Everything You Need to Know

(since the midterm)



Diagnosis

* Abductive diagnosis: a minimal set of (positive
and negative) assumptions that entails the
observations

* Consistency-based diagnosis: a minimal set of
positive abnormality assumptions that is
consistent with the observations. (Ab's not in
the diagnosis are assumed to be false.)



Diagnosis

Ab(a) Ab(b) entailed? consistent?
0 0 no no

1 0) no yes

0 1 no yes

1 1 yes yes

* Abductive diagnoses:
{ Ab(a), Ab(b) }

* Consistency-based diagnoses:
{ Ab(a) } and { Ab(b) }




SAT-Modulo Theories

* |dea: propositions can be arithmetic
constraints

P =(a<b)
P=(b<c)
P, =(c<a)

Eager Direct: pre-compute and add clauses that capture the constraints
between the arithmetic propositions. E.g.:

(=P v =P, v=P)A(P VP VP,)

Eager Circuit: Assume that numeric variables can be represented by k bits for
some fixed k. Add clauses that represent arithmetic circuit for each proposition.
E.g., use 2-bit numbers, a is (Al, AO), b is (Bl,BO):

P=(B A—A)VI(B =A)A(B, A=A



SAT-Modulo Theories

P =(a<b)
P =(b<c)
P, =(c<a)

Lazy: Do not pre-compute any new clauses. Run DPLL. Whenever an arithmetic
proposition is made true or false, check if the set of all such propositions is
consistent, using an external solver. If inconsistent, backtrack. Use clause

learning to record the reason for backtracking.
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Inconsistent! Learn (“P1 v ~P2 v ~P3)



Approximate Inference

One technique for approximate inference is to
compute upper and lower bounds on a theory, where
the bounds are in a restricted subset of logic that is

tractable

Horn bounds:

— There is a unique Horn LUB, equivalent to all the Horn
clauses entailed by the theory

— There can be many Horn GLBs, each is a weakest set of
Horn clauses that entails the theory

L e GLB(T)
U = LUB(T)
LI=T|=U



Approximate Inference

T={(PvQ),(=PVv—=RVS),(—wQVv—RVS),(—=SVv-A)}

To compute LUB, add all resolvants; eliminate non-Horn
clauses; eliminate clauses entailed by the other clauses
Resolvants:

(Qv =RV S)

(Pv—=RVYS)

(=R v S)

(=R v —A)

Entailed Horn clauses are:
{(—PV—=RVS),(—QV—=RVS),(—SVv—A),(=RVS),(—R Vv —-A)}
Removing clauses entailed by other clauses gives LUB:
{(=SVv—A), (=R vV S)}



Approximate Inference

r={(PvQ),(—=Pv—=RvVvS),(—-Qv—=RVS),(=SVv—-A)}
To compute GLBs, try all ways of strengthening each
non-Horn clause to Horn by removing literals from it.
Simplify the resulting set of clauses.

First way to strengthen the one non-Horn clause:
{(P)(=P V=RV S),(HQV =RV S), (=S v —A))
Simplifying gives GLB. :

{(P),(=RV S),(=SVv—-A)}

Second way to strengthen the one non-Horn clause:
{(Q),(=PVv—=RVS),(-Qv—=RVS),(=SVv-A)}
Simplifying gives GLB:

{(Q),(=R Vv S),(=SVv—-A)}



Approximate Inference

* Answering query F using bounds:
— If Fis Horn, then T|=F iff LUB|=F
— Else: if LUB|=F, then T|=F
— Else: if for all GLB L, L|=/=F, then T|=/=F

— Else: we cannot tell if query is entailed by original theory
by using the bounds



T={(PvQ),(—PVv—-RVS),(—QVv—-RVS),(=SVv-A)}
LUB:

{(=Sv—-A),(—R Vv S)}

GLB.:

{(P),(=R Vv S),(=S v —A)}

GLB.:

{(Q),(—R Vv S),(—S v —-A)}

Query (S)?

No, because S is Horn, and LUB|=/=S

Query (Pv =R Vv S)?

Yes, because LUB |=(P v —R Vv S)

Query (P v S)?

Unknown, because LUB |=/=(P v S) and GLB, |=(P Vv S)
Query (Rv S)?

No, because it is not entailed by the LUB or any of the GLBs



Multiple Agents

* "Modal logic" extends FOL by including
predicates whose arguments are formulas
rather than terms

 We can use it to represent the beliefs of
different agents
B,(PvQ)
Agent A believes (P v Q)
B.(P)V B,(Q)
Agent A believes P, or Agent A believes Q



Multiple Agents

 The semantics of modal logic is based on
"structures': a set of possible worlds, and a
reachability relationship between worlds

 An agent A believes P in world w iff P is true in
all worlds w'reachable from w by the A

relation

In wl
A believes P? YES
A believes ~Q? NO

A believes B believes ~Q?  YES



Bayesian Networks

* A Bayesian network can be encoded in logic
by introducing propositions that represent
independent random (biased) coin flips

* The probability of a model is the probability of
the particular set of coin flips in the model

* By weighting models by their probability,
probabilistic inference becomes weighted
model counting



Limits of FOL

FOL is the strongest logic with a complete proof theory

However, many commonplace mathematical notions
cannot be expressed in FOL

For example, we cannot write a formula that says
"P(x,y) is precisely the transitive closure of Q(x,y)"

if Qis infinite

It can be useful in practice to use logics that are more
expressive than FOL, even if they do not have
complete proof theories

— In practice, you give up a proof when you run out of time,
even if the proof theory is complete.



Godel

* But things are even worse for logic than the
limits of its expressivity

* There are mathematical theorems that can be
expressed in FOL, and that are
demonstratively true, but for which no FOL

proof exists.

— Because FOL is complete, this means they are true
but not entailed by the semantics of FOL either

e That is Godel's famous construction



Limits of Logic

* Since FOL is the strongest complete logic, this
means that there is no way around the
limitation by finding a "stronger" logic

* Another general limitation of logic discovered
by Godel is that any logic that is strong

enough to be able to prove its own
consistency must be inconsistent



