CS 161 The Art of Programming
Workshop 7: Recursion
Nov 1, 2, 3,2009

** Materials needed for workshop: A deck of playing cards **

Last week we were introduced to the concept of recursion: solving a problem by
reducing it to smaller instances of the same kind of problem. In this workshop, we
will explore recursion through a series of hands on exercises.

There is a classic recursive algorithm for sorting called "merge sort". In order to
understand it, we first need to know how to merge together two already-sorted
decks. Here is the algorithm for merging:

Merge

input: Two sorted decks of cards, call them deck A and deck B

output: A sorted deck of all of the cards, call it deck C

1. Put decks A and B on the table face up. Deck C will be created face down to
the right of A and B.

2. If either deck A or deck B become empty, turn over the non-empty deck
and place it on deck C. You are done, return deck C.

3. If the rank of the card on top of deck A is smaller or equal to the rank of
the card on top of deck B, move it to deck C (face down). Otherwise move the
top card from deck B to deck C.

4. Repeat from step (2) as long as necessary.

Exercise 1: Deal cards to pairs of students. Each pair should split their cards into
two decks, sort each deck face up from low to high, using whatever method they
like, and then merge the decks together using the Merge algorithm above. They
should do this until everyone understands how Merge works.

Now that we know how to merge, we can create a recursive algorithm for Merge
Sort.

Merge Sort

input: an unsorted deck of cards

output: a sorted deck of cards

1. If the unsorted deck of card only contains a single card, then you are done.
Return the card as output.

2. Split the unsorted deck in half, as evenly as possible.

3. Recursive step: Merge Sort each half deck of cards.

4. Merge the two sorted half decks together and return the result.

Exercise 2: The entire class will participate in performing a run of Merge Sort. Each
student will execute one invocation of the algorithm. Start with a number of cards
based on the class size according to the table below. If the number of students in

the workshop section is even, the workshop leader should participate to make the
class size odd.

class size number of cards

5

7

9

11

13

(|| U1 |W

15

One person starts with all of the cards, shuffled. She starts performing Merge Sort.
When she reaches a recursive call, she hands the half deck to another student, who
performs Merge Sort recursively and then returns it. Note that some of the
recursive calls of Merge Sort will involve just a single card: in that case, the "calling
function" hands a single card to the "called function", who immediately hands it
back.

Perform this exercise a number of times, allowing different students to be the
starting player.

Exercise 3: We will now write a Python program to merge sort lists of numbers.
The functions will be:

def Merge(deckA, deckB)
decks A and B are sorted, returns a sorted list combining the two

def Merge_Sort(deck)
returns a sorted list of the elements in the deck

Split the class into teams of 3 to 4 students. Half the teams should work on
implementing Merge, and the other half on Merge_Sort (where Merge_Sort calls
Merge). At the end of the time, have the teams present their solutions. Will all of
the ways of implementing Merge work with all of the ways of implementing
Merge_Sort?

Hints for programming:

e How can you split a list into two pieces? Think of the slice operation and the
len (length) function.

e How can you remove an item from the front of a list? Think of the slice
operation.

e How can you put an item at the end of a list? Think of the concatenate (+)
operator.

