
CHAPTER SIX

FUNCTIONS:
ADVANCED TOPICS

CSC 161: The Art of Computer Programming
Matt Post (grad TA; guest lecturer)

10/28/2009

2

REVIEW

Here we’ll walk through the execution of a function. The slides will try to make explicit the facts that
(a) when a function executes, the only information it has from its calling context are variables passed
in from the calling function through its formal parameters and (b) the calling function knows nothing
about how the function operates; all it gets is the return value.

3

def square(x):
	

 return x * x

def distance(p1,p2):
	

 squarex = square(p2.getX() - p1.getX())
	

 squarey = square(p2.getY() - p1.getY())
	

 return math.sqrt(squarex + squarey)

def main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = distance(p1,p2)
	

 print dist

function definitions:

Here are three function definitions. We take main() to be the canonical starting point.

4

def square(x):
	

 return x * x

def distance(p1,p2):
	

 squarex = square(p2.getX() - p1.getX())
	

 squarey = square(p2.getY() - p1.getY())
	

 return math.sqrt(squarex + squarey)

def main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = distance(p1,p2)
	

 print dist

function definitions:

You run main()

Imagine we invoke the main() function from the python prompt. In the lower left is a box that will
contain the output of the program as it is printed.

5

def square(x):
	

 return x * x

def distance(p1,p2):
	

 squarex = square(p2.getX() - p1.getX())
	

 squarey = square(p2.getY() - p1.getY())
	

 return math.sqrt(squarex + squarey)

def main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = distance(p1,p2)
	

 print dist

function definitions:

You run main()

main():
	

 p1 = Point(2,3)

The bold statement in the upper left means that the computer executes that line.

6

def square(x):
	

 return x * x

def distance(p1,p2):
	

 squarex = square(p2.getX() - p1.getX())
	

 squarey = square(p2.getY() - p1.getY())
	

 return math.sqrt(squarex + squarey)

def main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = distance(p1,p2)
	

 print dist

function definitions:

You run main()

main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)

7

def square(x):
	

 return x * x

def distance(p1,p2):
	

 squarex = square(p2.getX() - p1.getX())
	

 squarey = square(p2.getY() - p1.getY())
	

 return math.sqrt(squarex + squarey)

def main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = distance(p1,p2)
	

 print dist

function definitions:

You run main()

main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = distance(p1,p2)

We have now created two points. On the third line, we try to assign a value to the “dist” variable, but
to do that, we need to first execute the distance() function.

8

def square(x):
	

 return x * x

def distance(p1,p2):
	

 squarex = square(p2.getX() - p1.getX())
	

 squarey = square(p2.getY() - p1.getY())
	

 return math.sqrt(squarex + squarey)

def main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = distance(p1,p2)
	

 print dist

function definitions:

You run main()

main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = distance(p1,p2)

distance(p1 = main::p1, p2 = main::p2):
	

 squarex = square(3)

	

 p2.getX() - p1.getX()
=	

 5 - 2
=	

 3

scratch pad:

distance() is called, and main()’s values of p1 and p2 (the “actual value”) are bound to the variables
listed in distance()’s definition (its “formal parameters”). We then try to execute the first line of
distance to assign a value to squarex, but to do that, we need to execute the square() function. The
“scratch pad” in the lower right is a conceptual device I’m using here to show that the computer needs
to compute the value to send to square(). We take the equation from the first line of the definition of
distance(), and compute its value to send to square().

9

def square(x):
	

 return x * x

def distance(p1,p2):
	

 squarex = square(p2.getX() - p1.getX())
	

 squarey = square(p2.getY() - p1.getY())
	

 return math.sqrt(squarex + squarey)

def main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = distance(p1,p2)
	

 print dist

function definitions:

You run main()

main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = distance(p1,p2)

distance(p1 = main::p1, p2 = main::p2):
	

 squarex = square(10)

	

 x * x
=	

 3 * 3
=	

 9

scratch pad:

square(x = 3):
	

 return 9

The value of 3 passed to square() is bound to square()’s formal parameter, x. On the scratch pad we
compute the return value, and send it back to the calling function.

10

def square(x):
	

 return x * x

def distance(p1,p2):
	

 squarex = square(p2.getX() - p1.getX())
	

 squarey = square(p2.getY() - p1.getY())
	

 return math.sqrt(squarex + squarey)

def main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = distance(p1,p2)
	

 print dist

function definitions:

You run main()

main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = distance(p1,p2)

distance(p1 = main::p1, p2 = main::p2):
	

 squarex = 9

One way to think about what’s happening is to imagine that the function call gets replaced by its
return value. Now that we have an actual number (the return value of calling distance()), we can assign
the value to squarex and continue to the next line.

11

def square(x):
	

 return x * x

def distance(p1,p2):
	

 squarex = square(p2.getX() - p1.getX())
	

 squarey = square(p2.getY() - p1.getY())
	

 return math.sqrt(squarex + squarey)

def main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = distance(p1,p2)
	

 print dist

function definitions:

You run main()

main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = distance(p1,p2)

distance(p1 = main::p1, p2 = main::p2):
	

 squarex = 9
	

 squarey = square(4)

	

 p2.getY() - p1.getY()
=	

 7 - 3
=	

 4

scratch pad:

On the scratch pad we compute the value of p2.getY() - p1.getY() so we can pass that value as an
argument to our next invocation of square().

12

def square(x):
	

 return x * x

def distance(p1,p2):
	

 squarex = square(p2.getX() - p1.getX())
	

 squarey = square(p2.getY() - p1.getY())
	

 return math.sqrt(squarex + squarey)

def main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = distance(p1,p2)
	

 print dist

function definitions:

You run main()

main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = distance(p1,p2)

distance(p1 = main::p1, p2 = main::p2):
	

 squarex = 100
	

 squarey = square(10)

	

 p2.getY() - p1.getY()
=	

 20 - 10
=	

 10

scratch pad:

	

 x * x
=	

 4 * 4
=	

 16

scratch pad:

square(x = 4):
	

 return 16

Here we finish our call to square(), just as we did before.

13

def square(x):
	

 return x * x

def distance(p1,p2):
	

 squarex = square(p2.getX() - p1.getX())
	

 squarey = square(p2.getY() - p1.getY())
	

 return math.sqrt(squarex + squarey)

def main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = distance(p1,p2)
	

 print dist

function definitions:

You run main()

main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = distance(p1,p2)

distance(p1 = main::p1, p2 = main::p2):
	

 squarex = 9
	

 squarey = 16

When the square() function returns, we can assign its value to squarey.

14

def square(x):
	

 return x * x

def distance(p1,p2):
	

 squarex = square(p2.getX() - p1.getX())
	

 squarey = square(p2.getY() - p1.getY())
	

 return math.sqrt(squarex + squarey)

def main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = distance(p1,p2)
	

 print dist

function definitions:

You run main()

main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = distance(p1,p2)

distance(p1 = main::p1, p2 = main::p2):
	

 squarex = 9
	

 squarey = 16
	

 return math.sqrt(25)

	

 p2.getY() - p1.getY()
=	

 20 - 10
=	

 10

scratch pad:

	

 squarex + squarey
=	

 9 + 16
=	

 25

scratch pad:

On the scratch pad we compute the value of the argument to math.sqrt(). Note that this is another
function call, which gets called (and executes) just like our calls to square(), etc. But for purposes of
this demonstration, we won’t step into the function, and just take its return value.

15

def square(x):
	

 return x * x

def distance(p1,p2):
	

 squarex = square(p2.getX() - p1.getX())
	

 squarey = square(p2.getY() - p1.getY())
	

 return math.sqrt(squarex + squarey)

def main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = distance(p1,p2)
	

 print dist

function definitions:

You run main()

main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = distance(p1,p2)

distance(p1 = main::p1, p2 = main::p2):
	

 squarex = 9
	

 squarey = 16
	

 return 5

math.sqrt() returns its value, and now distance() can return its own value to its caller, main().

16

def square(x):
	

 return x * x

def distance(p1,p2):
	

 squarex = square(p2.getX() - p1.getX())
	

 squarey = square(p2.getY() - p1.getY())
	

 return math.sqrt(squarex + squarey)

def main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = distance(p1,p2)
	

 print dist

function definitions:

You run main()

main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = 5

distance() returns, so we can finish line 3 of main(). Again, you can think of the call to distance() being
replaced in the code with its return value, after it completes. This value is then assigned to dist.

17

def square(x):
	

 return x * x

def distance(p1,p2):
	

 squarex = square(p2.getX() - p1.getX())
	

 squarey = square(p2.getY() - p1.getY())
	

 return math.sqrt(squarex + squarey)

def main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = distance(p1,p2)
	

 print dist

function definitions:

You run main()

main():
	

 p1 = Point(2,3)
	

 p2 = Point(5,7)
	

 dist = 5
	

 print 5

5

Now print can print the value of dist, and this is displayed in our output box.

18

TOPIC 1
functions that
modify their
parameters

This is the subject of Section 6.5.2 in your book. It’s basically an exception or special case to what
you’ve been told before.

19

a = 17 b = [1, 2, 3, 4, 5]

Think of a variable as a box that can contain a value. A box usually has a name (the name of the
variable), and a value (the value that has been assigned to it). A box can only have one value directly
inside it. When you create a list, since a variable (box) can only have one value inside it, what happens
implicitly behind the scenes is that a bunch of little anonymous boxes are created. The list variable
contains all of those little boxes, and those little boxes contain the actual values. This way you obey
the rule that a box can only directly have one value.

19

a = 17

a

b = [1, 2, 3, 4, 5]

Think of a variable as a box that can contain a value. A box usually has a name (the name of the
variable), and a value (the value that has been assigned to it). A box can only have one value directly
inside it. When you create a list, since a variable (box) can only have one value inside it, what happens
implicitly behind the scenes is that a bunch of little anonymous boxes are created. The list variable
contains all of those little boxes, and those little boxes contain the actual values. This way you obey
the rule that a box can only directly have one value.

19

a = 17

a

17

b = [1, 2, 3, 4, 5]

Think of a variable as a box that can contain a value. A box usually has a name (the name of the
variable), and a value (the value that has been assigned to it). A box can only have one value directly
inside it. When you create a list, since a variable (box) can only have one value inside it, what happens
implicitly behind the scenes is that a bunch of little anonymous boxes are created. The list variable
contains all of those little boxes, and those little boxes contain the actual values. This way you obey
the rule that a box can only directly have one value.

19

a = 17

a

17

b = [1, 2, 3, 4, 5]

b

Think of a variable as a box that can contain a value. A box usually has a name (the name of the
variable), and a value (the value that has been assigned to it). A box can only have one value directly
inside it. When you create a list, since a variable (box) can only have one value inside it, what happens
implicitly behind the scenes is that a bunch of little anonymous boxes are created. The list variable
contains all of those little boxes, and those little boxes contain the actual values. This way you obey
the rule that a box can only directly have one value.

19

a = 17

a

17

b = [1, 2, 3, 4, 5]

b

1 2 3 4 5

Think of a variable as a box that can contain a value. A box usually has a name (the name of the
variable), and a value (the value that has been assigned to it). A box can only have one value directly
inside it. When you create a list, since a variable (box) can only have one value inside it, what happens
implicitly behind the scenes is that a bunch of little anonymous boxes are created. The list variable
contains all of those little boxes, and those little boxes contain the actual values. This way you obey
the rule that a box can only directly have one value.

20

a = 17

a

17

b = [1, 2, 3, 4, 5]

b

1 2 3 4 5

a2 = a b2 = b

a2 b2

When you assign the value of a variable to another variable, it gets the contents of the box. When you
assign a2 = a, a new box a2 gets the same value as a. They are independent; changing a2 will not
change a, nor vice versa. But when you assign b2 = b, each contains the anonymous list of boxes, so
changing the contents of one will change the other.

21

CALLED
FUNCTION
(CALLEE)

parameter(s)

return values(s)

CALLER

BACK TO CALLER

This is the old story, which we are about to amend. When variables are passed in to a function, an
assignment (of the actual parameters to the function’s formal parameters) is made. This means that
changes made within the function to certain kinds of parameters will actually be reflected in the
caller’s variables, as well.

21

CALLED
FUNCTION
(CALLEE)

parameter(s)

return values(s)

• parameters are passed
from the caller to the
callee by value, not by
identity
• changes made to those

parameters in the callee
are not visible to the
caller

CALLER

BACK TO CALLER

This is the old story, which we are about to amend. When variables are passed in to a function, an
assignment (of the actual parameters to the function’s formal parameters) is made. This means that
changes made within the function to certain kinds of parameters will actually be reflected in the
caller’s variables, as well.

22

def change(list):
	

 if (len(list)):
	

 	

 list[0] = list[0] * 2;

def main():
	

 mylist = [7, 6, 5, 4, 3]
	

 change(mylist)
	

 print mylist[0]

def change(num):
	

 num = num * 2

def main():
	

 mynum = 7
	

 change(mynum)
	

 print mynum

running main() prints running main() prints

This code exemplifies this point.

22

def change(list):
	

 if (len(list)):
	

 	

 list[0] = list[0] * 2;

def main():
	

 mylist = [7, 6, 5, 4, 3]
	

 change(mylist)
	

 print mylist[0]

def change(num):
	

 num = num * 2

def main():
	

 mynum = 7
	

 change(mynum)
	

 print mynum

running main() prints running main() prints
7

This code exemplifies this point.

22

def change(list):
	

 if (len(list)):
	

 	

 list[0] = list[0] * 2;

def main():
	

 mylist = [7, 6, 5, 4, 3]
	

 change(mylist)
	

 print mylist[0]

def change(num):
	

 num = num * 2

def main():
	

 mynum = 7
	

 change(mynum)
	

 print mynum

running main() prints running main() prints
7 14

This code exemplifies this point.

23

CALLED
FUNCTION
(CALLEE)

parameter(s)

return values(s)

CALLER

BACK TO CALLER

Here is the new story for how information gets into and out of a function. See the next slide for which
kinds of variables fall into which category.

23

CALLED
FUNCTION
(CALLEE)

parameter(s)

return values(s)

old story
• parameters are passed

from the caller to the
callee by value, not by
identity
• changes made to those

parameters in the callee
are not visible to the
caller

CALLER

BACK TO CALLER

Here is the new story for how information gets into and out of a function. See the next slide for which
kinds of variables fall into which category.

23

CALLED
FUNCTION
(CALLEE)

parameter(s)

return values(s)

old story
• parameters are passed

from the caller to the
callee by value, not by
identity
• changes made to those

parameters in the callee
are not visible to the
caller

CALLER

BACK TO CALLER

new story
• some parameters are

passed by value
• others are not

Here is the new story for how information gets into and out of a function. See the next slide for which
kinds of variables fall into which category.

24

http://www.stoneworld.co.uk/images/products/600.jpg
http://www.kansastravel.org/littlehouseontheprairie.htm

fixed types:
integer	

 29
float	

 	

 29.0
tuple	

 	

 (-4, 2.1, ’test’)

immutable
(passed by value)

Immutable types (rocks) are atomic units. Assignment of these types of items creates independent
copies, so that the assigner and assignee have different copies, and changes made to one will not be
seen by the other. Mutable types (houses) will be shared. This is, for example, why you can’t create a
Rectangle object, draw it, assign it to a new variable, and then draw it again. You have to call clone(), a
special function which actually does create a real copy.

24

http://www.stoneworld.co.uk/images/products/600.jpg
http://www.kansastravel.org/littlehouseontheprairie.htm

fixed types:
integer	

 29
float	

 	

 29.0
tuple	

 	

 (-4, 2.1, ’test’)

immutable
(passed by value)

objects:
class	

 	

 Point()
list	

	

 	

 [-4, 2.1, ‘test’]

mutable
(can be modified)

Immutable types (rocks) are atomic units. Assignment of these types of items creates independent
copies, so that the assigner and assignee have different copies, and changes made to one will not be
seen by the other. Mutable types (houses) will be shared. This is, for example, why you can’t create a
Rectangle object, draw it, assign it to a new variable, and then draw it again. You have to call clone(), a
special function which actually does create a real copy.

25
http://wirednewyork.com/landmarks/liberty/images/liberty.jpg

Let’s consider an example. Most of us have probably heard the story of how the names of immigrants
were changed by inspectors at Ellis island to reflect a more assimilated Westernized spelling and
pronunciation. These stories are probably somewhat apocryphal, but we’ll ignore that for the moment
and write a function that helps out the inspectors.

26

def assimilate_foreigner(names):
	

 changed = 0
	

 for i in range(len(names)):
	

 	

 if names[i] == ‘Nüchter’:
	

 	

 	

 names[i] = ‘Nickter’
	

 	

 	

 changed += 1
	

 	

 elif names[i] == ‘Wojciechowski’:
	

 	

 	

 names[i] = ‘Smith’
	

 	

 	

 changed += 1
	

 	

 elif names[i] == ‘Hitler’:
	

 	

 	

 names[i] = ‘Hunter’
	

 	

 	

 changed += 1

	

 return changed

This function takes a list of names that would be hard to pronounce for an 18th or 19th century
English-speaking Westerner (or, in the case of Hitler, a name which would be undesirable at some
point in the future), and changes them. Since names is a list, changes made to it in the function will
be also changed in the caller’s list. We also count the number of changes we made.

27

def suggest_assimilated_names(names):
	

 # make an independent copy
	

 newnames = list(names)
	

 changed = 0
	

 for i in range(len(names)):
	

 	

 if names[i] == ‘Nüchter’:
	

 	

 	

 newnames[i] = ‘Nickter’
	

 	

 	

 changed += 1
	

 	

 elif names[i] == ‘Wojciechowski’:
	

 	

 	

 newnames[i] = ‘Smith’
	

 	

 	

 changed += 1
	

 	

 elif names[i] == ‘Hitler’:
	

 	

 	

 newnames[i] = ‘Hunter’
	

 	

 	

 changed += 1

	

 return changed, newnames

This function just makes suggestions, instead of forcing the change. Notice that we avoid making
copies in the caller’s list by explicitly creating a real copy with the list() function.

28

TOPIC 2
recursion

Recursion is the definition of a function or object in terms of itself. It is a relatively easy concept to
understand, but to really be able to apply it in computer science takes some considerable work and
persistence. If you don’t understand this, it might help to know that it takes even computer science
majors a lot of time to really be able to use it. Try writing your own functions, make diagrams and
drawings, and go over it again and again.

this is seriously the
 most awesome concept

 in computer science

29

It really is.

recursion trivia
• a limitless fount of esoteric computer science humor

❖ dictionary definition
recursion, n. See “recursion”.

❖ try Googling “recursion” (after today’s lecture)

• recursive acronyms

❖ GNU = “GNU’s not UNIX”

❖ pine = “pine is not elm”

• also a property of language, is found in nature, and serves
as the foundation for a class of mathematical proofs

30

Here are some examples of recursion.

31

def fun():
	

 fun()

def main():
	

 fun()

function definitions:

You run main()

In the remainder of the talk, we are going to build a function that computes the sum of the first n
integers. You may recall that this can be computed directly with the function n * (n + 1) / 2 (e.g., the
sum of the first 10 integers is 10 * 11 / 2 = 55).

We start with a simple but useless example of recursion. If you ran this program, it would never stop,
because each instance of fun() just calls itself again. Eventually your computer will run out of memory
and might give you an error like this one.

31

def fun():
	

 fun()

def main():
	

 fun()

function definitions:

You run main()

main():
	

 fun()

In the remainder of the talk, we are going to build a function that computes the sum of the first n
integers. You may recall that this can be computed directly with the function n * (n + 1) / 2 (e.g., the
sum of the first 10 integers is 10 * 11 / 2 = 55).

We start with a simple but useless example of recursion. If you ran this program, it would never stop,
because each instance of fun() just calls itself again. Eventually your computer will run out of memory
and might give you an error like this one.

31

def fun():
	

 fun()

def main():
	

 fun()

function definitions:

You run main()

main():
	

 fun()fun():
	

 fun()

In the remainder of the talk, we are going to build a function that computes the sum of the first n
integers. You may recall that this can be computed directly with the function n * (n + 1) / 2 (e.g., the
sum of the first 10 integers is 10 * 11 / 2 = 55).

We start with a simple but useless example of recursion. If you ran this program, it would never stop,
because each instance of fun() just calls itself again. Eventually your computer will run out of memory
and might give you an error like this one.

31

def fun():
	

 fun()

def main():
	

 fun()

function definitions:

You run main()

main():
	

 fun()fun():
	

 fun()fun():
	

 fun()

In the remainder of the talk, we are going to build a function that computes the sum of the first n
integers. You may recall that this can be computed directly with the function n * (n + 1) / 2 (e.g., the
sum of the first 10 integers is 10 * 11 / 2 = 55).

We start with a simple but useless example of recursion. If you ran this program, it would never stop,
because each instance of fun() just calls itself again. Eventually your computer will run out of memory
and might give you an error like this one.

31

def fun():
	

 fun()

def main():
	

 fun()

function definitions:

You run main()

main():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()

In the remainder of the talk, we are going to build a function that computes the sum of the first n
integers. You may recall that this can be computed directly with the function n * (n + 1) / 2 (e.g., the
sum of the first 10 integers is 10 * 11 / 2 = 55).

We start with a simple but useless example of recursion. If you ran this program, it would never stop,
because each instance of fun() just calls itself again. Eventually your computer will run out of memory
and might give you an error like this one.

31

def fun():
	

 fun()

def main():
	

 fun()

function definitions:

You run main()

main():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()

fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()

In the remainder of the talk, we are going to build a function that computes the sum of the first n
integers. You may recall that this can be computed directly with the function n * (n + 1) / 2 (e.g., the
sum of the first 10 integers is 10 * 11 / 2 = 55).

We start with a simple but useless example of recursion. If you ran this program, it would never stop,
because each instance of fun() just calls itself again. Eventually your computer will run out of memory
and might give you an error like this one.

31

def fun():
	

 fun()

def main():
	

 fun()

function definitions:

You run main()

main():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()

fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()

In the remainder of the talk, we are going to build a function that computes the sum of the first n
integers. You may recall that this can be computed directly with the function n * (n + 1) / 2 (e.g., the
sum of the first 10 integers is 10 * 11 / 2 = 55).

We start with a simple but useless example of recursion. If you ran this program, it would never stop,
because each instance of fun() just calls itself again. Eventually your computer will run out of memory
and might give you an error like this one.

31

def fun():
	

 fun()

def main():
	

 fun()

function definitions:

You run main()

main():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()

fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()fun():
	

 fun()

FATAL ERROR
UNBOUNDED
RECURSION!

In the remainder of the talk, we are going to build a function that computes the sum of the first n
integers. You may recall that this can be computed directly with the function n * (n + 1) / 2 (e.g., the
sum of the first 10 integers is 10 * 11 / 2 = 55).

We start with a simple but useless example of recursion. If you ran this program, it would never stop,
because each instance of fun() just calls itself again. Eventually your computer will run out of memory
and might give you an error like this one.

32
http://baysideproducts.com/store/images/Barrington%206112.jpg

These functions are a little bit like placing two mirrors opposite each other. What is the image that will
be reflected in the first mirror? It’s the image in the other mirror. What’s the image in the other
mirror? Well...

32
http://baysideproducts.com/store/images/Barrington%206112.jpg

These functions are a little bit like placing two mirrors opposite each other. What is the image that will
be reflected in the first mirror? It’s the image in the other mirror. What’s the image in the other
mirror? Well...

33

def fun(x):
	

 fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

	

 x - 1
=	

 10 - 1
=	

 9

scratch pad:

fun(x = 10):
	

 fun(9)

Let’s change this function to be a little more useful. Here each instance of fun() will change the value
of the parameter it is calling with.

33

def fun(x):
	

 fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

main():
	

 fun(10)

	

 x - 1
=	

 10 - 1
=	

 9

scratch pad:

fun(x = 10):
	

 fun(9)

Let’s change this function to be a little more useful. Here each instance of fun() will change the value
of the parameter it is calling with.

34

def fun(x):
	

 fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

	

 x - 1
=	

 9 - 1
=	

 8

scratch pad:

fun(x = 10):
	

 fun(9)fun(x = 9):
	

 fun(8)

The value gets smaller

34

def fun(x):
	

 fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

main():
	

 fun(10)

	

 x - 1
=	

 9 - 1
=	

 8

scratch pad:

fun(x = 10):
	

 fun(9)fun(x = 9):
	

 fun(8)

The value gets smaller

35

def fun(x):
	

 fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

	

 x - 1
=	

 8 - 1
=	

 7

scratch pad:

fun(x = 10):
	

 fun(9)fun(x = 8):
	

 fun(7)fun(x = 8):
	

 fun(7)

and smaller

35

def fun(x):
	

 fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

main():
	

 fun(10)

	

 x - 1
=	

 8 - 1
=	

 7

scratch pad:

fun(x = 10):
	

 fun(9)fun(x = 8):
	

 fun(7)fun(x = 8):
	

 fun(7)

and smaller

36

def fun(x):
	

 fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

	

 x - 1
=	

 7 - 1
=	

 6

scratch pad:

fun(x = 10):
	

 fun(9)fun(x = 7):
	

 fun(6)fun(x = 7):
	

 fun(6)fun(x = 7):
	

 fun(6)

etc

36

def fun(x):
	

 fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

main():
	

 fun(10)

	

 x - 1
=	

 7 - 1
=	

 6

scratch pad:

fun(x = 10):
	

 fun(9)fun(x = 7):
	

 fun(6)fun(x = 7):
	

 fun(6)fun(x = 7):
	

 fun(6)

etc

37

def fun(x):
	

 fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

	

 x - 1
=	

 6 - 1
=	

 5

scratch pad:

fun(x = 10):
	

 fun(9)fun(x = 6):
	

 fun(5)fun(x = 6):
	

 fun(5)fun(x = 6):
	

 fun(5)fun(x = 6):
	

 fun(5)

37

def fun(x):
	

 fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

main():
	

 fun(10)

	

 x - 1
=	

 6 - 1
=	

 5

scratch pad:

fun(x = 10):
	

 fun(9)fun(x = 6):
	

 fun(5)fun(x = 6):
	

 fun(5)fun(x = 6):
	

 fun(5)fun(x = 6):
	

 fun(5)

38

def fun(x):
	

 fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

	

 x - 1
=	

 5 - 1
=	

 4

scratch pad:

fun(x = 10):
	

 fun(9)fun(x = 5):
	

 fun(4)fun(x = 5):
	

 fun(4)fun(x = 5):
	

 fun(4)fun(x = 5):
	

 fun(4)fun(x = 5):
	

 fun(4)

38

def fun(x):
	

 fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

main():
	

 fun(10)

	

 x - 1
=	

 5 - 1
=	

 4

scratch pad:

fun(x = 10):
	

 fun(9)fun(x = 5):
	

 fun(4)fun(x = 5):
	

 fun(4)fun(x = 5):
	

 fun(4)fun(x = 5):
	

 fun(4)fun(x = 5):
	

 fun(4)

39

def fun(x):
	

 fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

	

 x - 1
=	

 4 - 1
=	

 3

scratch pad:

fun(x = 10):
	

 fun(9)fun(x = 4):
	

 fun(3)fun(x = 4):
	

 fun(3)fun(x = 4):
	

 fun(3)fun(x = 4):
	

 fun(3)fun(x = 4):
	

 fun(3)fun(x = 4):
	

 fun(3)

39

def fun(x):
	

 fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

main():
	

 fun(10)

	

 x - 1
=	

 4 - 1
=	

 3

scratch pad:

fun(x = 10):
	

 fun(9)fun(x = 4):
	

 fun(3)fun(x = 4):
	

 fun(3)fun(x = 4):
	

 fun(3)fun(x = 4):
	

 fun(3)fun(x = 4):
	

 fun(3)fun(x = 4):
	

 fun(3)

40

def fun(x):
	

 fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

	

 x - 1
=	

 3 - 1
=	

 2

scratch pad:

fun(x = 10):
	

 fun(9)fun(x = 3):
	

 fun(2)fun(x = 3):
	

 fun(2)fun(x = 3):
	

 fun(2)fun(x = 3):
	

 fun(2)fun(x = 3):
	

 fun(2)fun(x = 3):
	

 fun(2)fun(x = 3):
	

 fun(2)

40

def fun(x):
	

 fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

main():
	

 fun(10)

	

 x - 1
=	

 3 - 1
=	

 2

scratch pad:

fun(x = 10):
	

 fun(9)fun(x = 3):
	

 fun(2)fun(x = 3):
	

 fun(2)fun(x = 3):
	

 fun(2)fun(x = 3):
	

 fun(2)fun(x = 3):
	

 fun(2)fun(x = 3):
	

 fun(2)fun(x = 3):
	

 fun(2)

41

def fun(x):
	

 fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

	

 x - 1
=	

 2 - 1
=	

 1

scratch pad:

fun(x = 10):
	

 fun(9)fun(x = 2):
	

 fun(1)fun(x = 2):
	

 fun(1)fun(x = 2):
	

 fun(1)fun(x = 2):
	

 fun(1)fun(x = 2):
	

 fun(1)fun(x = 2):
	

 fun(1)fun(x = 2):
	

 fun(1)fun(x = 2):
	

 fun(1)

41

def fun(x):
	

 fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

main():
	

 fun(10)

	

 x - 1
=	

 2 - 1
=	

 1

scratch pad:

fun(x = 10):
	

 fun(9)fun(x = 2):
	

 fun(1)fun(x = 2):
	

 fun(1)fun(x = 2):
	

 fun(1)fun(x = 2):
	

 fun(1)fun(x = 2):
	

 fun(1)fun(x = 2):
	

 fun(1)fun(x = 2):
	

 fun(1)fun(x = 2):
	

 fun(1)

42

def fun(x):
	

 fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

	

 x - 1
=	

 1 - 1
=	

 0

scratch pad:

fun(x = 10):
	

 fun(9)fun(x = 1):
	

 fun(0)fun(x = 1):
	

 fun(0)fun(x = 1):
	

 fun(0)fun(x = 1):
	

 fun(0)fun(x = 1):
	

 fun(0)fun(x = 1):
	

 fun(0)fun(x = 1):
	

 fun(0)fun(x = 1):
	

 fun(0)fun(x = 1):
	

 fun(0)

42

def fun(x):
	

 fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

main():
	

 fun(10)

	

 x - 1
=	

 1 - 1
=	

 0

scratch pad:

fun(x = 10):
	

 fun(9)fun(x = 1):
	

 fun(0)fun(x = 1):
	

 fun(0)fun(x = 1):
	

 fun(0)fun(x = 1):
	

 fun(0)fun(x = 1):
	

 fun(0)fun(x = 1):
	

 fun(0)fun(x = 1):
	

 fun(0)fun(x = 1):
	

 fun(0)fun(x = 1):
	

 fun(0)

43

def fun(x):
	

 fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

	

 x - 1
=	

 0 - 1
=	

 -1

scratch pad:

fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)

but again, it never stops, and we get another instance of unbounded recursion.

43

def fun(x):
	

 fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

main():
	

 fun(10)

	

 x - 1
=	

 0 - 1
=	

 -1

scratch pad:

fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)

but again, it never stops, and we get another instance of unbounded recursion.

43

def fun(x):
	

 fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

main():
	

 fun(10)

	

 x - 1
=	

 0 - 1
=	

 -1

scratch pad:

fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)

FATAL ERROR
UNBOUNDED
RECURSION!

but again, it never stops, and we get another instance of unbounded recursion.

44

we need a base case

Recursion is still pretty useless to us. We need a way to allow a function to call itself, but also a way to
eventually stop. This is called the base case.

45

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 fun(x - 1)
	

 return None

def main():
	

 fun(10)

function definitions:

You run main()

fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 1):
	

 return 1

Here we have added a base case: when the parameter is 1, the function returns 1. You will notice that
this base case is useful: if we wanted to know the sum of the first 1 integers, we would call fun(1), and
it would return 1, which is the correct answer. Even though this is trivial, identifying the base case like
this is crucial to developing a recursive algorithm.

45

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 fun(x - 1)
	

 return None

def main():
	

 fun(10)

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 1):
	

 return 1

Here we have added a base case: when the parameter is 1, the function returns 1. You will notice that
this base case is useful: if we wanted to know the sum of the first 1 integers, we would call fun(1), and
it would return 1, which is the correct answer. Even though this is trivial, identifying the base case like
this is crucial to developing a recursive algorithm.

46

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 fun(x - 1)
	

 return None

def main():
	

 fun(10)

function definitions:

You run main()

fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 2):
	

 1
	

 return None

	

 fun(2-1)
=	

 fun(1)
=	

 1

scratch pad:

Now, what happens when we call fun(2)? x is not 1, so we skip to the third line, call fun(2-1) (which is
fun(1)). That returns 1, but we are not doing anything with it! Instead, we are returning None.

46

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 fun(x - 1)
	

 return None

def main():
	

 fun(10)

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 2):
	

 1
	

 return None

	

 fun(2-1)
=	

 fun(1)
=	

 1

scratch pad:

Now, what happens when we call fun(2)? x is not 1, so we skip to the third line, call fun(2-1) (which is
fun(1)). That returns 1, but we are not doing anything with it! Instead, we are returning None.

47

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 fun(x - 1)
	

 return None

def main():
	

 fun(10)

function definitions:

You run main()

fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 2):
	

 1
	

 return None

47

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 fun(x - 1)
	

 return None

def main():
	

 fun(10)

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 2):
	

 1
	

 return None

48

we need to return
something in the

recursive case, too

We need to return a value, not just in the base case, but in the recursive case as well.

49

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 1):
	

 return 1

Here we have made this change: now our function will always return something. However, it’s not
quite the right value.

49

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 1):
	

 return 1

Here we have made this change: now our function will always return something. However, it’s not
quite the right value.

50

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 2):
	

 return 1

When we call fun(1), we still get the right answer, but fun(2) returns 1 as well, which isn’t correct.

50

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 2):
	

 return 1

When we call fun(1), we still get the right answer, but fun(2) returns 1 as well, which isn’t correct.

51

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 3):
	

 return 1

Same for fun(3), and all the way back up to the original call fun(10).

51

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return fun(x - 1)

def main():
	

 fun(10)

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 3):
	

 return 1

Same for fun(3), and all the way back up to the original call fun(10).

52

we need to actually do
something with the

results we’ve computed

The recursive case needs to return a different value. That is, it finds out the value of the subproblem,
and then needs to add / multiply / otherwise manipulate that value so that it’s caller can get a
different answer.

53

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return x + fun(x - 1)

def main():
	

 n = 10
	

 sum = fun(n)
	

 print “sum of first”, n, 	

	

 print “integers is”, sum

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 1):
	

 return 1

The way to do that is to add our own value of x to that of the recursive call. Think of it this way. What
is the sum of the first 1 integers? 1. What is the sum of the first two integers? 2 + 1. What is the
sum of the first three integers? 3 + 2 + 1. First four? 4 + 3 + 2 + 1. You’ll notice that in each case,
the answer to “What is the sum of the first n integers?” is “n + the sum of the first (n-1) integers”.
That’s our recursive formulation.

54

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return x + fun(x - 1)

def main():
	

 n = 10
	

 sum = fun(n)
	

 print “sum of first”, n, 	

	

 print “integers is”, sum

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 2):
	

 return 2 + fun(1)

	

 2 + fun(1)
=	

 2 + 1
=	

 3

scratch pad:

Here we see the correct value for fun(2) getting passed up to its caller, fun(3). The scratch pad
computes the third line of the function fun(), which it can do now that it’s subcall to fun() has returned.

55

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return x + fun(x - 1)

def main():
	

 n = 10
	

 sum = fun(n)
	

 print “sum of first”, n, 	

	

 print “integers is”, sum

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 2):
	

 return 3

	

 2 + fun(1)
=	

 2 + 1
=	

 3

scratch pad:

And so on up the chain of calls.

56

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return x + fun(x - 1)

def main():
	

 n = 10
	

 sum = fun(n)
	

 print “sum of first”, n, 	

	

 print “integers is”, sum

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 3):
	

 return 3 + fun(2)

	

 3 + fun(2)
=	

 3 + 3
=	

 6

scratch pad:

57

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return x + fun(x - 1)

def main():
	

 n = 10
	

 sum = fun(n)
	

 print “sum of first”, n, 	

	

 print “integers is”, sum

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 3):
	

 return 6

	

 3 + fun(2)
=	

 3 + 3
=	

 6

scratch pad:

58

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return x + fun(x - 1)

def main():
	

 n = 10
	

 sum = fun(n)
	

 print “sum of first”, n, 	

	

 print “integers is”, sum

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 4):
	

 return 4 + fun(3)

	

 4 + fun(3-1)
=	

 4 + 6
=	

 10

scratch pad:

59

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return x + fun(x - 1)

def main():
	

 n = 10
	

 sum = fun(n)
	

 print “sum of first”, n, 	

	

 print “integers is”, sum

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 4):
	

 return 10

	

 4 + fun(3-1)
=	

 4 + 6
=	

 10

scratch pad:

60

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return x + fun(x - 1)

def main():
	

 n = 10
	

 sum = fun(n)
	

 print “sum of first”, n, 	

	

 print “integers is”, sum

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 5):
	

 return 5 + fun(4)

	

 5 + fun(4)
=	

 5 + 10
=	

 15

scratch pad:

61

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return x + fun(x - 1)

def main():
	

 n = 10
	

 sum = fun(n)
	

 print “sum of first”, n, 	

	

 print “integers is”, sum

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 5):
	

 return 15

	

 5 + fun(4)
=	

 5 + 10
=	

 15

scratch pad:

62

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return x + fun(x - 1)

def main():
	

 n = 10
	

 sum = fun(n)
	

 print “sum of first”, n, 	

	

 print “integers is”, sum

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 6):
	

 return 6 + fun(5)

	

 6 + fun(5)
=	

 6 + 15
=	

 21

scratch pad:

63

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return x + fun(x - 1)

def main():
	

 n = 10
	

 sum = fun(n)
	

 print “sum of first”, n, 	

	

 print “integers is”, sum

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 6):
	

 return 21

	

 6 + fun(5)
=	

 6 + 15
=	

 21

scratch pad:

64

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return x + fun(x - 1)

def main():
	

 n = 10
	

 sum = fun(n)
	

 print “sum of first”, n, 	

	

 print “integers is”, sum

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 7):
	

 return 7 + fun(6)

	

 7 + fun(6-1)
=	

 7 + 21
=	

 28

scratch pad:

65

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return x + fun(x - 1)

def main():
	

 n = 10
	

 sum = fun(n)
	

 print “sum of first”, n, 	

	

 print “integers is”, sum

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 0):
	

 fun(-1)fun(x = 7):
	

 return 28

	

 7 + fun(6-1)
=	

 7 + 21
=	

 28

scratch pad:

66

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return x + fun(x - 1)

def main():
	

 n = 10
	

 sum = fun(n)
	

 print “sum of first”, n, 	

	

 print “integers is”, sum

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 8):
	

 return 8 + fun(7)

	

 8 + fun(7)
=	

 8 + 28
=	

 36

scratch pad:

67

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return x + fun(x - 1)

def main():
	

 n = 10
	

 sum = fun(n)
	

 print “sum of first”, n, 	

	

 print “integers is”, sum

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 fun(9)fun(x = 0):
	

 fun(-1)fun(x = 8):
	

 return 36

	

 8 + fun(7)
=	

 8 + 28
=	

 36

scratch pad:

68

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return x + fun(x - 1)

def main():
	

 n = 10
	

 sum = fun(n)
	

 print “sum of first”, n, 	

	

 print “integers is”, sum

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 fun(9)fun(x = 9):
	

 return 9 + fun(8)

	

 9 + fun(8)
=	

 9 + 36
=	

 45

scratch pad:

69

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return x + fun(x - 1)

def main():
	

 n = 10
	

 sum = fun(n)
	

 print “sum of first”, n, 	

	

 print “integers is”, sum

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 fun(9)fun(x = 9):
	

 return 45

	

 9 + fun(8)
=	

 9 + 36
=	

 45

scratch pad:

70

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return x + fun(x - 1)

def main():
	

 n = 10
	

 sum = fun(n)
	

 print “sum of first”, n, 	

	

 print “integers is”, sum

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 return 10 + fun(9)

	

 10 + fun(9-1)
=	

 10 + 45
=	

 55

scratch pad:

71

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return x + fun(x - 1)

def main():
	

 n = 10
	

 sum = fun(n)
	

 print “sum of first”, n, 	

	

 print “integers is”, sum

function definitions:

You run main()

main():
	

 fun(10)fun(x = 10):
	

 return 55

	

 10 + fun(9-1)
=	

 10 + 45
=	

 55

scratch pad:

72

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return x + fun(x - 1)

def main():
	

 n = 10
	

 sum = fun(n)
	

 print “sum of first”, n, 	

	

 print “integers is”, sum

function definitions:

You run main()

main():
	

 n = 10
	

 sum = 55

Finally, the initial call to fun(10) returns with the correct value. This is assigned to the variable sum,
which is then printed out.

73

def fun(x):
	

 if x == 1:
	

 	

 return 1
	

 return x + fun(x - 1)

def main():
	

 n = 10
	

 sum = fun(n)
	

 print “sum of first”, n, 	

	

 print “integers is”, sum

function definitions:

You run main()

main():
	

 n = 10
	

 sum = 55
	

 print “sum of first”, n,
	

 print “integers is”, sum

sum of first 10 integers is 55

74

• function parameters: fixed, atomic types vs object types

❖ objects passed to functions are mutable

❖ fixed types are not

• recursion

❖ solves a larger problem in terms of a smaller one

❖ argument must change each time (to avoid an infinite loop)

❖ the changing argument value must be approaching the base case

❖ should return the result of the sub function call plus something
else

summary

