Tac-Toe

starting position

opponent’'s move
our move

opponent’'s move

our move

i—— “Exploratory” move

opponent’'s move

our move s — the state before our greedy move

b W anten Wanten Wanden W anden Wanden

s' — the state after our greedy move

. ——
s ¢ —
KT ’

We increment each V(s) toward V(s)— a backup :

Vis)<V(s)+aly(s)-v(s)]
<a small positive fraction,e.g.,o =.1

the step - size parameter

Reinforcement Learning 23

How can we improve this T.T.T. player?

B Take advantage of symmetries

B representation/generalization
B How might this backfire?

B Do we need “random™ moves? Why?
m Do we always need a full 10%?

Bl Can we learn from “random” moves”?

Il Can we learn offline?

m Pre-training from self play?
B Using learned models of opponent?

Reinforcement Learning

24

e.g. Generalization

Table Generalizing Function Approximator
State V State V
S, A
&
3
S
Train | . | > | —
here | |
N

Reinforcement Learning

Reinforcement Learning

How is Tic-Tac-Toe Too Easy?

B Finite, small number of states
B One-step look-ahead is always possible
Bl State completely observable

26

Some Notable RL Applications

B TD-Gammon: Tesauro
m world’'s best backgammon program

Bl Elevator Control: Crites & Barto

m high performance down-peak elevator controller
Il Dynamic Channel Assignment: Singh & Bertsekas, Nie &
Haykin

m high performance assignment of radio channels to mobile telephone calls

Reinforcement Learning

27

TD-Gammon

Tesauro, 1992-1995

FiTTEe @\
D o U —Value Action selection
% ; ‘ by 2-3 ply search
shel B | B e |
I & % 4 5 & v 30N TDerror
Effective branching factor 400 Vi =V

Start with a random network
Play very many games against self
Learn a value function from this simulated experience

This produces arguably the best player in the world

Reinforcement Learning 28

Evaluative Feedback

B Evaluating actions vs. instructing by giving correct actions

J Pure evaluative feedback depends totally on the action taken. Pure
iInstructive feedback depends not at all on the action taken.

B Supervised learning is instructive; optimization is evaluative
I Associative vs. Nonassociative:

B Associative: inputs mapped to outputs; learn the best output
for each input

B Nonassociative: “learn” (find) one best output
B n-armed bandit (at least how we treat it) is:

B Nonassociative

m Evaluative feedback

Reinforcement Learning

29

The n-Armed Bandit Problem

J Choose repeatedly from one of n actions; each
choice is called a play

I After each play a; you get a reward 7 where

E(r,la)=0(a,)

These are unknown action values
Distribution of 7, depends only on g,

I Objective is to maximize the reward in the long term,
e.g., over 1000 plays

To solve the n-armed bandit problem,
you must explore a variety of actions
and then exploit the best of them.

Reinforcement Learning

30

The Exploration/Exploitation Dilemma

Il Suppose you form estimates
Q(a) = Q'(a) action value estimates

B The greedy action at tis

a, = argmax Q (a)

* . .
a, = a, = exploitation

a, = a, = exploration
I You can't exploit all the time; you can’t explore all the

time
I You can never stop exploring; but you should always
reduce exploring

Reinforcement Learning 31

Action-Value Methods

B Methods that adapt action-value estimates and
nothing else, e.g.: suppose by the t-th play, action g

had been chosen j times, producing rewards r r,.,..

then

Rtn+o+rn

k

a

“sample average”

Qt(a) =

lim Q,(a)=0Q (a)

keoo

Reinforcement Learning

T s

32

e-Greedy Action Selection

Jl Greedy action selection:
a =a =argmaxQ,(a)
B c-Greedy:

o a, with probability 1 - ¢
t { random action with probability &

... the simplest way to try to balance exploration and
exploitation

Reinforcement Learning

33

10-Armed Testbed

B n = 10 possible actions

B Each O'(q)is chosen randomly from a normal
distribution: (0,1)

M each . is also normal: N(O'(a,)])

W 1000 plays

Il repeat the whole thing 2000 times (with reselecting
and average the results

B Evaluative versus instructive feedback

Reinforcement Learning

0'(a)

34

e-Greedy Methods on the 10-Armed Testbed

1.5 -
e=10.1

ooy e
| R vt mmerpebomat s - et By ot

Average
reward
0.5 11
0 1 1 T 1
(] 250 50X} 7501 1Y)
Plays
10 -
Y -
9/0 A —
Optimal
action o 4
2ArE -
e =4 1 1 1 !
250 500 75i 1000
Plays

Reinforcement Learning

35

Softmax Action Selection

B Softmax action selection methods grade action probs.
by estimated values.

B The most common softmax uses a Gibbs, or
Boltzmann, distribution:

Choose action a on play ¢ with probability

th(a)/‘l?

E" o2 (D) ’
b=1

where 1 is the "computational temperature”

Reinforcement Learning

36

Reinforcement Learning Problem

Agent
State Reward Action
Environment
a a a
o !, - / o 2 ~
"0 el 2

Goal: Learn to choose actions that maximize

1‘0+"/r] +721:2+ ... , Where 0 Ly <l

Markov Decision Processes

Assume
e finite set of states S
e set of actions A

e at each discrete time agent observes state s; € S
and chooses action a; € A

e then receives immediate reward 7,
e and state changes to s;4q
e Markov assumption: s;.1 = d(ss, a;) and
P= (S 0)
—1.e., ry and s;.1 depend only on current state
and action
— functions 0 and r may be nondeterministic
— functions 0 and r not necessarily known to
agent

Value Function

To begin, consider deterministic worlds...

For each possible policy 7 the agent might adopt,
we can define an evaluation function over states

IR SN i . el
V (5) =TT L + ¥ P49 = P

= ,1'_’
25 o Pleps
1=()

where 74, 7441, ... are generated by following policy
m starting at state s

Restated, the task is to learn the optimal policy 7*

m" = argmax V" (s), (Vs)

T AP
=Ty
=

Y
s

14
-

0
90 100
—1 — —t— —t—
< (i 90 o 100 . G
A |72 A *81 A A | A | A
8l Y 50| 100 |y |y I
81 90
— — —t— ——
-t — - — 31 i 90 - 100
72 1
Q(s,a) values V*(s) values
— — G
A
I
— - — -

One optimal policy

What to Learn

We might try to have agent learn the evaluation

o
/
5
'

function V™ (which we write as V*)

It could then do a lookahead search to choose best
action from any state s because

n*(s) = argmax|r(s,a) + YV ((s, a))]
A problem:

e This works well if agent knows 0 : S x A — 5,
andr: SxA—R

e But when it doesn’t, it can’t choose actions this
way

Q Function

Define new function very similar to V'*

Q(s,a) =r(s,a) +yV*(d(s,a))

If agent learns (), it can choose optimal action even
without knowing ¢!

*(s) = argmaxlr(s,a) + 7V (5(s,)]

' (s) = argmax Q(s, a)
(1

() is the evaluation function the agent will learn

T AP
=Ty
=

Y
s

14
-

0
90 100
—1 — —t— —t—
< (i 90 o 100 . G
A |72 A *81 A A | A | A
8l Y 50| 100 |y |y I
81 90
— — —t— ——
-t — - — 31 i 90 - 100
72 1
Q(s,a) values V*(s) values
— — G
A
I
— - — -

One optimal policy

Training Rule to Learn @

Note @ and V™ closely related:

V*(s) = max () 8a)

(

Which allows us to write () recursively as

Q(S/, (L[) — 7"(3/, (L/) T "/“»”r*(é(.s,, (I:/)))

r(st, ar) + ymax Q(si41,a’)
(l

Nice! Let () denote learner’s current approximation
to (). Consider training rule

N

Q(3,a) — r +ymax C:?(Slz a')
(l

where s’ is the state resulting from applying action
a 1n state s

Q Learning for Deterministic Worlds

~

For each s, a initialize table entry Q(s,a) < 0
Observe current state s
Do forever:

e Select an action a and execute it

e Receive immediate reward r

e Observe the new state s’

e Update the table entry for Q(s,a) as follows:

Q(s,a) <« r+~ max Q(s',d)
(l

o5+ g

Updating Q

72 100 90 1oo|
R : B t R
63 63
81 81
=
@right
initial state: S, next state: S,

~

Q(Sls a‘/'/’.{/hf) £ P g Illv':ll-X Q(S_) (l.l)
<~ 0+ 0.9 max{63,81,100}
~— 90

notice if rewards non-negative, then
(Vs,a,n) Qne1(s,a) > Qn(s,a)

and

(Vs,a,n) 0< Q,(s,a)<Q(s,a)

Nondeterministic Case

What if reward and next state are
non-deterministic?

We redefine V, () by taking expected values

V7i(s)

Erf+”y7“f+1+7 repe + ...
E| Z V']

Q(s,a) = E|r(s,a) + vV ((s,a))]

Nondeterministic Case

() learning generalizes to nondeterministic worlds

Alter training rule to
Q,,(S, CL) o (1_an)Qn—1(3> a)-l-a,, [7’-|-II1£/1X Qn—l(sla CL,)]

where

1
a'll = . .
1 4+ visits,(s,a)

Can still prove convergence of Q to Q [Watkins and
Dayan, 1992

Temporal Difference Learning

() learning: reduce discrepancy between successive
() estimates

One step time difference:
Do Y=t mvrmae Do .
Q ('51‘, (l:f) — 4 i -+ Y 111(51}\ Q('Sf+lt~ (1,)
Why not two steps?
5 ; ,\
Q(_)('S“ (1..,) =T¢ YL T Y max Q(.SH_-_), a.)
Or n?

(,,)(”)(sf, a;) = re+yrie+e Ay, A" max QO Siensi)

Blend all of these:
O 850 = (1-X) [(2(”(3,, ar) + AQ\ (3¢, a) + N°Q'%) (84, ar)

Temporal Difference Learning

Qs 43) = (1—=A) [Q(”(.s,, az) + AQ\(8;,az) + A°Q (i, a:)
Equivalent expression:
Q/\(Sn ar) =1+ (1—A) mnax Q(Sh ar)
+A Q\(St41, ry1)]
TD(\) algorithm uses above training rule
e Sometimes converges faster than () learning

e converges for learning V* for any 0 < A <1
(Dayan, 1992)

e Tesauro’s TD-Gammon uses this algorithm

Function Approximation
and
Reinforcement Learning

General |dea

. * Function [Qs.a)
a » Approximator|.___iargets or errors
Could be:
* table
—> gradient-

* Backprop Neural Network descent
_ * Radial-Basis-Function Network | methods
* Tile Coding (CMAC) —

* Nearest Neighbor, Memory Based

- Decision Tree

Neural Networks as FAs

Q(s,a) = f(s,a,w)

\

weight vector

standard
backprop

e.g., gradient-descent Sarsa: j’ad'e"t

W S W a[rt+l + YQ(SHl’aHl)_ Q(St ’at)] wa.(st’ar’w)

/ estimated value

target value

Sparse Coarse Coding

. : | Linear —>
—> fixed expansive ‘| last |
Re-representation | layer —>

\ .>/
: features

Coarse: Large receptive fields
Sparse: Few features present at one time

Shaping Generalization in Coarse
Coding

a) Narrow generalization b) Broad generalization c) Asymmetric generalization

Tile Coding

+ Binary feature for each
tile
* Number of features

present at any one ftime
Is constant

+ Binary features means
weinhted sum easv to

tiling #1 -

tiling #2 ——

2D state Shape of tiles = Generalization

space T—a

#Tilings = Resolution of final approximation

FAs & RL

® Linear FA (divergence can happen)
Nonlinear Neural Networks (theory is not well developed)
Non-parametric, e.g., hearest-neighbor (provably not
divergent; bounds on error)
Everyone uses their favorite FA... little theoretical
guidance yet!

® Does FA really beat the curse of dimensionality?

® Probably; with FA, computation seems to scale with the
complexity of the solution (crinkliness of the value function) and
how hard it is to find it

® Empirically it works

® though many folks have a hard time making it so

® no off-the-shelf FA+RL yet

Learning for control from

multiple demonstrations
Andrew Ng (Stanford U)

We consider the problem of learning to follow a
desired trajectory when given a small number of
demonstrations from a sub-optimal expert. We
present an algorithm that (i) extracts the desired
trajectory from the sub-optimal expert's
demonstrations and (ii) learns a local model suitable
for control along the learned trajectory. VWe apply
our algorithm to the problem of autonomous
helicopter flight. In all cases, the autonomous
helicopter's performance exceeds that of our
expert helicopter pilot's demonstrations.

Learning with

