

Building Reliable Activity Models Using Hierarchical Shrinkage and Mined Ontology

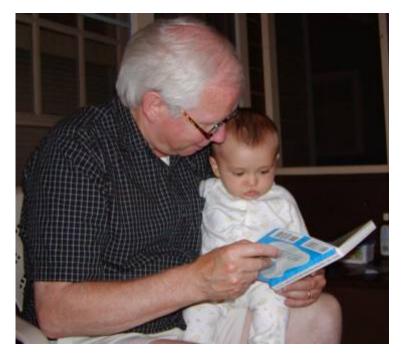
Emmanuel Munguia Tapia¹, Tanzeem Choudhury and Matthai Philipose² ¹Massachusetts Institute of Technology ²Intel Research Seattle

Activity Recognition applications

- Activity-aware actuation
- Proactive reminding
- Ubiquitous healthcare
- Embedded health assessment

Activities of Daily Living (ADLs)

Activity Class
Personal Appearance
Housework
Toileting
Washing up
Appliance Use
Taking care or an infant
Care of clothes and linen
Making a snack
Making a drink
Oral hygiene
23 classes, 1000s of activities



Classes of day-to-day activities that:

- Indicate cognitive well-being
- Indicate level of independence

e.g. Is elder still able to prepare a pasta?

What sensors could we use?

Activity inference based on object use

Dense sensing: attach sensors directly to objects in the environment.

- •Battery-free wireless stickers (RFIDs)
- •Battery powered sensor nodes

Activity inference based on object use

Advantages

- Robust to environmental conditions
- High level information can be associated with the sensors

<ID = e3f000e13431, desc = "bread basket", manufacturer = "...", ... >

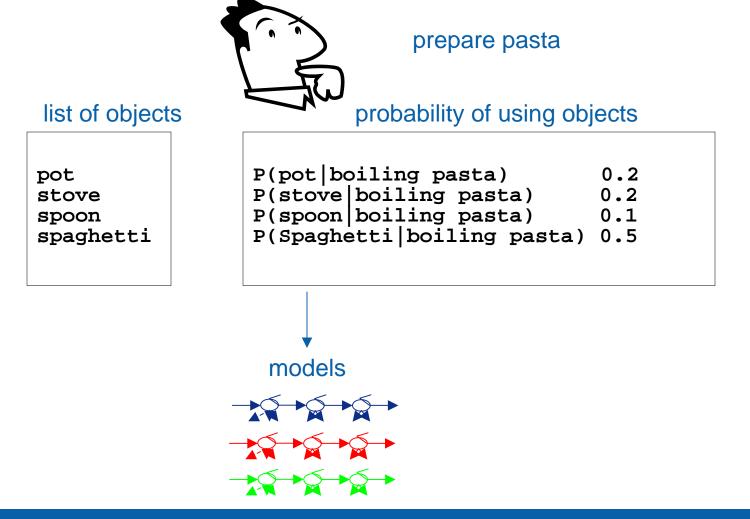
What inference algorithms could we use?

Activity inference using Dynamic Bayesian networks (HMMs)

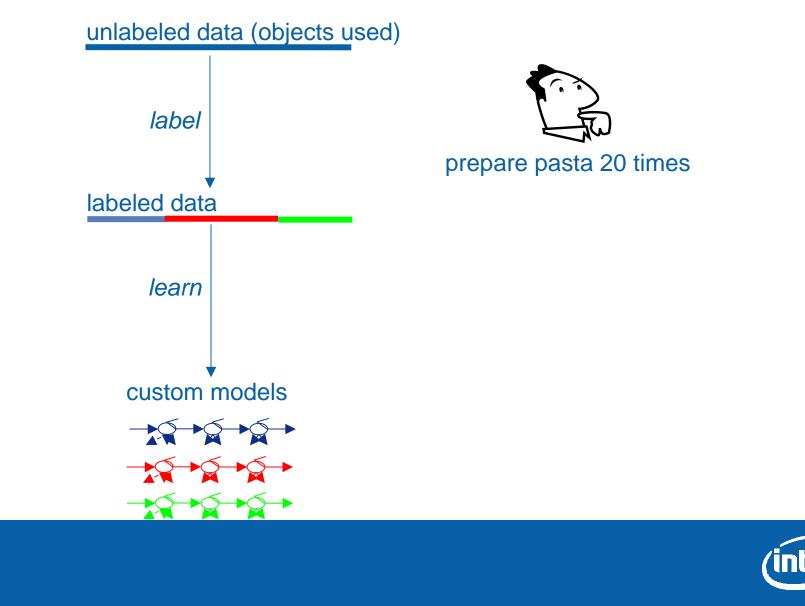
Advantages

- Easy to incorporate common sense information
- Efficient inference algorithms
- To create an activity model we need
- •List of objects used while performing an activity
- Probability of using the objects
- e.g p(pot|cooking) = 0.7

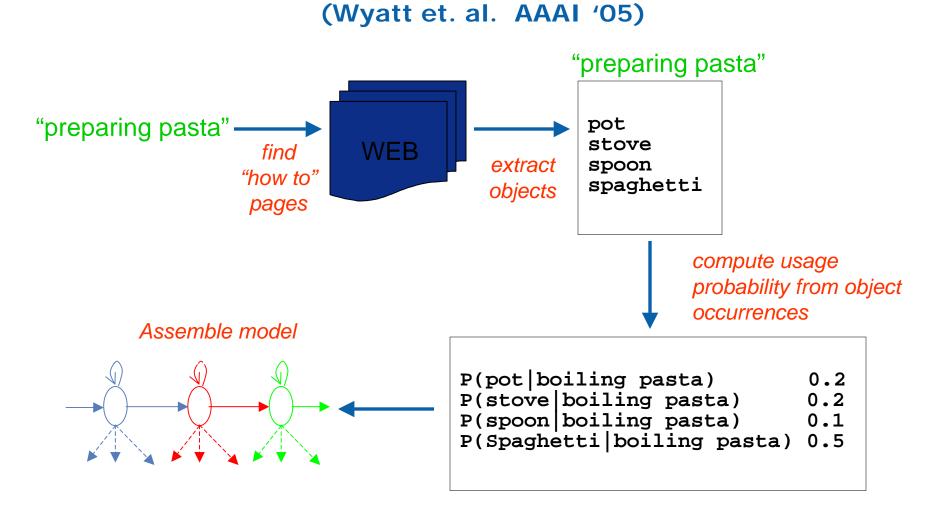
Techniques for constructing activity models: Hand definition



Techniques for constructing activity models: Learn from data



Techniques for constructing activity models: Mine activity from the web



Judging the level of independence of an elder

(1) inappropriate probabilities (2) Missing objects

Preparing pasta

Judging the level of independence of an elder

(1) inappropriate probabilities (2) Missing objects

kitchen spaghetti pot spoon range fork macaroni stove

pan

Preparing pasta

Dealing with Incompleteness

Exploit common sense information about objects that are functionally similar

pot →pan spoon → fork

 automatically extract ontology from a hierarchically organized lexical system called WordNet

Adapt or improve model probabilities based on object similarity information

• apply statistical smoothing technique known as *shrinkage* to update model parameters

Microwave#1:	electromagnetic
wave	

Synset: microwave

Microwave#2: kitchen appliance that cooks food

Synset: microwave, microwave oven

Microwave#1: electromagnetic wave	Microwave#2: cooks food
Synset: microwave	Synset: microw
Hypernym tree	Hypernym tre
Electromagnetic radiation	Kitchen applian
radiation	appliance
energy	durables
Physical phenomenon	Consume
Natural phenomenon	object
Phenomenon	Entity

Vicrowave#2: kitchen appliance that cooks food Synset: microwave, microwave oven Hypernym tree Kitchen appliance appliance durables Consumer goods object

Hypernym: when a word sense is a superset of another

How do we select the word sense automatically?

Hypernym tree	Hypernym tree
Electromagnetic radiation	Kitchen appliance
radiation	appliance
energy	durables
Physical phenomenon	Consumer goods
Natural phenomenon	object
Phenomenon	Entity

WordNet: Unique beginners for nouns

Non-living thing, object Living thing, organism

•Natural object •Artifact •Substance •food

•Plant, flora

•Animal, fauna

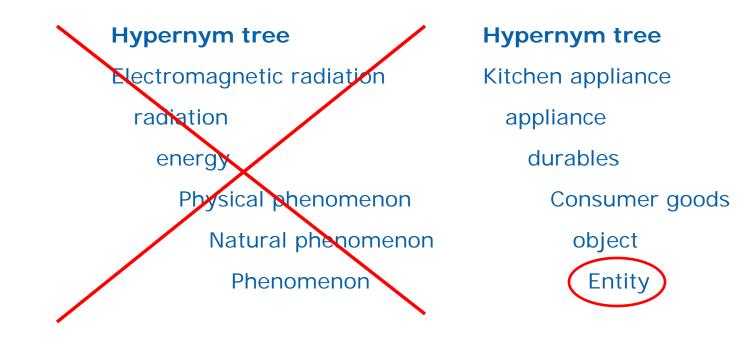
•*Person, human* being

How do we select the word sense automatically?

Hypernym tree	Hypernym tree
Electromagnetic radiation	Kitchen appliance
radiation	appliance
energy	durables
Physical phenomenon	Consumer goods
Natural phenomenon	object
Phenomenon	Entity

Identify objects that are (1) nouns (2) subset of entity

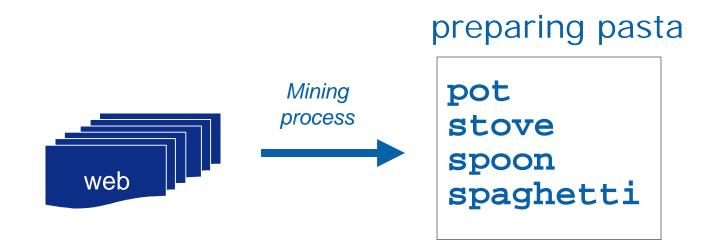
How do we select the word sense automatically?



Identify objects that are (1) nouns (2) subset of entity

Ontology extraction from WordNet

From the activity recipe mined for "preparing pasta", we have the list of objects used.

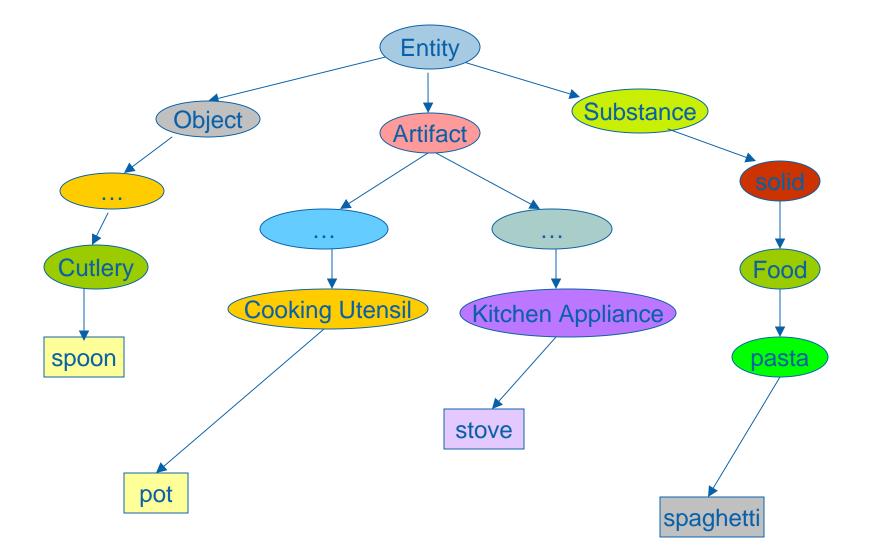


Ontology extraction from WordNet

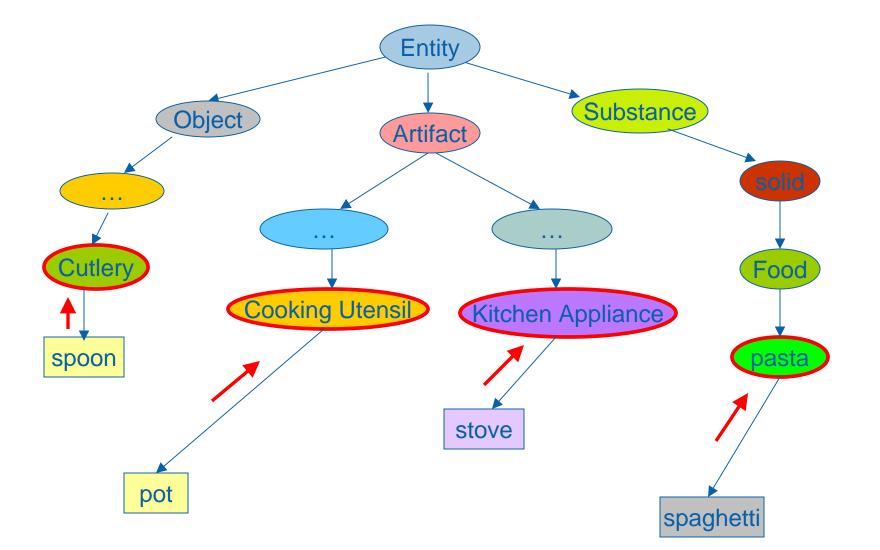
Finding the first hypernym tree that contain the concept entity for all the objects in our list we get

pot	stove	spoon	pasta
Cooking utensil	kitchen appliance	cutlery	food
Utensil	home appliance	tableware	solid
Implement	appliance	ware	substance
Instrumentality	durables	article	entity
Artifact	consumer goods	artifact	
Entity	commodity	object	
	artifact	entity	
	entity		

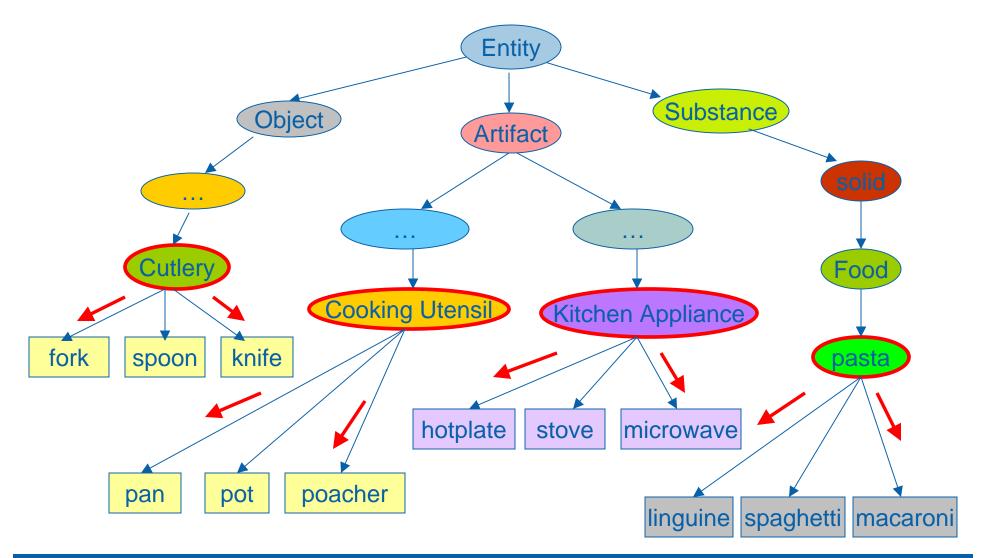
WordNet ontology generation



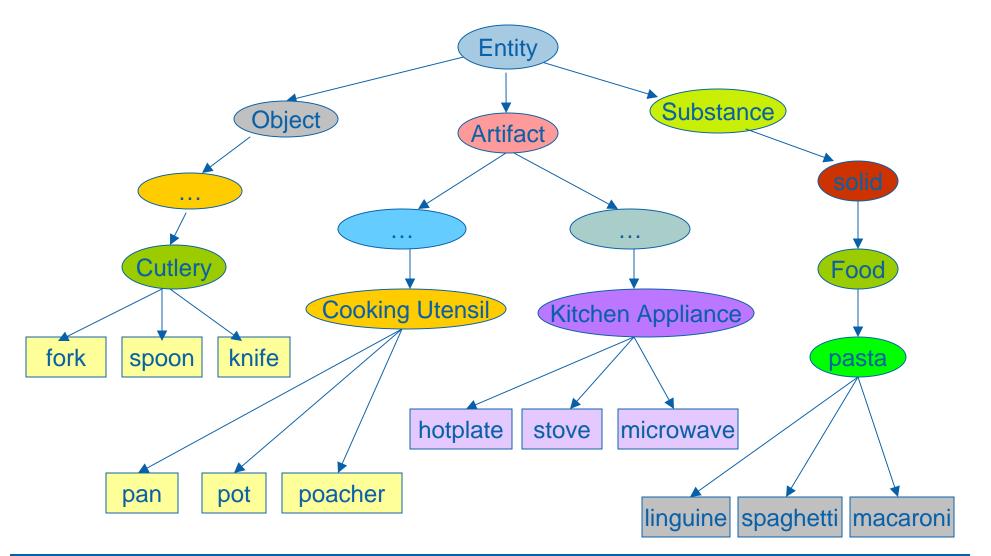
WordNet ontology expansion



WordNet ontology expansion



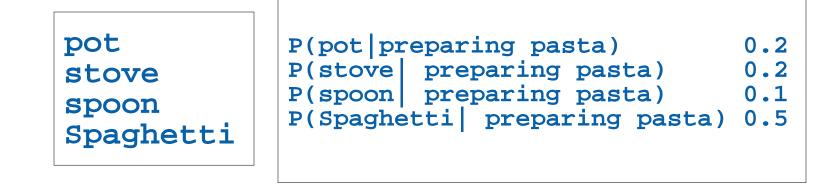
WordNet ontology



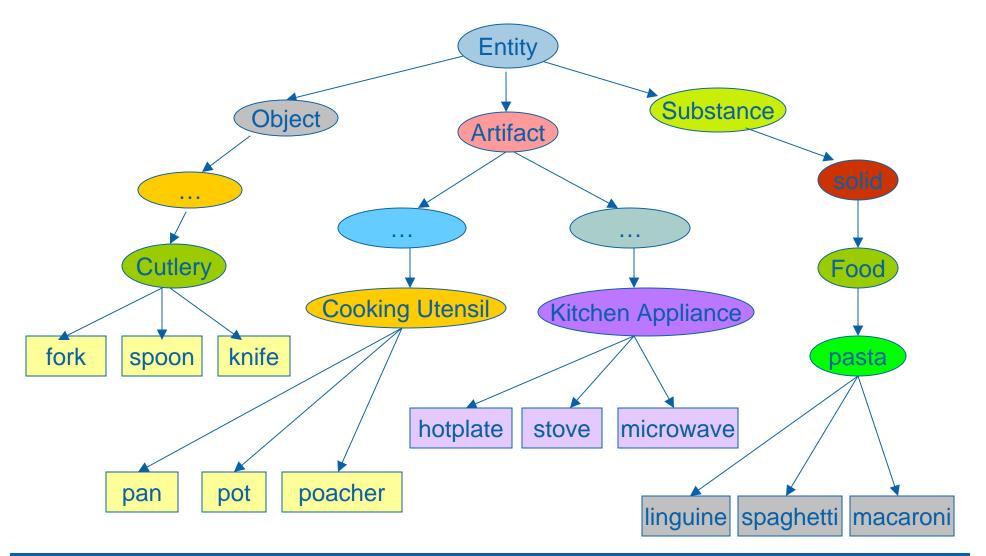
Ontology extraction from WordNet

From the activity recipe mined for "preparing pasta", we also have the probabilities of object use

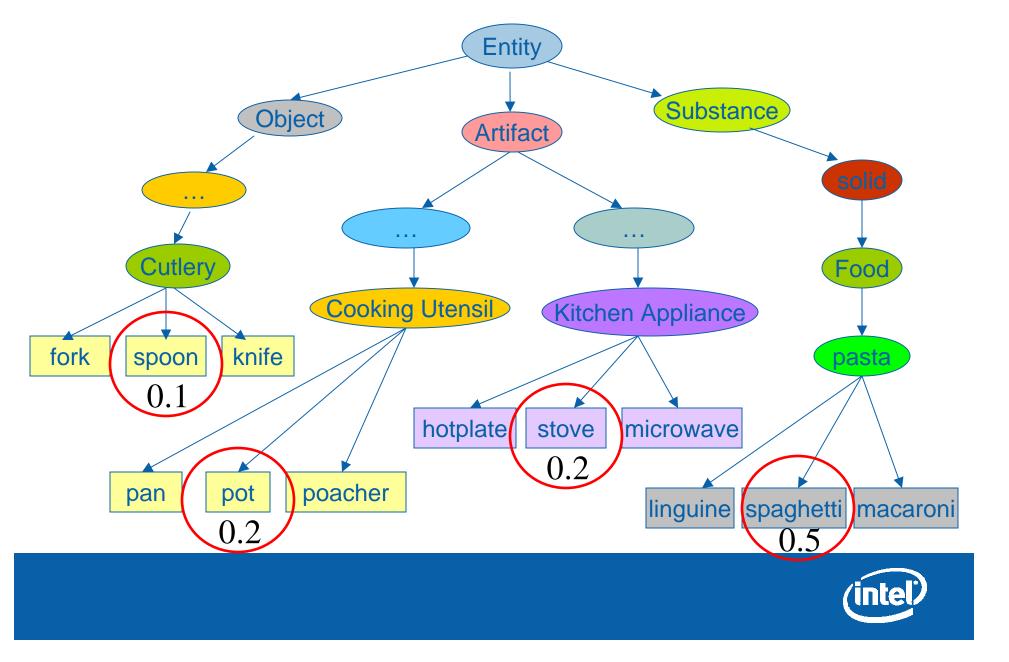
preparing pasta



Ontology: setting probabilities

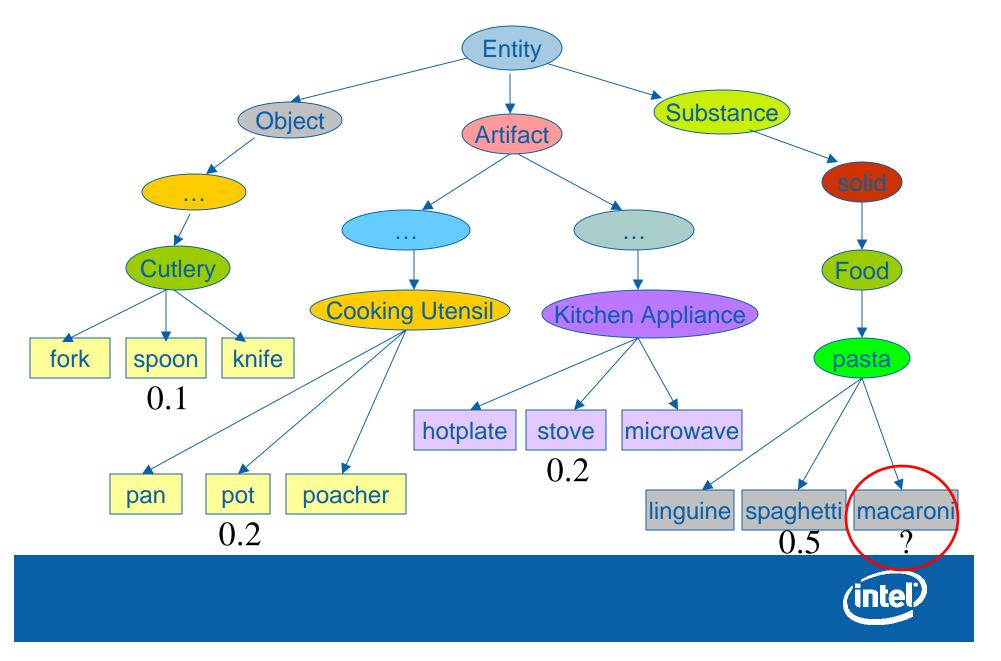


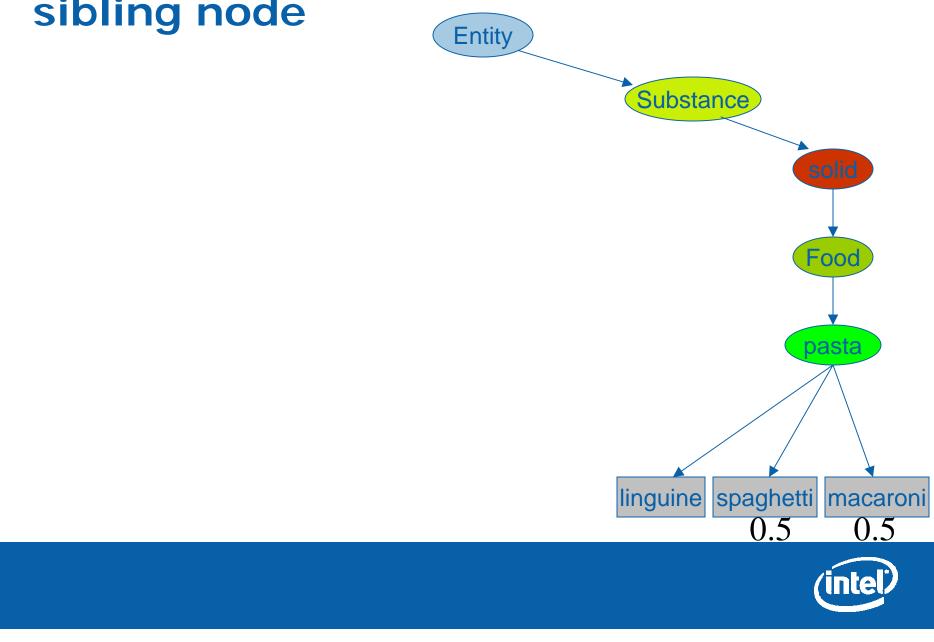
Ontology: setting probabilities

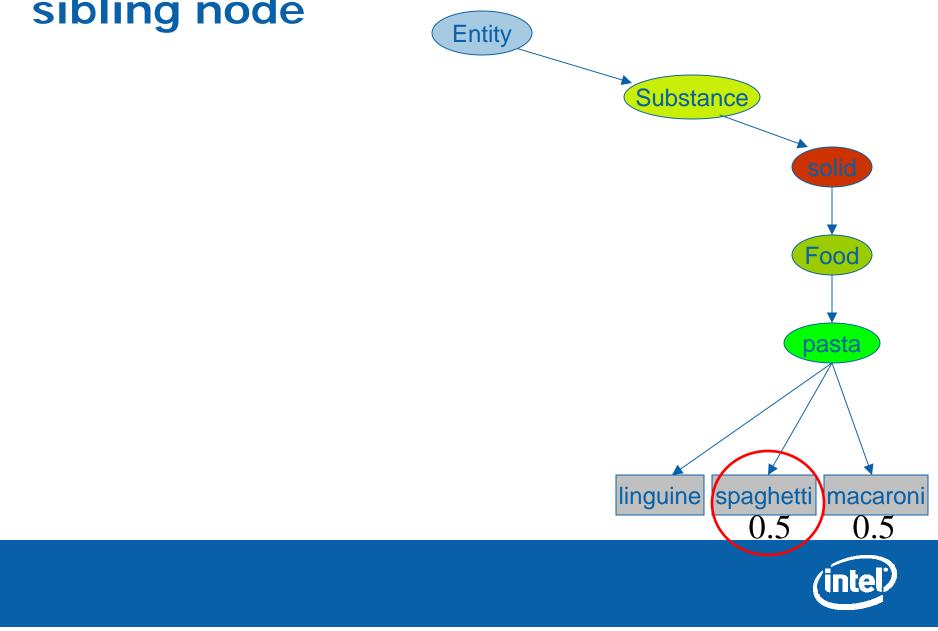


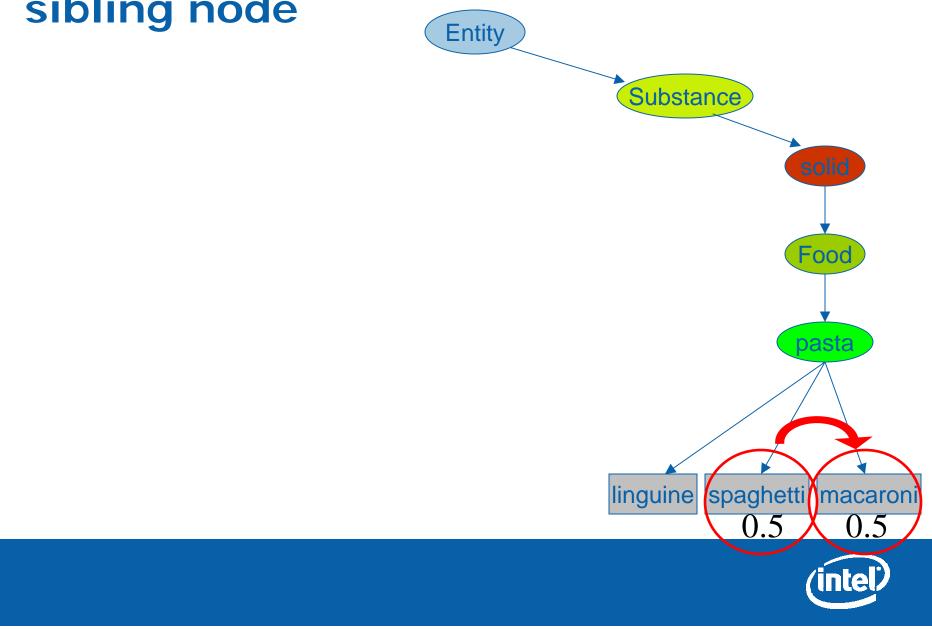
What if we use macaroni instead?

How do we propagate probabilities?

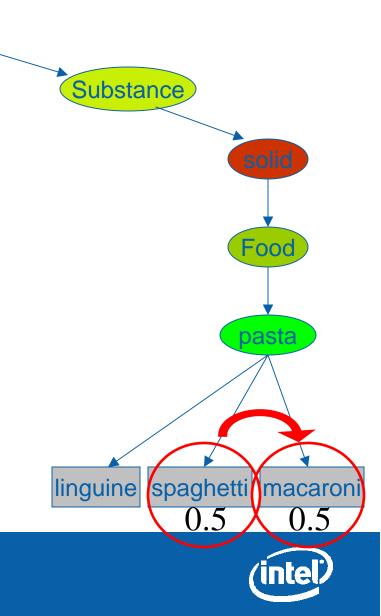






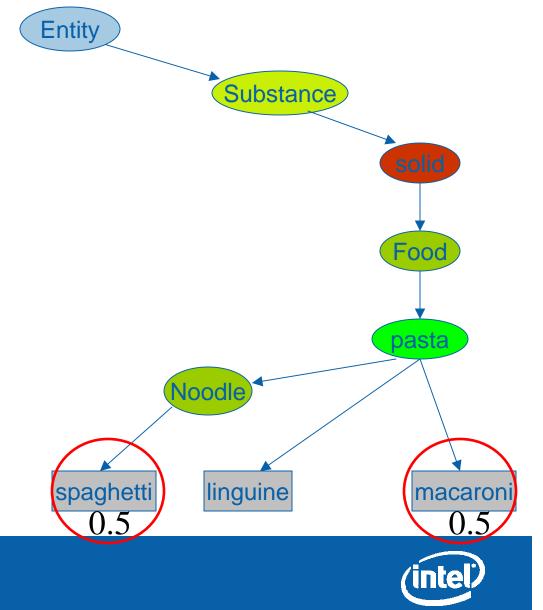


Problem: What happens if the probability for spaghetti is inappropriate or bad?



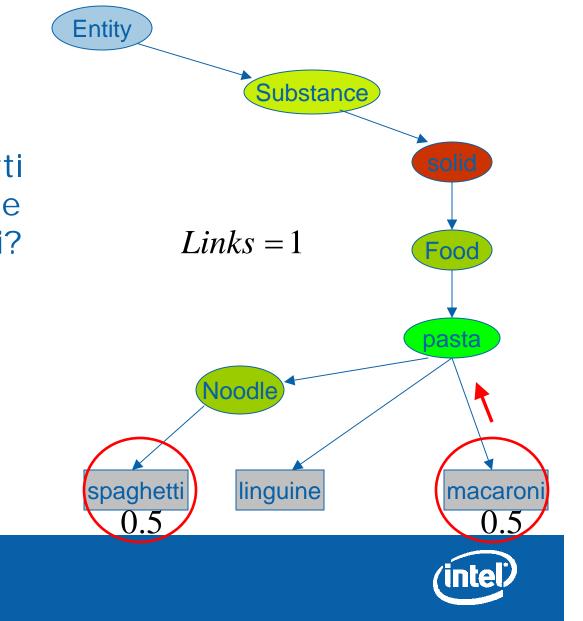
Count number of links from node to node

Problem: What happens if spaghetti is not an immediate sibling of macaroni?



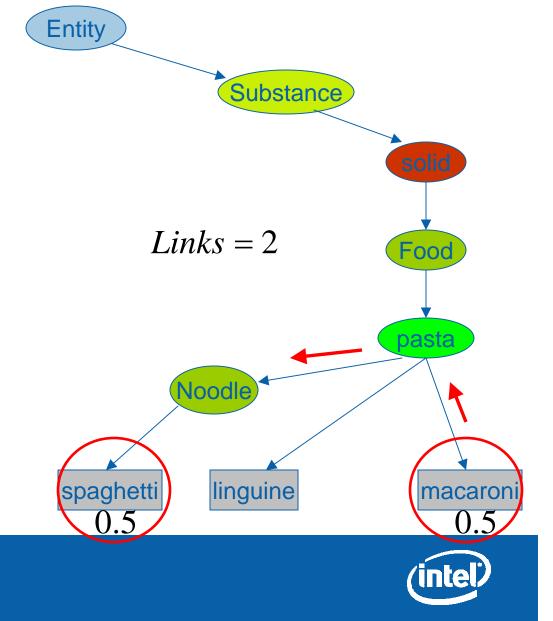
Count number of links from node to node

Problem: What happens if spaghetti is not an immediate sibling of macaroni?



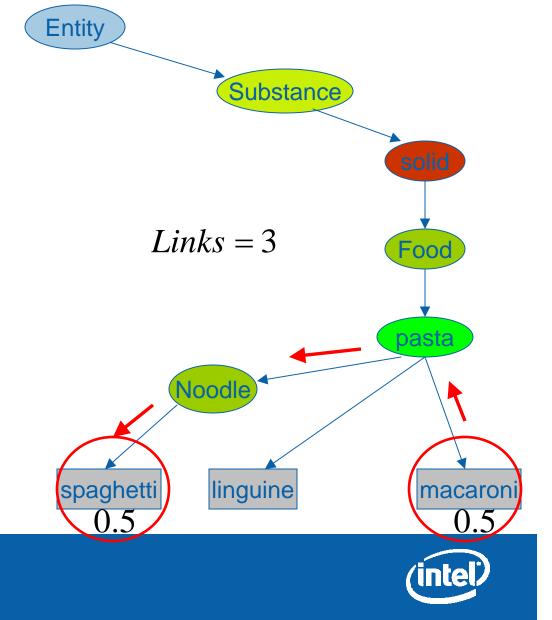
Count number of links from node to node

Problem: What happens if spaghetti is not an immediate sibling of macaroni?



Count number of links from node to node

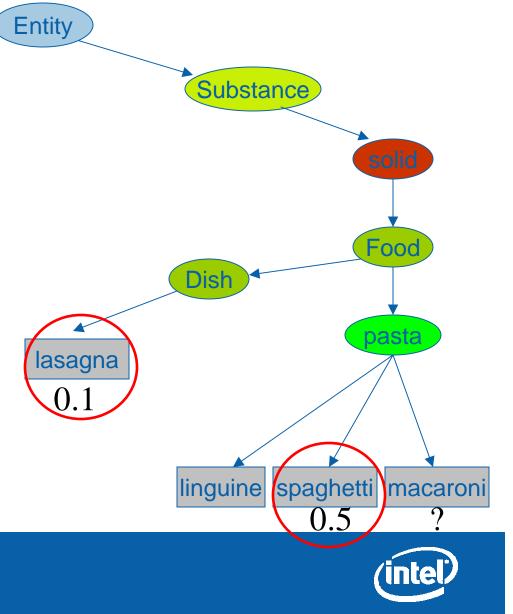
Problem: What happens if spaghetti is not an immediate sibling of macaroni?



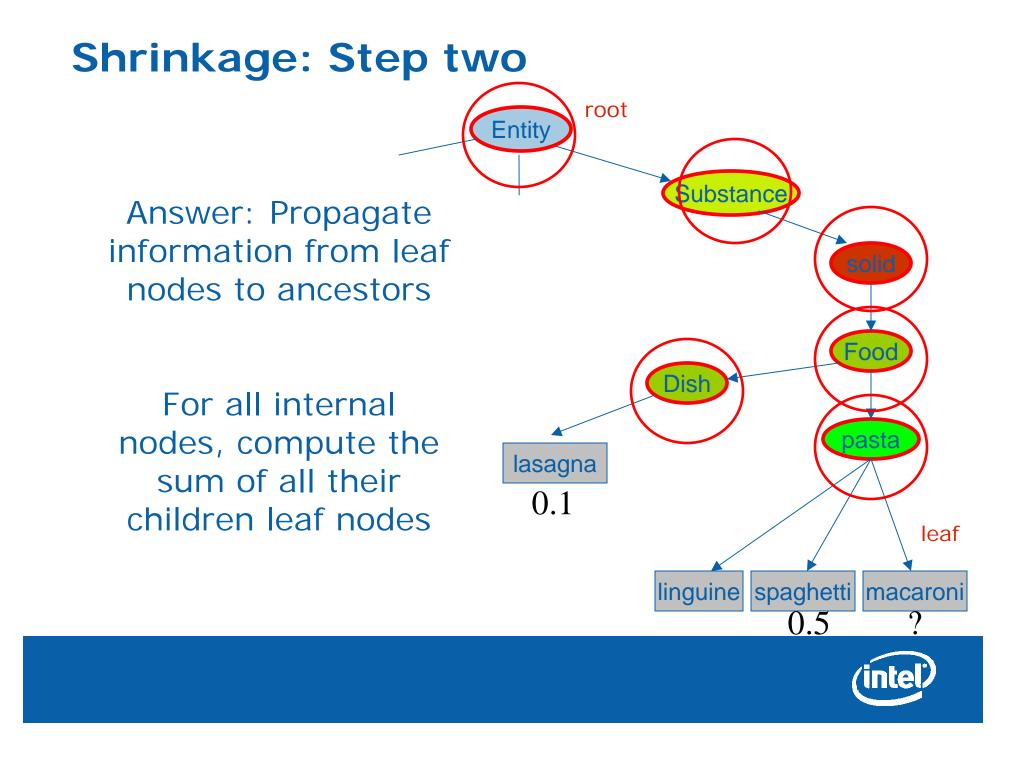
Taking additional information into account

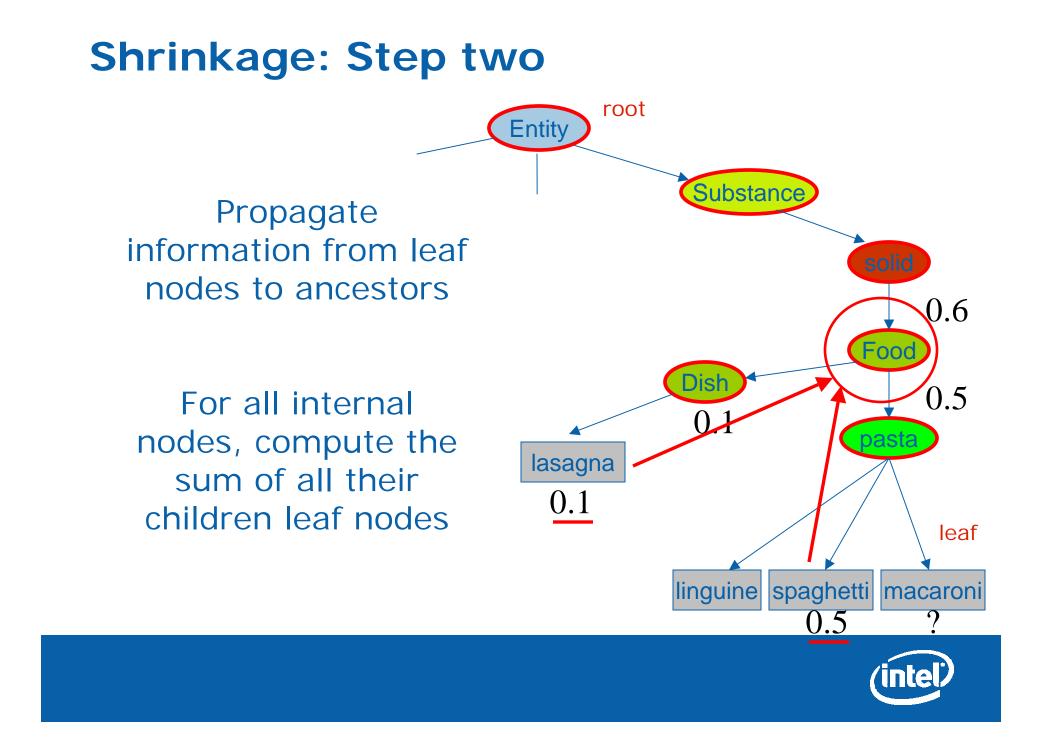
What happens if we also know that somebody preparing pasta can use lasagna?

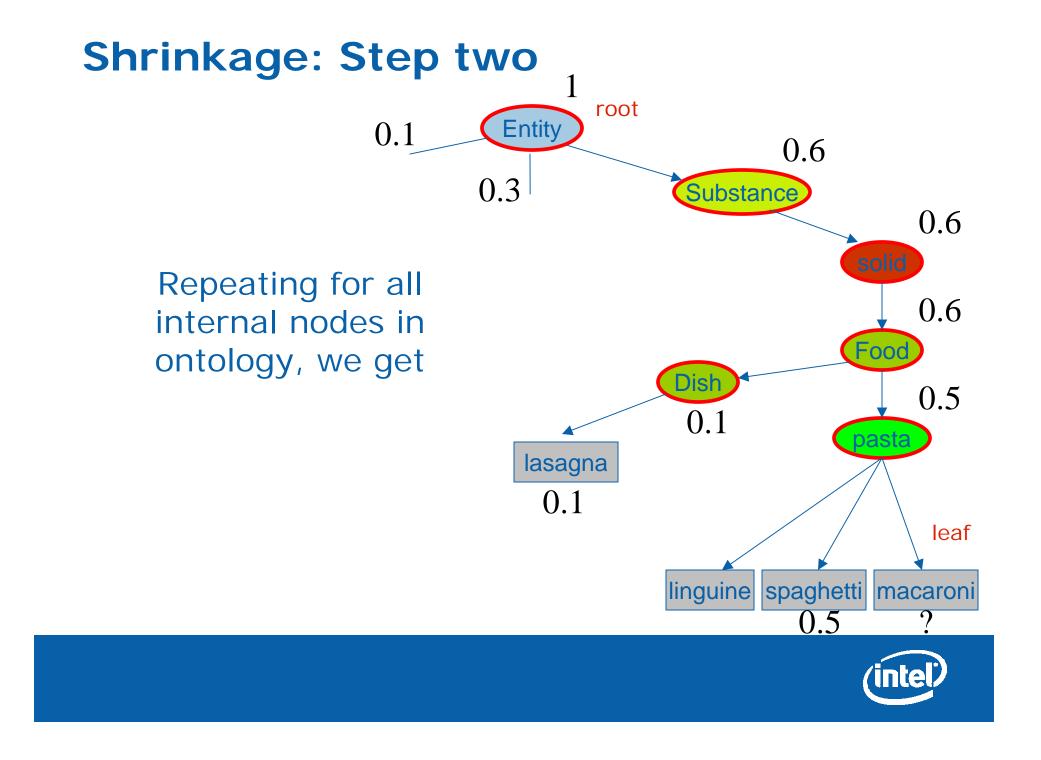
None of the two previous techniques can take advantage of this extra information

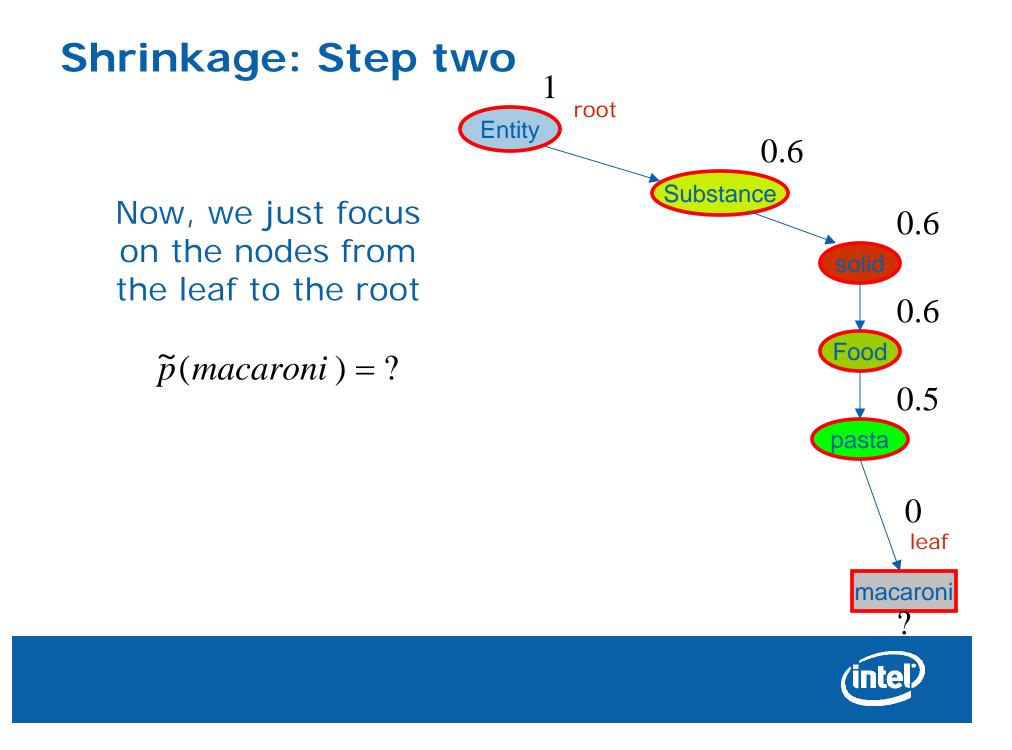


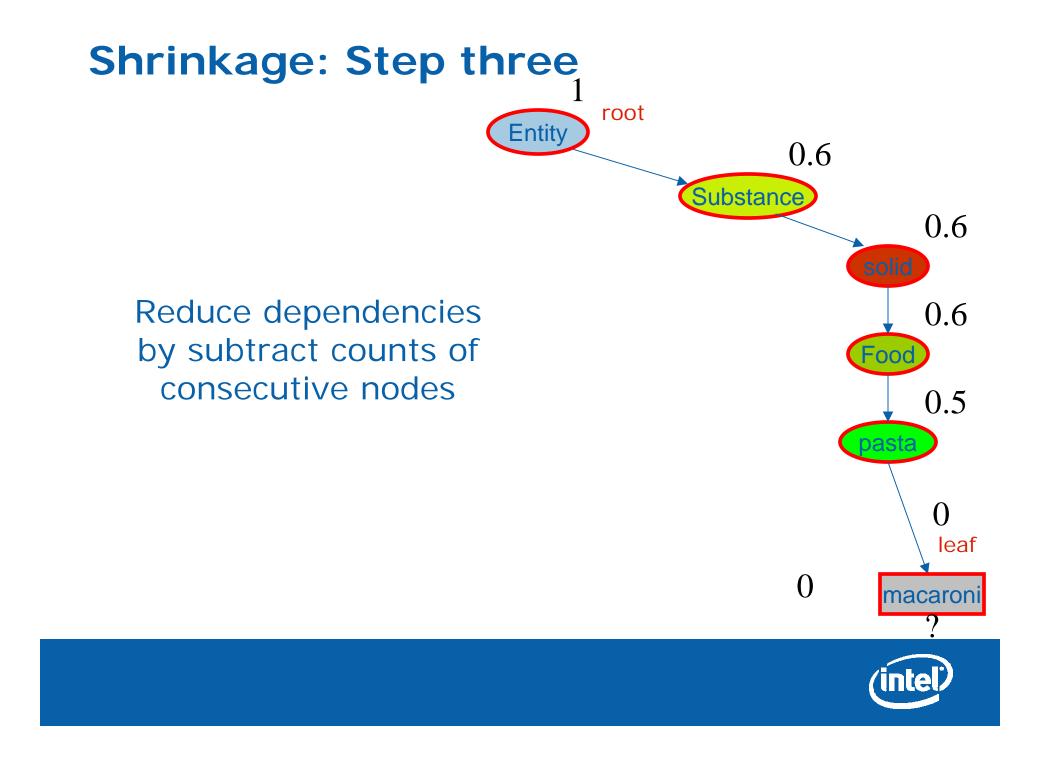
Shrinkage: Key idea root Entity Substance Idea: find or improve the parameter 9 estimate of leaf nodes by linearly Food interpolating the Dish estimates of its ancestor nodes basta lasagna How do we compute 0.1 leaf estimates for internal nodes? linguine spaghetti macaroni 0.5

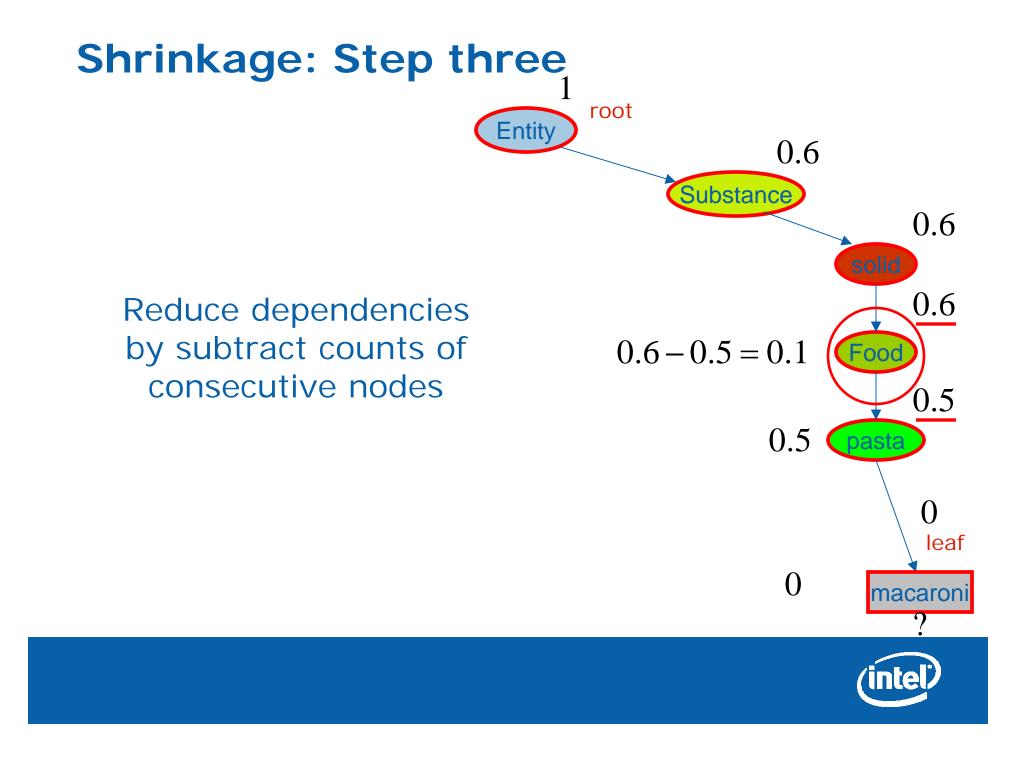


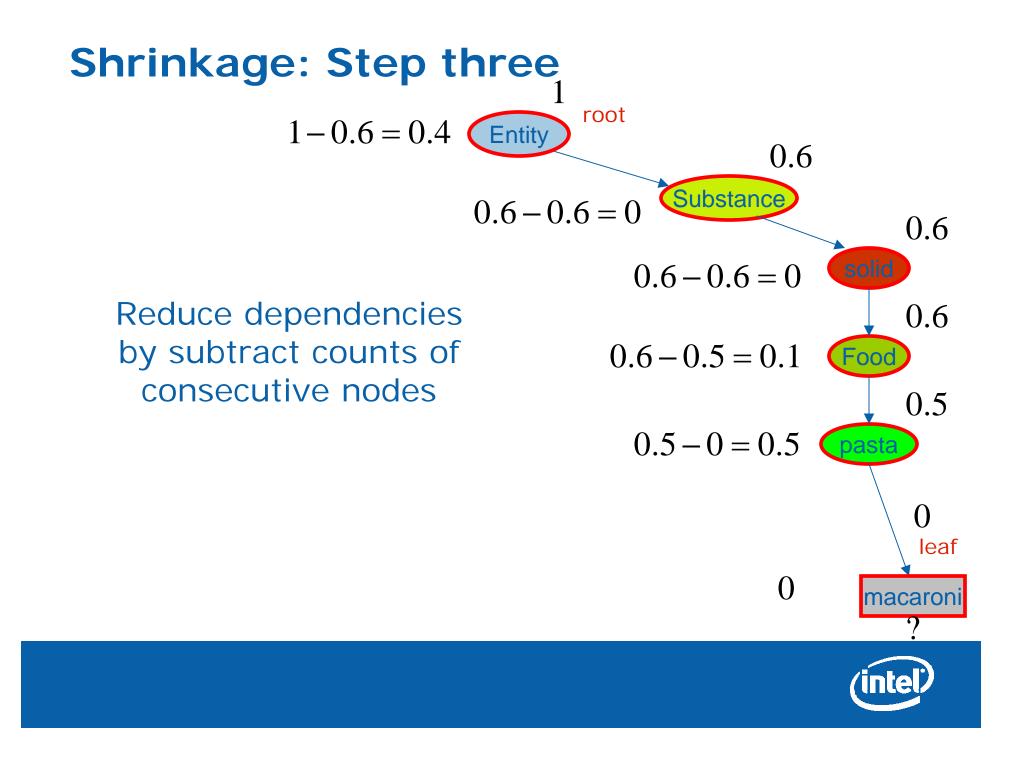


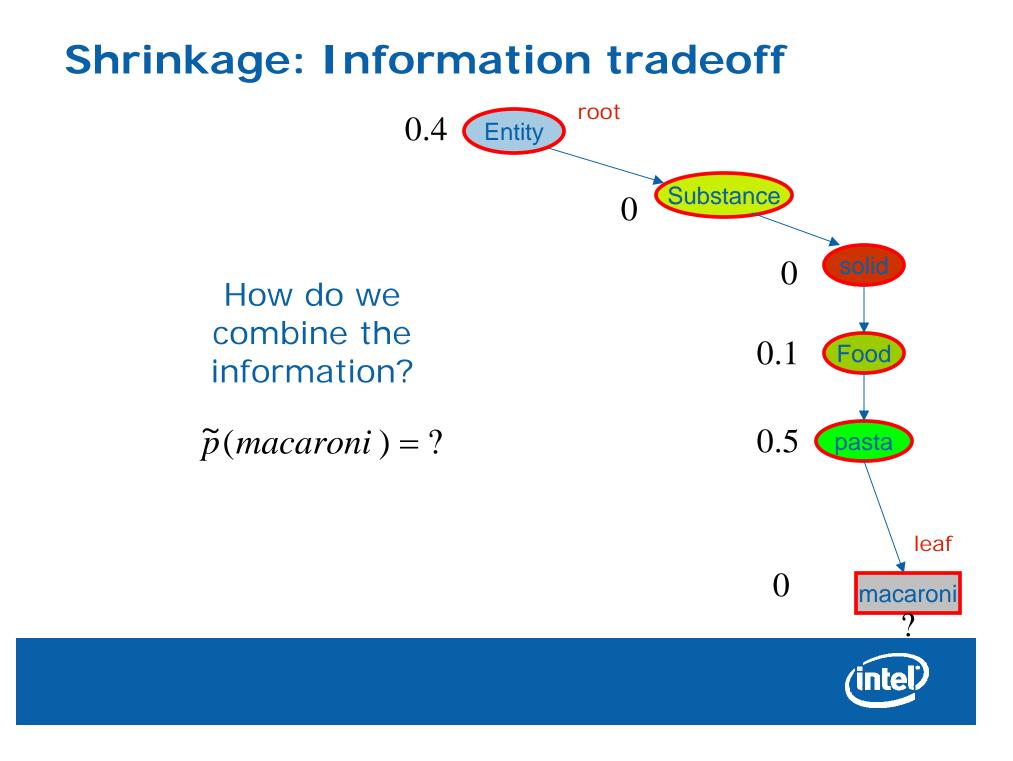


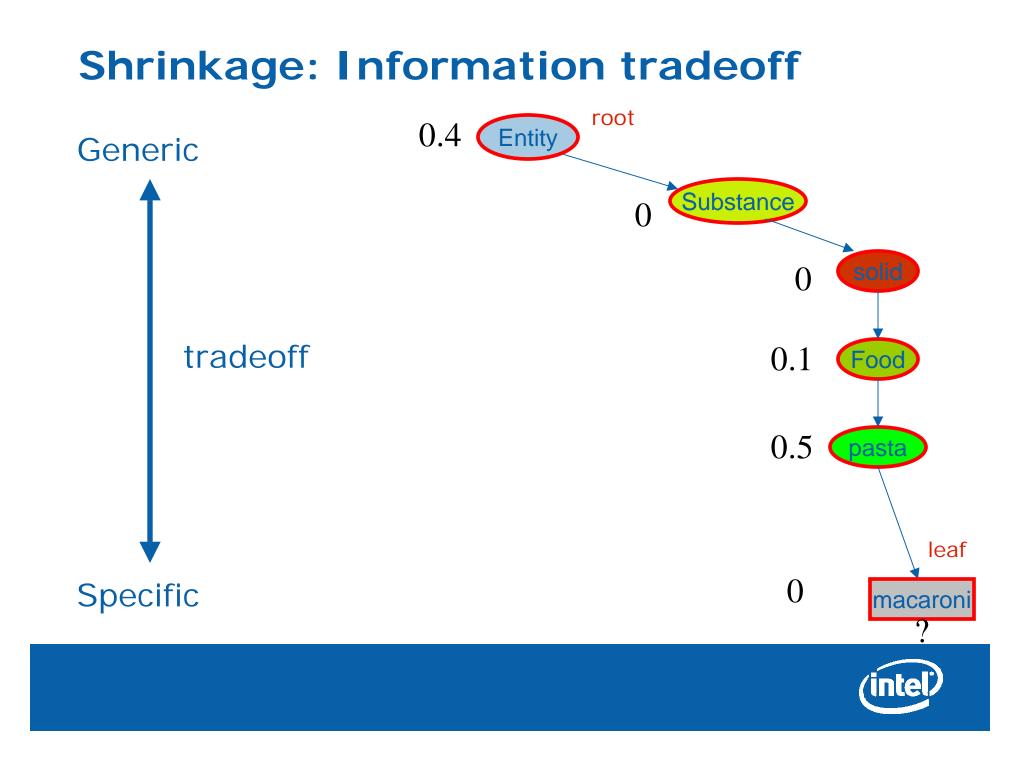


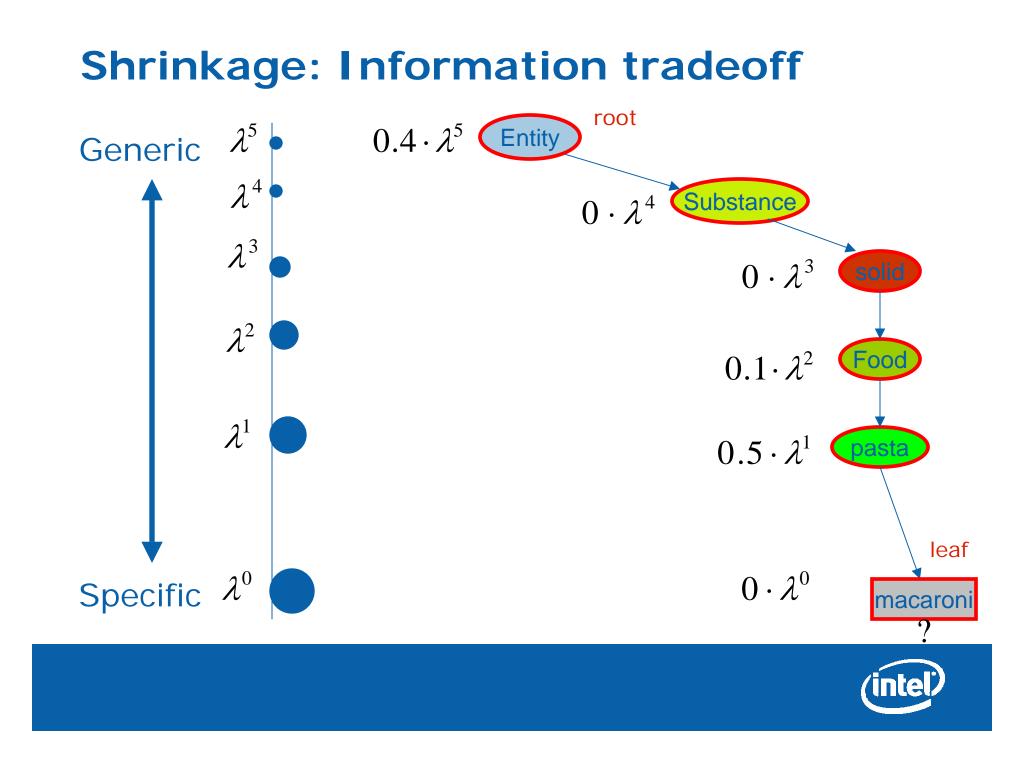


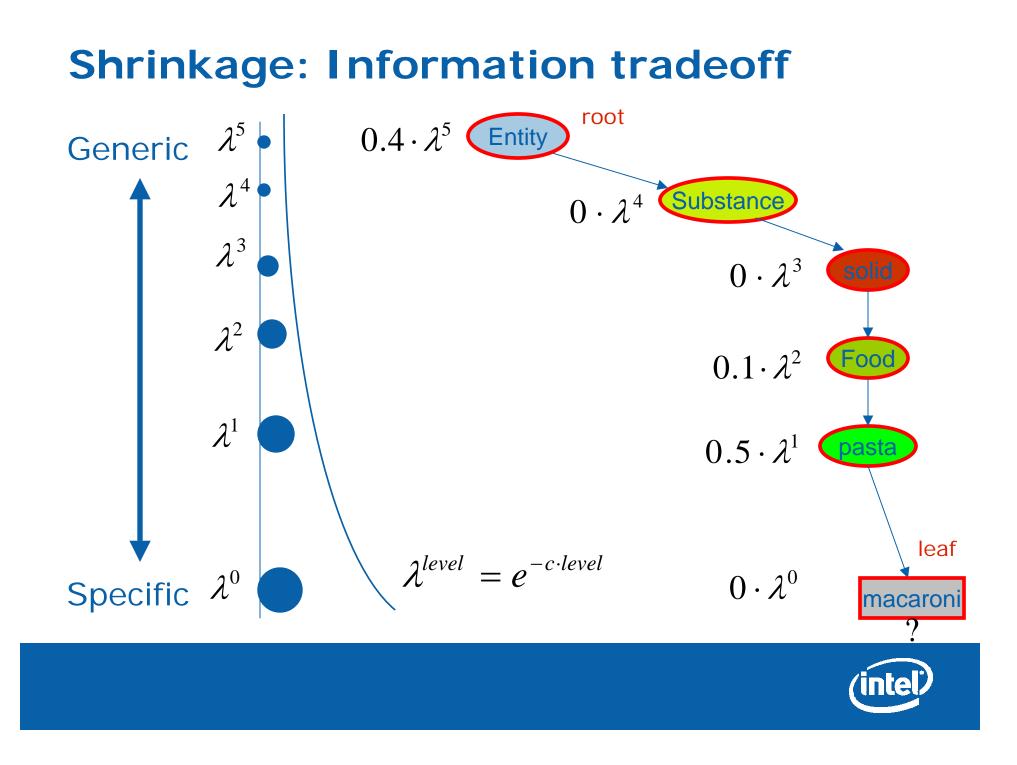


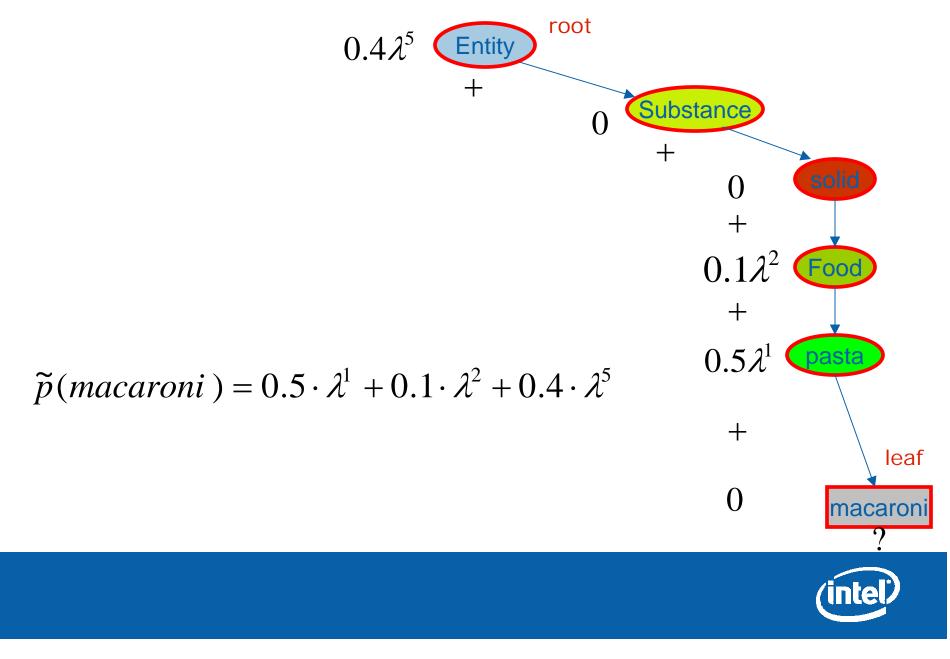












Advantages of shrinkage

1. Create improved probability estimates for the leaf nodes (objects) of the ontology

The effect of this improvement is a reduction in the number of training examples required to achieve a desired accuracy

2. Compute probabilities for objects not present in the models

The effect is robustness when objects not present in the activity models are used while performing an activity

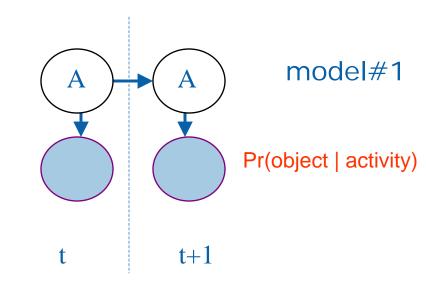
Performance on data collected from multiple individuals

- •installed 108 RFIDs in real home
- •9 subjects
- •126 examples of 26 activities
- •Using RFID glove reader
- •Web mined activity models web

Ontology: generated from 108 tagged objects and objects present in web mined activity models.

Given trace, infer activities

Activities modeled by an HMM



• Single state per activity (26)

- Uniform prior
- Self-transition for smoothing
- Uniform inter-state transition

$$Pr(a_i) = \frac{1}{26} = 0.04$$

$$Pr(a_i \mid a_i) = T_{ii} = 0.8$$

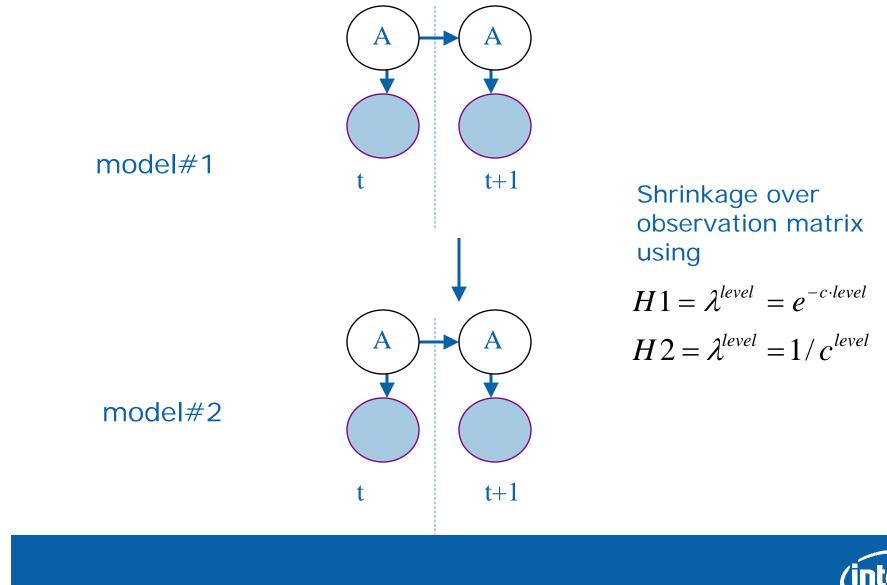
$$Pr(a_i \mid a_j) = T_{ij} = \frac{1 - 0.8}{n - 1} = \frac{0.2}{25} = 0.01$$

$$P(o \mid a) = \text{mined from web}$$

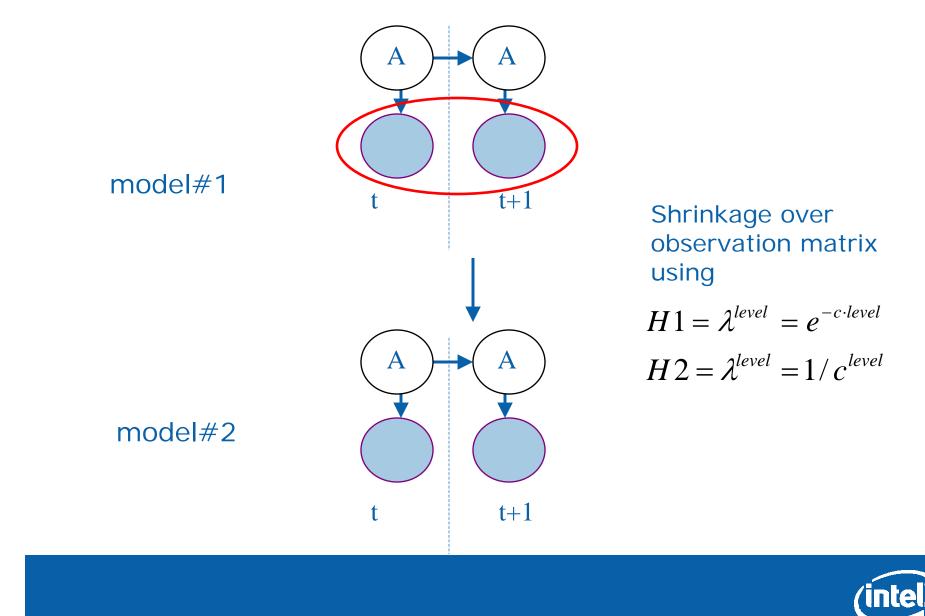
A1 A2 A26 ••• **A1** 0.8 0.01 0.01 ... 0.01 0.8 0.01 **A2** ... • • A26 0.01 0.01 0.8 . . .

T

Activities modeled by an HMM



Activities modeled by an HMM



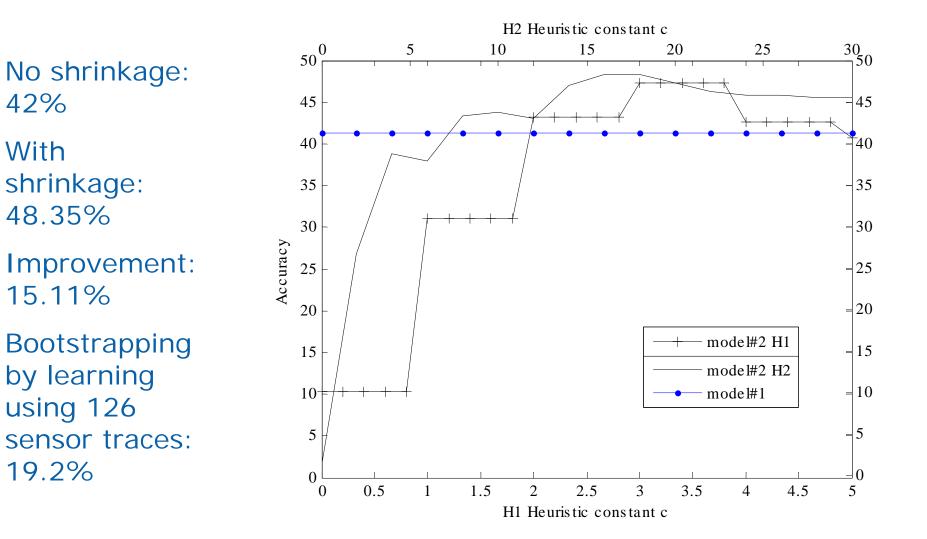
Experiment 1: Improvement of overall accuracy

Assemble all the activity examples in a single sequence

Infer the most likely state (activity) sequence using Viterbi decoding

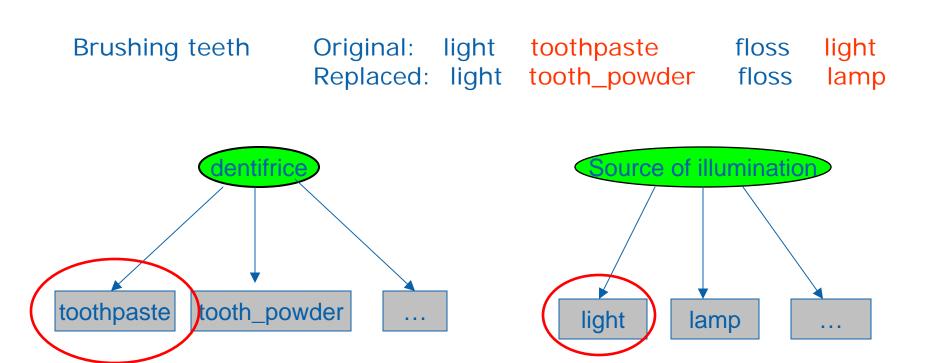
Compute total accuracy

Shrinkage: Learning the weights

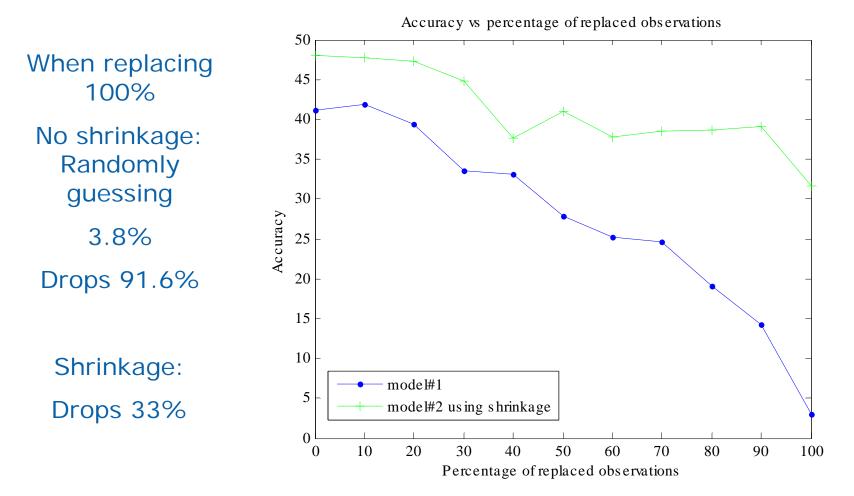


Experiment 2: Robustness to unseen observations

Replace *m*% of the observations in the activity examples by observations of one of their randomly selected sibling nodes in the ontology



Results: Robustness to unseen observations



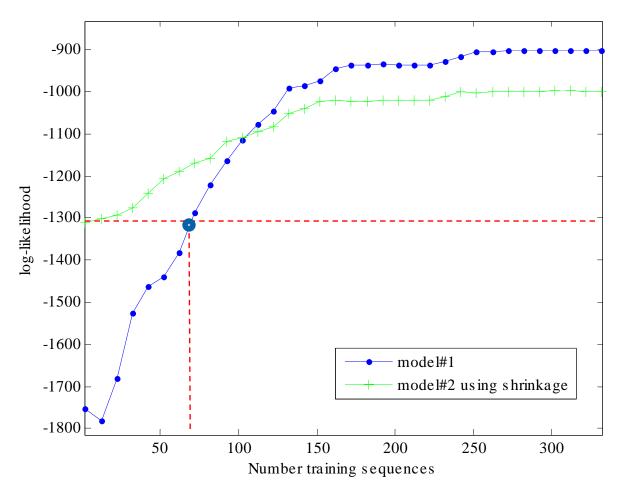
Effect of limited training data by simulation

Simulations were performed to investigate the impact of shrinkage with limited training data

The ontology

- was generated from a list of 815 objects
- consists of 4188 nodes
- 815 leaf nodes
- has a maximum depth of 14.

Experiment: Effect of limited training data



Conclusion

- Previous work demonstrated that it is possible to mine useful models of *arbitrary* day-to-day activities from the web
- Here we show that it is possible to deal with model incompleteness by incorporating common sense knowledge
- we compute probabilities for objects not originally present in the models
- We can improve the probability estimates
- we can learn higher quality models with less amount of training data
- Towards a completely unsupervised approach to learning activity models

Thank you!