Introduction to Artificial
Intelligence

Logical Reasoning

Henry Kautz

Outline

Logic
Efficient satisfiability testing by
backtracking search

Efficient satisfiability testing by local
search

Applications

“ Summary ”

Logical agents apply inference to a knowledge base
to derive new information and make decisions

Basic concepts of logic:
— syntax: formal structure of sentences
— semantics: truth of sentences wrt models
— entailment: necessary truth of one sentence given another
— inference: deriving sentences from other sentences
— soundess: derivations produce only entailed sentences
— completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated informa-
tion, reason by cases, etc.

Forward, backward chaining are linear-time, complete for Horn clauses
Resolution is complete for propositional logic

Powerful & practical reasoning algorithms search through
space of partial or total truth assignments

Chapter 6, AIMAZ2e Chapter 7 71

H Knowledge bases H

Inference engine -«——— domain-independent algorithms

Knowledge base -«——— domain-specific content

Knowledge base = set of sentences in a formal language

Declarative approach to building an agent (or other system):
TELL it what it needs to know

Then it can ASK itself what to do—answers should follow from the KB

Agents can be viewed at the knowledge level
I.e., what they know, regardless of how implemented

Or at the implementation level
I.e., data structures in KB and algorithms that manipulate them

Chapter 6, AIMAZ2e Chapter 7 3

H Wumpus World PEAS description ”

Performance measure
gold +1000, death -1000
-1 per step, -10 for using the arrow
Environment
Squares adjacent to wumpus are smelly
Squares adjacent to pit are breezy
Glitter iff gold is in the same square
Shooting kills wumpus if you are facing it
Shooting uses up the only arrow
Grabbing picks up gold if in same square
Releasing drops the gold in same square

Sensors Breeze, Glitter, Smell

Actuators Left turn, Right turn,
Forward, Grab, Release, Shoot

S SSSS s

Stench

\N

g ~ Breeze
o ———

PIT

reze = >
gstench > PIT
NN
~ G

s S5Ss iy
SSenen s ZBreere—
< Breeze — Z Breeze —

START

Chapter 6, AIMAZ2e Chapter 7

H Wumpus world characterization ”

Observable?? No—only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic?? No—sequential at the level of actions
Static?? Yes—Wumpus and Pits do not move
Discrete?? Yes

Single-agent?? Yes—Wumpus is essentially a natural feature

Chapter 6, AIMAZ2e Chapter 7 12

Exploring a wumpus world

OK

OK OK

Chapter 6, ATMAZ2e Chapter 7 13

Exploring a wumpus world

OK OK

Chapter 6, ATMAZ2e Chapter 7

14

Exploring a wumpus world

P?
\\
B OK P?
A
A
OK OK
A

Chapter 6, ATMAZ2e Chapter 7 15

Exploring a wumpus world

P?

Chapter 6, ATMAZ2e Chapter 7 16

Exploring a wumpus world

Chapter 6, ATMAZ2e Chapter 7 17

Exploring a wumpus world

-U
//
>>;>€

Chapter 6, ATMAZ2e Chapter 7 18

Exploring a wumpus world

OK

P
3

OK

OK| S

OK

A|l——=>

A

Chapter 6, ATMAZ2e Chapter 7

19

Exploring a wumpus world

P? OK

Chapter 6, ATMAZ2e Chapter 7 20

H Logic in general ”

Logics are formal languages for representing information
such that conclusions can be drawn

Syntax defines the sentences in the language

Semantics define the “meaning” of sentences;
I.e., define truth of a sentence in a world

E.g., the language of arithmetic
x4+ 2 > y is a sentence; 2 + y > is not a sentence
x + 2 > y is true iff the number x + 2 is no less than the number y

x + 2 > yis true in a world where x =7, y=1
x + 2 > y is false in a world where x =0, y=56

Chapter 6, AIMAZ2e Chapter 7 22

“ Entailment H

Entailment means that one thing follows from another:

KB E «

Knowledge base K B entails sentence «
if and only if
« is true in all worlds where K B is true

E.g., the KB containing “the Giants won” and “the Reds won”
entails “Either the Giants won or the Reds won"

Eg,z+y=4entailsd=z+y

Entailment is a relationship between sentences (i.e., syntax)
that is based on semantics

Note: brains process syntax (of some sort)

Chapter 6, AIMAZ2e Chapter 7 23

Models

Logicians typically think in terms of models, which are formally
structured worlds with respect to which truth can be evaluated

We say m is a model of a sentence «v if « is true in m
M () is the set of all models of o
Then KB = «aif and only if M(KB) C M(«)

E.g. KB = Giants won and Reds won
o = Giants won

Chapter 6, AIMAZ2e Chapter 7 24

Entailment in the wumpus world

Situation after detecting nothing in [1,1],

moving right, breeze in [2,1] ? ?
“w| P
Consider possible models for 7s A . [A] £

assuming only pits

3 Boolean choices = 8 possible models

Chapter 6, ATMAZ2e Chapter 7

25

Wumpus models

Chapter 6, ATMAZ2e Chapter 7

26

H Wumpus models H

]
r=

K B = wumpus-world rules + observations

Chapter 6, AIMAZ2e Chapter 7 27

H Wumpus models H

]
r=

K B = wumpus-world rules + observations

a; = “[1,2] is safe”, KB = «y, proved by model checking

Chapter 6, ATMAZ2e Chapter 7 28

H Wumpus models H

K B = wumpus-world rules + observations

ay = “[2,2] is safe”, KB ¥~

Chapter 6, AIMAZ2e Chapter 7 30

“ Inference H

KB F; a = sentence « can be derived from KB by procedure ¢

Consequences of K B are a haystack; « is a needle.
Entailment = needle in haystack; inference = finding it

Soundness: ¢ is sound if
whenever K B F; q, it is also true that KB = «

Completeness: ¢ is complete if
whenever K B = «, it is also true that KB +; «

Chapter 6, AIMAZ2e Chapter 7 31

H Propositional logic: Syntax ”

Propositional logic is the simplest logic—illustrates basic ideas

The proposition symbols P, P etc are sentences

If S is a sentence, —.S is a sentence (negation)

If S1 and S are sentences, S; A S is a sentence (conjunction)
If S and Sy are sentences, S; V S; is a sentence (disjunction)

If S1 and Sy are sentences, S; = Ss is a sentence (implication)

If S1 and Sy are sentences, S; < S5 is a sentence (biconditional)

Chapter 6, AIMAZ2e Chapter 7 32

H Propositional logic: Semantics H

Each model specifies true/false for each proposition symbol

Eg. P2 Py P

true true false

(With these symbols, 8 possible models, can be enumerated automatically.)

Rules for evaluating truth with respect to a model m:

-5 is true iff S5 is false
S1 A Sy is true iff S is true and Sy s true
S1V Sy is true iff S is true or So is true
S = Sy is true iff S is false or S9 is true
i.e., is false iff S1 is true and S9 is false

S1 & Sy istrueiff S = Sy istrue and Sy = 57 is true

Simple recursive process evaluates an arbitrary sentence, e.g.,
“Pio A (PoaV P3q) = true A (false V true) =true A true =true

Chapter 6, AIMAZ2e Chapter 7 33

“ Truth tables for connectives H

2 Q =P |[PAQ|PVQ|P = @Q|P & @
false| false| true | false | false | true true
false| true | true | false | true true false
true | false | false| false | true | false false
true | true | false| true | true true true

Chapter 6, ATMAZ2e Chapter 7

34

H Wumpus world sentences H

Let P, ; be true if there is a pit in [, j].
Let B; ; be true if there is a breeze in [¢, j].

- P
—B11
Bs 4

“Pits cause breezes in adjacent squares”

Chapter 6, ATMAZ2e Chapter 7 35

H Wumpus world sentences H

Let P, ; be true if there is a pit in [, j].
Let B; ; be true if there is a breeze in [i, j].

— P
—B11
Bs 4

“Pits cause breezes in adjacent squares”

By & (PaVPy,)
By; & (Pi1V PV Psy)

“A square is breezy if and only if there is an adjacent pit”

Chapter 6, AIMAZ2e Chapter 7 36

“ Truth tables for inference H

Bip | Bog | Poia | Poip | Po1 | Pap | P31 | KB o
false | false | false | false | false | false | false || false | true
false | false | false | false | false | false | true | false | true

false | true | false | false | false | false | false | false | true
false | true | false | false | false | false | true || true | true
false | true | false | false | false | true | false | true | true
false | true | false | false | false | true | true | true | true

false | true | false | false | true | false | false | false | true

true | true | true | true | true | true | true | false | false

Chapter 6, ATMAZ2e Chapter 7 37

H Inference by enumeration ”

Depth-first enumeration of all models is sound and complete

Don’t sweat
function TT-ENTAILS?(KB,) returns true or false the details:
symbols < a list of the proposition symbols in KB and « later we will
return TT-CHECK-ALL(KB, a, symbols, []) see a much
function TT-CHECK-ALL(KB, o, symbols, model) returns true or false more
if EMPTY?(symbols) then efficient way
if PL-TRUE?(KB, model) then return PL-TRUE?(«, model) of searching
else return true
S il through
P + F1rST(symbols); rest+ REST(symbols) model
return TT-CHECK-ALL(KB, o, rest, EXTEND(P, true, model) and space!
TT-CHECK-ALL(KB, a, rest, EXTEND(P, false, model)

O(2") for n symbols; problem is co-NP-complete

Chapter 6, ATMAZ2e Chapter 7 38

H Logical equivalence H

Two sentences are logically equivalent iff true in same models:

a=pf ifandonlyif afE=pfand fE«
(@ApB) = (BAa) commutativity of A

(V@) = (BVa) commutativity of V
(@aANB)AN7y) = (aAN(BA7)) associativity of A
(aVB)Vy) = (aV(BV~y)) associativity of V
—(—a) = a double-negation elimination
(¢ = B) = (w8 = —a) contraposition
(¢ = B) = (—aV B) implication elimination
(@ & B) = ((a@ = B)A (S = «)) Dbiconditional elimination
—(aApB) = (—aV -8) de Morgan
—(aVB) = (—aA—-f3) de Morgan
(aAN(BV7y) = (aAB)V(aAy)) distributivity of A over V
(aV(BAY) = (aVB)A(aVy)) distributivity of V over A

Chapter 6, AIMAZ2e Chapter 7 39

H Validity and satisfiability H

A sentence is valid if it is true in all models,

eg, True, AV-A, A=A (AN(A = B)) = B

Validity is connected to inference via the Deduction Theorem:

KB [aifand only if (KB = «) is valid

A sentence is satisfiable if it is true in some model

eg., AV B, C

A sentence is unsatisfiable if it is true in no models
e.g., AN-A

Satisfiability is connected to inference via the following:
KB = «if and only if (KB A —«) is unsatisfiable
l.e., prove « by reductio ad absurdum

Chapter 6, AIMAZ2e Chapter 7

40

Formal Computational Complexity

 SAT = Prototypical NP-complete problem:

— Given a Boolean formula, Is there a assignment of
truth values to the Boolean variables that makes it
true?

— As hard as any problem where an answer can be
verified in polynomial time

— Still NP-complete if formulas are restricted to
Conjunctive Normal Form:

literals

‘///,/\\\

(avbv~c) & (~ravc) &(~bvc)

NS

clauses

“ Proof methods H

Proof methods divide into (roughly) two kinds:

Application of inference rules

— Legitimate (sound) generation of new sentences from old

— Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard s
— Typically require translation of sentences into a norm

Model checking
truth table enumeration (always exponential in n)
improved backtracking, e.g., Davis—Putnam-Logemann
heuristic search in model space (sound but incomplete)
e.g., min-conflicts-like hill-climbing algorithms

earch alg.
al form

—Loveland

Chapter 6, AIMAZ2e Chapter 7

H Forward and backward chaining H

Horn Form (restricted)
KB = conjunction of Horn clauses
Horn clause =
{» proposition symbol; or
¢ (conjunction of symbols) = symbol
Eg,.CA(B = AANCAD = B)

Modus Ponens (for Horn Form): complete for Horn KBs

Cfl,...,O{n? al/\"'/\aniﬁ

B

Can be used with forward chaining or backward chaining.

These algorithms are very natural and run in linear time

Chapter 6, AIMAZ2e Chapter 7

42

Expert System for Automobile
Diagnosis

Knowledge Base:
GasInTank A FuelLineOK o GaslnEngine
GaslnEngine A GoodSpark o> EngineRuns
PowerToPlugs A PlugsClean o> GoodSpark
BatteryCharged A CablesOK o PowerToPlugs
Observed:

— EngineRuns,
GaslInTank, PlugsClean, BatteryCharged

Prove:
— FuelLineOK v — CablesOK

Solution by Forward Chaining

Knowledge Base and Observations:
(=rCestakk v TFoed=helK v GaslinEngine)

(—=easlalEngine v — GoodSpark v =agkalRuns)
(= PowerToPlugs v —=RegsLlaan v=seedSpark)

(—Beserucharged v —mEabiesll Pomwerekiligs)

(—wEngineRuns)
(GasInTank)
(PlugsClean)
(BatteryCharged)
Negation of Conclusion:
(FuelLineOK)
(CablesOK)

“ Resolution H

Conjunctive Normal Form (CNF—universal)
conjunction of disjunctions of literals

clauses
Eg,(AV-B)A(BV-CV-D)
Resolution inference rule (for CNF): complete for propositional logic

OGNV, mi V-V my,
flV---Vfi_l\/fgurl\/---\/fk\/ml\/---\/mj_l\/ij\/---\/mn

where ¢; and m; are complementary literals. E.g.,
Pi3V P, — P P
B OK %
" ik
Resolution is sound and complete for propositional logic W= | W

Chapter 6, AIMAZ2e Chapter 7 67

“ Conversion to CNF H

Bi1 < (Pi2V Ps;)

1. Eliminate <, replacing a < [with (a = B)A (8 = «a).
(Bi1 = (PiaV P1) AN((PiaV Py1) = Bia)

2. Eliminate =, replacing o« = 8 with —a V .
(=B11VPiaV Pyy)A(=(P1aV Pe1)V Brg)

3. Move — inwards using de Morgan'’s rules and double-negation:
(mB11V P12V Py) AN((mPiaA—Pe1)V By)

4. Apply distributivity law (V over A) and flatten:
(wB11V PiaV Py)A(=PiaV Bia) A (—P21V By)

Chapter 6, ATMAZ2e Chapter 7 68

Resolution Proof

DAG, where leaves are input clauses

Internal nodes are resolvants KB:
Root Is false (empty clause) e If the unicorn is
mythical, then it is
Immortal,
(=A Vv H) (= H) (=l v H) o if it IS not mythical, it is
S~ T~ an animal
(MvA) (=A) =) =MV e If the unicorn is either
\/ \/ iImmortal or an animal,
then it is horned.
(M) (= M) Prove: the unicorn is

T~ horned.

0

THE CURIOUS INCIDENT OF THE
DOG IN THE NIGHT

A racehorse was stolen from a stable, and a bookmaker Fitzroy
Simpson was accused. Sherlock Holmes found the true thief by
reasoning from the following premises:

1. The horse was stolen by Fitzroy or by the trainer, John
Straker.

2. The thief entered the stable the night of the thetft.
3. The dog barks if a stranger enters the stable.
4. Fitzroy was a stranger.
5. The dog did not bark.
Create a resolution refutation proof, using the propositions:

thief_fitzroy thief _john
entered_fitzroy entered_john
stranger_fitzroy stranger_john

barks

Efficient Local Search
for Satisfiability Testing

Greedy Local Search for SAT:
GSAT

state = choose_ start_state();
while | GoalTest(state) do
state := arg min { h(s) | s in Neighbors(state) }
end
return state;

e start = random truth assignment
e GoalTest = formula is satisfied
* h = number of false (unsatisfied) clauses

* neighbors = flip one variable (from true to false, or from
false to true)

Smarter Noise Strategies

e For both random noise and simulated
annealing, nearly all uphill moves are
useless Q

HOHMH

e Can we find uphill moves that are more
likely to be helpful?

e At least for SAT we can...

Random Walk for SAT

e Observation: If a clause Is unsatisfied, at
least one variable in the clause must be
different in any global solution

(Av~BvC)
e Suppose you randomly pick a variable

from an unsatisfied clause to flip. What is
the probability this was a good choice?

Random Walk for SAT

 Observation: if a clause is unsatisfied, at
least one variable In the clause must be
different in any global solution
(Av~BvC(C)
e Suppose you randomly pick a variable

from an unsatisfied clause to flip. What is
the probability this was a good choice?

1
clause length

Pr(good choice) >

Random Walk Local Search

state = choose_ start_state();

while | GoalTest(state) do
clause := random member { C | C is a clause of F and

C is false in state }

var := random member { X | x Is a variable in clause }
state[var] .= 1 — state[var],

end

return state;

Properties of Random Walk

o If clause length = 2:
— 50% chance of moving in the right direction
— Converges to optimal with high probabillity in
O(n?) time
absorbing reflecting

50% 50%

0 n/2 N | d-Hamming Distance

Properties of Random Walk

o If clause length = 2:
— 50% chance of moving in the right direction
— Converges to optimal with high probabillity in

O(n?) time
_ \ For any desired epsilon, there is a
absorbing .
constant C, such that if you run for
c0% 5% Cn? steps, the probability of
-~ > success Is at least 1-epsilon

0 n/2 N | d-Hamming Distance

Properties of Random Walk

 If clause length = 3:
— 1/3 chance of moving in the right direction
— Exponential convergence

— Compare pure noise: 1/(n-Hamming distance) chance
of moving in the right direction

* The closer you get to a solution, the more likely a noisy flip is
bad

absorbing reflecting

1/3 2/3

- —P

0 n/2 n| d-Hamming Distance

Greedy Random Walk

state = choose_start_state();
while | GoalTest(state) do
clause := random member { C | C is a clause of F and
C is false in state };
with probability noise do
var := random member { X | X Is a variable in clause },
else
var := arg x min { #unsat(s) | x is a variable in clause,
s and state differ only on x};
end
state[var] := 1 — state|[var];
end
return state;

Refining Greedy Random Walk

Each flip

— makes some false clauses become true
— breaks some true clauses, that become false

Suppose s1—s2 by flipping x. Then:

#unsat(s2) = #unsat(sl) — make(sl,x) + break(sl,x)
ldea 1: if a choice breaks nothing, it is very likely
to be a good move

ldea 2: near the solution, only the break count
matters

— the make count is usually 1

Walksat

state = random truth assignment;
while | GoalTest(state) do
clause := random member { C | C is false In state };
for each x in clause do compute break[Xx];
If exists x with break[x]=0 then var := X;
else
with probability noise do
var ;= random member { X | X is In clause },
else
var := arg x min { break]|x] | x is in clause };
endif
state[var] .= 1 — state|var];
end

return state; Put everything inside of a restart loop.
Parameters: noise, max_flips, max_runs

SAT Translation of N-Queens

o At least one queen each row:
(Q11vQ12vQ13v..vQ18)
(Q21vQ22vQ23v..vQ28) >~ O(N? clauses

e No attacks: ~
(~Q1l1lv~Q12)

(~Q11v ~Q22) > O(N°) clauses o
(~Q11 v ~Q21) 5 =

Demo:
Solving N-Queens with Walksat

Walksat Today

e Hard random 3-SAT: 100,000 vars, 15 minutes

— Walksat (or slight variations) winner every year in
“random formula” track of International SAT Solver

Competition
— Backtrack search methods: 700 variables

e Certain kinds of structured problems (graph
coloring, Latin squares, n-queens, ...) = 30,000
variables
— But best systematic search routines better on certain

other kinds of problems — e.g., verification

* Inspired huge body of research linking SAT
testing to statistical physics (spin glasses)

Efficient Backtrack Search
for Satisfiability Testing

Basic Backtrack Search for a
Satisfying Model
Solve(F): return Search(F, { });

Search(F, assigned):
If all variables in F are in assigned then
If evaluate(F, assigned) then return assigned,;
else return FALSE;
choose unassigned variable X;
return Search(F, assigned U {x=0}) ||
Search(F, assigned U {x=1});
end;

State Space:

All partial or complete assignments of truth values to
variables

Propagating Constraints

e Suppose formula contains
(AvBv~C)
and we set A=0.
 What Is the resulting constraint on the
remaining variables B and C?
(Bv ~C)
e Suppose instead we set A=1. What Is the
resulting constraint on B and C?

No constraint

Empty Clauses and Formulas

e Suppose a clause In F is shortened until it
become empty. What does this mean
about F and the partial assignment?

F cannot be satisfied by any way of
completing the assignment; must backtrack

o Suppose all the clauses in F disappear.
What does this mean?

F Is satisfied by any completion of the partial
assignment

Unit Propagation

e Suppose a clause In F Is shortened to
contain a single literal, such as

(A)
What should you do?

mmediately add the literal to assigned.
Repeat If another single-literal clause
appears.
* Applying resolution where one clause is a
single literal is called unit propagation

DPLL

DPLL(F, assigned):
while F has a unit clause (c) do
assigned = assigned U {c};
shorten clauses containing ~c;
delete clauses containing c;
end
If F Is empty then return assigned,
If F contains an empty clause then return FALSE;
choose an unassigned literal c; // variable and initial value
return Search(F U { (c) }, assigned) ||
Search(F U { (~c) }, assigned);
end,;

Improving Efficiency: Clause
Learning
 |dea: backtrack search can repeatedly

reach an empty clause (backtrack point)
for the same reason

Example: Propagation from B=0 and C=0 leads to empty clause

Improving Efficiency: Clause
Learning

e |f reason was remembered, then could
avoid having to rediscover it

~

| had better
set C=1

iImmediately!

Example: Propagation from B=0 and C=0 leads to empty clause

Improving Efficiency: Clause
Learning

 The reason can be remembered by adding
a new learned clause to the formula

~N

Set C=1 by
unit

propagation y

X learn (~B V ~C)

Example: Propagation from B=0 and C=0 leads to empty clause

Scaling Up

* Clause learning greatly enhances the
power of unit propagation

* Tradeoff: memory needed for the learned
clauses, time needed to check If they
cause propagations

e Clever data structures enable modern SA
solvers to manage millions of learned
clauses efficiently

What is BIG?

Consider a real world Boolean Satisfiability (SAT) problem

The instance bmc-ibm-6.cnf, IBM L3U 1997:

p cnf .
170 l.e., ((hotx_1)or x_7)

~160
150 ((not x_1) or x_6)

—1—-470 etc.
—130

—120 x_1,x _2,x 3, etc.our Boolean variables

—1-80 (set to True or False)
—9150

—9140

—9130

—9 120 Set x_1 to False ??
—9110

—9100

—9—160

—17 23 0

—17 220

10 pages later:

185 -9 0

18510

177 169 161 153 145 137 129 121 113 105 97
89 81 73 65 57 49 41

332517911850

186 —187 0

186 —188 0

l.e., (x_177 or x_169 or x_161 or x_153 ...
X _330rx 250rx _17o0rx_9orx_1or (notx_185))

clauses / constraints are getting more interesting...

Note x 1 ...

4000 pages later:

10236 —10050 0

10236 —10051 0

10236 —10235 0

10008 10009 10010 10011 10012 10013 10014
10015 10016 10017 10018 10019 10020 10021
10022 10023 10024 10025 10026 10027 10028
10029 10030 10031 10032 10033 10034 10035
10036 10037 10086 10087 10038 10039 10090
10091 10092 10093 10094 10095 10096 10097
10098 10099 10100 10101 10102 10103 10104
10105 10106 10107 10108 —55 —54 53 —52 —51 50
10047 10048 10049 10050 10051 10235 —10236 0
10237 —10008 0

10237 —10009 0

10237 —10010 0

Finally, 15,000 pages later:

—7 2600

7 —260 0

1072 1070 0

—15 —14 —13 —12 —11 —10 0
—15 —14 —-13 —12-11 10 0
~15 —14 —13 —1211 —10 0
—15 —14 —13 —1211 10 0
—7—6-5-4-3-20
—7-6-5-4-320
—7-6-5-43-20
~7-6-5-4320

185 0

Search space of truth assignments: HOW?

230000 -, 3160600437 - 1015051

Current SAT solvers solve this instance in
approx. 1 minute!

Demo: SatPlan

Progress in SAT Solvers

"Posit 04 |Grasp' 96| Sato’ 98 | Chal 01
Os

Instance
ssa26/70-136
bf1355-638

1,2s 0,02s
o11s | 004 | 001s
0,01s
0,01s
0s
2,9s

>3000s

pretl50 25 0,21s
dubois100 11,85s
aim200-2_0-no-1 | >3000s | 0,01s
2dIx_... bug005

Cc6288
Source: Marques Silva 2002

1805,21s| 0,11s
>3000s
>3000s

>3000s
>3000s

