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ABSTRACT
It is of great interest to recognize semantic events (e.g.,
hiking, skiing, party), in particular when given a collec-
tion of personal photos, where each photo is tagged with
a timestamp and GPS (Global Positioning System) infor-
mation at the capture. We address this emerging multi-
class classification problem by mining informative features
derived from traces of GPS coordinates and a bag of vi-
sual words, both based on the entire collection as opposed
to individual photos. Considering that semantic events are
best characterized by a compositional description of the vi-
sual content in terms of the co-occurrence of objects and
scenes, we focus on mining feature-combinations (equivalent
to word combinations) that have better discriminative and
descriptive abilities than individual features for improved
event classification. In order to handle the combinator-
ial complexity in discovering such compositional features,
a novel data mining method based on frequent itemset min-
ing (FIM) is proposed. Complementary features are also
derived from GPS traces and mined to characterize the un-
derlying movement patterns of various event types. Upon
feature mining, we perform multi-class AdaBoost to solve
the multiclass problem. Based on a dataset of eight event
classes and a total of more than 3000 geotagged images from
88 events, experimental results using leave-one-out cross val-
idation have shown the synergy of all of the components in
our proposed approach to event classification.
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1. INTRODUCTION
Personal photo collections are pervasive. Mining semanti-

cally meaningful information from such collections has been
an area of active research in machine learning and computer
vision communities. Most existing systems perform image
labeling on individual images. However, images are often
not independent of each other due to the temporal and spa-
tial correlation among the images that belong to the same
event. More specifically, in personal image collections, there
is rich contextual information besides the image features,
and such contextual information is usually complementary
to the image features for the purpose of semantic under-
standing. When GPS sensors are installed in digital cam-
eras, we can collect the following information for each indi-
vidual image: (1) low-level visual features: e.g., color and
edge histograms, (2) timestamp and GPS information: time,
latitude, and longitude of the photo capture, (3) semantic
object and scene recognition: output from object detectors
(e.g., faces) and image classifiers (indoor/outdoor detector,
beach detector, etc.), (4) collective context information: im-
ages taken at the same time and same place. With extra
information available besides the visual features, it becomes
possible to improve the visual event recognition by consid-
ering all of the available information and all of the related
images together.

Semantic event recognition requires a compositional de-
scription of the time, place, subject, and event. Simple indi-
vidual features (e.g., color or texture) provide limited repre-
sentation and discrimination power and thus usually fail to
generate reliable classification results. In order to provide
a comprehensive description for events, we are interested
in mining compositional features that possess rich represen-
tation power for event classification. By allowing different
event classes to share common features, we employ a com-
positional representation instead of individual features for
classification. For example, both events“hiking”and“beach”
may contain “blue sky” scene. Although with only the ob-
servation of “blue sky” scene it is difficult to tell whether it
is “hiking” or “beach,”“blue sky” is still an informative fea-
ture when combined with other features appropriately. For
instance, “blue sky” and “sea” together may imply a “beach”
event while “blue sky” and “mountain” together may imply
a “hiking” event.

To build an effective classification system based on com-
positional features, one must address the following issues:

1. how to evaluate compositional features?
Although efficient data mining methods exist for dis-
covering frequent patterns and extracting features for
classification tasks [2] [3] [17] [1], frequent patterns



Figure 1: A collection of geotagged photos: connect-
ing the images creates a trace (red line).

such as frequent itemsets may not always be discrim-
inative features that are useful for classification [19].
It is not uncommon that a discovered frequent pattern
appears in both positive and negative training samples,
and thus its discrimination power is limited. There-
fore, a better criterion for selecting compositional fea-
tures beyond its frequency is needed.

2. how to find good compositional features efficiently?
Mining compositional features is difficult due to its
combinatorial complexity. Previous data mining meth-
ods apply the idea of branch-and-bound to speed up
the search process. However, with a classic data min-
ing technique such as frequent itemset mining (FIM),
it is nontrivial to select appropriate data mining para-
meters such as the support (frequency) and confidence
(discrimination) of the patterns that are useful for clas-
sification.

3. how to apply the discovered compositional features for
final classification?
After compositional features (rules) are discovered, we
need to further combine them or select the most reli-
able ones for classification. This is also a challenging
problem due to the imperfectness of each individual
rule and the high redundancy among the rules [10].

We address the above challenges by first showing under
what conditions frequent patterns can serve as good fea-
tures and then present a general guidance for selecting data
mining parameters in order to discover the best features ef-
ficiently. Specifically, we show that a good compositional
feature suitable for classification should not only appear fre-
quently, but also possess good prediction ability. We thus
require compositional features to be both (1) descriptive (i.e.
high frequency in training data), and (2) discriminative (i.e.
high accuracy in classification). An efficient mining scheme
using FIM is proposed to efficiently discover the desired com-
positional features. Most importantly, we show that the
discovered compositional features have guaranteed classifi-
cation ability in terms of the bounded training error. This
theoretical foundation gives us the guidance in selecting ap-
propriate parameters (e.g., support and confidence) for data
mining.

For the final event classification, we employ a confidence-
based fusion method to combine the GPS and visual pre-
diction results, which are obtained through multiclass Ad-
aBoost based on the corresponding mined features.

The main contributions of this work are many fold. First,
we address semantic event recognition at photo collection
level instead of individual photos. Second, we propose to ap-
ply compositional visual word features over the entire single-
event photo collection for multiclass recognition and use a
novel mining procedure to find these features efficiently. We
also prove theoretic training error bound of the discovered
compositional features. Third, we employ GPS traces to
characterize the underlying movement patterns of various
event type features, again using the mining procedure over
the entire collection. Finally, we utilize confidence-based fu-
sion to produce the final event classification based on both
visual and movement cues. To give a concrete example of
our visual event, We show a collection of geotagged photos
in Fig. 1, where a trace is created by connecting all of the
images in the temporal order.

2. RELATED WORK
There is a large body of work focusing on problems of

object recognition, for instance, detecting objects of certain
types such as faces, cars, grass, water, sky, and so on. Most
of the work relies on using low-level vision features (such as
color, textures and edges) available in the image. In recent
years, there has been an increasing interest in extracting
semantically more complex information such as scene detec-
tion and event recognition [16] [4] [14] [15]. For example,
one might want to cluster pictures based on if they were
taken outdoors or indoors, or separate work pictures from
leisure pictures. The solution to such problems primarily
relies on derived features such as people present in the im-
age, the presence or absence of certain kinds of objects in
the image, and so on. This line of research aims to revolu-
tionize the way people perceive the digital photo collection
- from a group of pixel values to complex and meaningful
objects, scenes, and events that can be queried or automat-
ically organized in ways that are meaningful to the user. In
all of the aforementioned prior art, traditional image clus-
tering and classification is performed on individual images
using image-based features only, for example, color and edge
histograms, or “bag of visual features” [8]. Existing systems
have attempted to recognize events through visual classi-
fication of scenes and objects. For example, [9] reported
moderate success in recognizing a number of peculiar sports
events, such as polo, rowing, and boche, thanks to the unique
visual characteristics that can be observed from pictures of
such events. However, for other event types that are more
relevant to people’s lives, such as sightseeing, hiking, play-
ing on the beach, and wedding, it is difficult to obtain sat-
isfactory clustering and classification results solely based on
those image features due to the well-known “semantic gap”
between low-level features and high-level semantic concepts.

3. OVERVIEW
We formulate the event recognition as a K-class classifica-

tion problem. Each individual event E contains a collection

of images with GPS tags: Ei = {Gj , Ij}
|Ei|
j=1 , where Ij de-

notes an individual image; Gj = {xj , yj , tj} is the GPS tag
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Figure 2: The flowchart of the proposed method.

recording the spatial location where xj is the latitude, yj is
the longitude, and tj is the time stamp of the image Ij .

After feature extraction of each event E, the classification
problem can be defined as follows. Suppose we are given a
training dataset containing in total N events of K classes:
DN = {Xt, Ct}

N
t=1, where Xt ∈ R

P denotes the GPS or vi-
sual features describing Et and Ct ∈ {1, 2, ..., K} is the label
of Xt. The task is to find a classifier g(·) : X → C from
the training data, such that given a new query event X, we
can assign it a class label C ∈ {1, 2, ..., K}. In the experi-
ment, we predefine 8 event classes: C = {hiking, wedding,
city-tour, ball-game, backyard, beach, ski, road-trip}.

We explain the architecture of our method in Fig. 2. The
whole system contains 3 major components

1. Compositional Feature Mining
Given a pool of primitive features Ω = {fi}, fi is a
binary classification rule, our goal is to discover com-
positional feature F = {fi} ⊂ Ω for multiclass classifi-
cation. Each F is a combination of primitive rules fi}
and performs better than individual fi}.

2. Multiclass AdaBoost for Classification
After compositional features are discovered, we lin-
early combine them through multiclass AdaBoost.

3. Fusion of GPS and Visual Classification
After pattern classification using GPS and visual fea-
tures separately, we combine the two modalities through
confidence-based fusion.

4. FEATURE EXTRACTION

4.1 Visual Feature Extraction
To extract the visual features of a single-event collection

E, first, for each image Ij ∈ E, if its size is larger than
200, 000 pixels, we scale its size down to 200, 000 pixels. Sec-
ond, based on the resized image, we extract image grids of
fixed-size 16×16 with sampling interval 8×8 (such that the
neighboring blocks overlap by 50%). Hence a typical image
in our dataset can generate 117 × 87 such grids. Then for
each grid, we extract both color and texture features. For
the color features, we partition an image grid into 2×2 equal
size subgrids. For each sub-grid, we extract the mean R, G,
and B values to form a 4 × 3 feature vector, which charac-
terizes the color information. For the texture features, we
apply the SIFT descriptor to describe the edge distribution
information. Similarly, we apply a 2× 2 array of histograms
with 8 orientation bins in each. Thus our SIFT feature for
each image grid is of 32-dimension instead of 128-dimension
as the original SIFT [11]. Finally, an image grid is presented
by a 44-d feature vector containing both color and texture
information.

After extracting raw visual features from all grids in the
dataset, we apply the “bag of words” method to represent
each event. The K-means algorithm is used to cluster the
color and SIFT features, respectively, where we obtain two
visual vocabularies ∆c and ∆t. In our experiments, we set
both vocabularies of size 500, thus the combined vocabulary
∆ = ∆c ∪ ∆t contains 1000 visual words. By accumulat-
ing all of the grids in an event (a collection of images), we
obtain two normalized histograms for an event, Xc and Xt,
corresponding to the word distribution of color and texture
vocabularies, respectively. Concatenating Xc and Xt, we
end up with a normalized word histogram:

� 1000
i=1 X(i) = 1.

Each bin X(i) in the histogram indicates the occurrence fre-
quency of the corresponding word.

4.2 GPS Trace Feature Extraction
Based on the GPS coordinates recorded for each individ-

ual image, an event is represented by a GPS-time trace:

Ti = {(xj , yj , tj)}
|Ti|
j=1 . Given such a GPS-time trace, we ex-

tract 11 temporal and 11 spatial features to characterize the
trace. We call these 22 GPS features structure similarity
features.

In terms of temporal features, we obtain a sequence of
timestamps {tj} and extract statistical features including
entropy, total duration, variance, skewness, and kurtosis of
{tj}. Furthermore, we utilize several features to characterize
the photo-taking behavior: (1) the maximum and median
time between two photos; (2) the maximum and median
distance between two photos; and (3) the maximum and
median traveling speed between two photos.

To extract additional spatial features, we first perform
principal component analysis (PCA) over a collection of
points {xi, yi} in the spatial domain in order to take out
the orientation variability. This is necessary normalization
because the absolute direction of movement should not mat-
ter. Based on the normalized distribution of the 2-d points
after PCA, we extract seven statistical features, which in-
clude the entropy of the 2-d distribution, two variances in
the two dimensions determined by PCA, two range values
(long and short axes) in the two dimensions, and the prod-
uct (area) and ratio (aspect) of the two eigenvalues. To



distinguish whether the trace is circular movement or linear
movement, we calculate the distance of each point to the
center (the average of all points). We then calculate the
entropy of this distance distribution. A small value of the
entropy indicates the event undergoes a circular movement.
Finally, we also compute the trace length, average moving
speed, and the area of the covered spatial extent.

It is interesting to notice that even without checking the
image content, such GPS trace features can help distinguish
some events, as qualitatively summarized in Table 1. Fur-
thermore, Fig. 3 shows sample traces of hiking and city-tour
events, respectively. Although these two types of events have
similar characteristics in terms of covered spatial range, they
are still distinguishable due to different trace shapes. We no-
tice that hiking usually has a more random pattern in the
spatial domain, where city tours may generate piecewise lin-
ear traces due to the constraint of the streets.

Table 1: How GPS traces can help distinguish different

types of events.
GPS Trace feature Event classes

large spatial ranges city-tour, hiking, road-trip
small spatial ranges backyard, beach,

ball-game, wedding

high moving speed road trip
low or medium moving speed city-tour, hiking, backyard,

beach, ball-game, wedding
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Figure 3: GPS traces of hiking (1st and 2nd rows)
and city-tour events (3rd and 4th rows). Each row
shows 3 event traces.

5. FEATURE DISCOVERY
5.1 From Feature Vectors to Transactions

Instead of using the word histogram feature X directly
to estimate the event class C, we consider a collection of
induced binary features, where each fi : X → {0, 1} is a
feature primitive associated with an individual histogram bin
X(i). For example, fi can be a decision stump:

fi(X) =

�
f+

i if X(i) ≥ θi

f−
i if X(i) < θi

, (1)

or

fi(X) =

�
fi if X(i) ≥ θi

∅ if X(i) < θi
, (2)

when only positive response is considered. Here fi(X) in-
dexes whether the ith word appears frequently in the his-
togram; θi ∈ R is the quantization threshold for fi. We call
fi the feature item associated with the feature primitive fi.

Suppose X contains P words, if only positive responses
are indexed, we have a item vocabulary Ω = {f1, f2, ..., fP }
containing P items; otherwise Ω = {f+

1 , f−
1 , ..., f+

P , f−
P } con-

taining 2P items. For each word distribution X, we can
generate a transaction representation:

T (X) = {f1(X), f2(X)..., fP (X)} ⊆ Ω,

according to the responses of P feature primitives. The in-
duced transaction dataset T = {Tt}

N
t=1 contains a collection

of N training samples, where each T corresponds to a data
sample X. By transforming continuous features X ∈ R

P

into discrete transactions, we can perform a traditional data
mining algorithm, such as frequent itemset mining [6].

5.2 Mining Compositional Rules
For each feature primitive fi, we can use it to predict the

class label. A primitive classification rule is thus in the form:

fi(X) = fi =⇒ Ĉ(X) = k,

where k ∈ {1, 2, ..., K} when considering K-class problem,

and Ĉ(X) is the predicted label of X. Since a classification
rule based on an individual f is usually of low accuracy, it
is our interest to find compositional feature F = {fi} ⊆ Ω,
which can be more accurate. We denote by F(X) = k a
compositional rule for predicting class k:

F ⊆ T (X) =⇒ Ĉ(X) = k, (3)

An optimal compositional rule F∗ ⊆ Ω should have the
best discriminative power, such that can minimize the train-
ing error. In spite of its clear definition, unfortunately, ex-
haustive search for F∗ is computationally demanding due
to the combinatorial complexity. For example, if each fi can
generate three possible outcomes: f+

i , f−
i , or ∅, the total

number of all possible compositional rules becomes 3P , con-
sidering P feature primitives. Thus efficient search methods
are required to make the feature selection process compu-
tationally feasible. Even worse, such a perfect rule F∗ may
not always exist in the case of noisy training data [13], where
positive and negative samples are not perfectly separable.
In such a case, we need to sacrifice the strict conditions of
selecting optimal F∗ for suboptimal ones. In other words,
instead of searching for perfect rule F∗, we search for a col-
lection of weaker rules Ψ = {Fi}. To this end, we follow the
compositional rule definition in [18].

Definition 1. (λ1, λ2)-compositional rule
A compositional rule F ⊂ Ω is called (λ1, λ2)-compositional
rule if ∃ k ∈ {1, 2, ..., K}, such that:

sup. : P (F) ≥ λ1

conf. : P (C(X) = k|F(X) = k) ≥ λ2 × P (C(X) = k)



In the above definition, λ1, λ2 ∈ R are parameters, and
P (C(X) = k) denotes the prior distribution of class k. Fol-
lowing the terms in data mining literature, we also call F as
a feature itemset, which is equivalent to a word combination
in the case of our visual vocabulary representation. Given
F , the transaction Tt, which includes F , is called an occur-
rence of F , i.e., Tt is an occurrence of F , if F ⊆ T (Xt). We
denote by T(F) the set of all occurrences of F in T, and
the frequency of an itemset F is:

frq(F) = |T(F)| = |{t : F ⊆ T (Xt)}|.

Suppose there are in total N transactions, the first con-

dition in Definition 1 requires that P (F) = frq(F)
N

≥ λ1,
which is the support requirement in mining frequent pat-
terns [6]. A rule of low support covers few training samples.
Such a classification rule has limited ability to generalize,
even if it can predict accurately on a low number of train-
ing samples. The second condition requires that the rule
is accurate enough for prediction, such that most covered
samples are correctly classified. This condition corresponds
to the confidence of a rule in data mining literature [6]. Dif-
ferent from traditional data mining methods, which usually
set a fixed confidence threshold, we take the class prior into
consideration to handle unbalanced training data.

As a justification of (λ1, λ2)-compositional rule, [18] shows
that Definition 1 can be developed into two weak conditions:

P (F(X) = k|C(X) = k) ≥ λ2 × P (F(X) = k), (4)

P (C(X) = k|F(X) = k) ≥ λ2 × P (C(X) = k). (5)

Such weak rules in Definition 1 have both descriptive and
discriminative power. It is proved in [18] that the training
error of (λ1, λ2)-compositional rules is bounded by

εF ≤
1

λ2
− λ1λ2P (C(X) = k).

Besides the guarantee of effectiveness, the other advantage
of defining the (λ1, λ2)-compositional rules derives from the
efficiency. As shown in [18], there is an efficient two-step
mining scheme to discover the qualified compositional rules,
despite of the combinatorial complexity. First, we perform
closed frequent itemset mining algorithm [6] to find candi-
dates Ψ′ = {F}, where each F ∈ Ψ′ is a frequent pattern
that satisfies the first condition in Definition 1, i.e., appear-
ing frequently in the whole dataset. After mining the fre-
quent patterns, we end up with (λ1, λ2)-compositional rules
Ψ ⊆ Ψ′ by further checking the prediction accuracy of F ,
i.e. the confidence requirements in Definition 1.

Specifically, the FIM algorithms tackle the combinator-
ial complexity by using the monotonic property of frequent
itemsets, where an infrequent itemset implies infrequent su-
per itemsets. In this paper we apply the FP-growth algo-
rithm to implement closed-FIM [5] for discovering frequent
patterns.

6. CLASSIFICATION AND FUSION OF GPS
AND VISUAL FEATURES

6.1 Multiclass AdaBoost
After discovering compositional features, we need to com-

bine them for final classification. Given a (λ1, λ2)-compositional
rule F predicting for class k, we can easily transfer it to
be a K-class classifier by randomly guessing the rest of the
classes. Formally, its K-class classification rule is:

F(X) =

�
k if F ⊆ T (X)
random otherwise

. (6)

Despite its accuracy in predicting class k, each F is still a
weak K-class classifier. Thus our target is a strong final
classifier based on weak classifiers F . Given a pool Ψ, we
follow the stagewise additive modeling with exponential loss
(SAMME) formulation for multiclass AdaBoost [20], which
selects a few F ∈ Ψ and linearly combines them for the final
classification.

The target of SAMME is the regression function g : X →
R

K , namely, g(X) = [g1(X), ..., gK(X)]T , where X is the
training data. In our formulation, the structure of the re-
gression function is a linear combination of some discovered
rules, where αm ∈ R is the weight:

g(X) =

M�
m=1

αmFm(X). (7)

The advantage of SAMME is its consistency with the
Bayes classification rule in minimizing the misclassification
error [20]:

arg max
k

g∗
k(X) = arg max

k
Prob(c = k|X). (8)

Moreover, compared with traditional multiclass boosting such
as AdaBoost.MH, which performs K one-against-all classi-
fications, SAMME performs K-class classification directly.
It only needs weak classifiers better than random guess (for
example, correct probability larger than 1/K), rather than
better than 1/2 as AdaBoost.MH requires. As a result, our
discovered F can naturally satisfy the requirement.

Conceptually, in the high-dimensional feature space R
d,

each compositional rule F covers a hyper-rectangle region in
R

d. Such a F is selected because (1) it covers enough train-
ing samples, both negative and positive; and (2) it has high
prediction accuracy, i.e., most samples in the covered region
belong to the same class. These compositional rules (sub-
space rectangles) will be boosted to approximate the data
distribution in R

d. Therefore the classification boundary is
piecewise linear in the d-dimensional space.

6.2 Confidence-Based Fusion
Once individual classifiers are built for each of the GPS

trace features and visual features, we can further combine
the results of such parallel classification through informa-
tion fusion. Given a query example X, the multiclass Ad-
aBoost classifier generates a vector output g(X), which we
can conceptually treat as probabilities. To fuse the two
output vectors from the GPS and visual modalities, we ac-
count for the reliability of each modality through confidence-
based fusion. For a learned classifier g(·), we first esti-
mate its confidence in predicting each of the K classes:
W (k) = P (C = k|g(X) = k). The weight can be computed
based on the confusion matrix of the corresponding modal-
ity (GPS trace or visual) of classification obtained through
the training phase. Given a query X, suppose its predic-
tion is Ĉ = arg maxk g(X), then we weight its prediction as

W (Ĉ)gk(X). The fusion of GPS and visual results is:

g(X) = W G(ĈG)gG(X) + W V (ĈV )gV (X), (9)

where gG(X) and gV (X) denote the output vector from GPS

and visual classifiers, respectively; ĈG, ĈV ∈ {1, 2, ..., K} is
the prediction from the GPS and visual modality, respec-
tively; W G(ĈG), W V (ĈV ) ∈ R are confidence weights.



7. EXPERIMENTS
Our goal is to recognize typical events reflected in per-

sonal photo collections, where each event corresponds to a
specific human activity taking place in a certain environ-
ment, and captured by a collection of images taken during

the event: Ei = {Ij}
|Ei|
j=1 , where Ij denotes an image. We

chose eight types of frequently occurring events with rea-
sonably distinctive visual characteristics, inspired by the tag
statistics revealed by Flickr.com: C = {backyard (including
park), ball-game, beach, city-tour, hiking, road-trip, skiing,
wedding}. They include both outdoor and indoor events.
In general, event recognition is more challenging and com-
plicated than scene recognition due to the higher semantics
involved - the visual content can vary dramatically from one
instance to another. Fig. 5 shows some event examples. For
each event E, it can be uniquely labeled with one of the eight
event classes: l(Ei) ∈ C. The experimental dataset contains
88 individual events, where each event contains a variable
number of 7 to 108 images. There are 3359 images in total
in the dataset, where 3126 of them contain geotags. We use
all of the images for mining visual features and those having
geotags for mining GPS trace features. Due to the limited
number of events (because accurate geotagging required a
few customized GPS-capable digital cameras unavailable in
the market), we perform a leave-one-out test to report all of
the results.

7.1 Compositional Feature Discovery
For both GPS and visual features, we set support thresh-

old λ1 = 0.08 = 1
2

maxk rk and the confidence threshold is
set as λ2 = 3, such that λ1λ2 = 0.24. For multiclass Ad-
aBoost, the iteration number of boosting is 150 for both GPS
and visual features. Namely our final classifier selects 150
compositional features from the discovered pool Ψ and lin-
early combines them using the weights determined through
boosting. The quantization parameters θi determine the
transactions and thus have large influences on the mining
and classification results. To carefully select θi, for each fea-
ture dimension X(i), we estimate its mean µi = E [X(i)] and
variance σ2 = V ar [X(i)]. We then set θi = µi+τ×σi, where
τ ≥ 0 is a global parameter decided though leave-one-out
cross validation. For the GPS features, considering there are
only 22 features, we select τ = 0 and apply standard decision
stumps as in Eq. 1. For the visual features, we apply the
simplified decision stumps (Eq. 2), which consider only pos-
itive responses to generate transactions for data mining. By
considering only positive responses in each decision stump,
we only apply a positive rule when a word (or word combina-
tion) appears frequently enough in the event, while negative
rules are ignored. We select τ = 1.2 (θi = µi+1.2σi) through
cross-validation.

Since the discovered compositional feature F can contain
an arbitrary number (≤ |Ω|) of items (or visual words), we
analyze the order distribution of the mined feature pool Ψ in
Table 2. It is interesting to notice that all of the discovered
and finally selected GPS features are high-order composi-
tional features, where each F is composed of at least two
or more feature primitives (|F| ≥ 2). This validates that
compositional features are more powerful compared with in-
dividual feature primitives. On the other hand, over 80%
of the discovered visual features are high-order ones, but
they only contribute around 1

3
in the final committee upon

boosting.

Table 2: Order distribution of the discovered composi-

tional features and the finally used ones. The values are

averaged by all of the leave-one-out tests.
Order # selected / mined (G) # selected / mined (V)

1 0/0 95.1/502.9
2 0.9/1.9 40.5/782.5
3 3.1/15.4 7.0/488.7
4 10.4/42.5 3.0/277.7
5 14.3/68.1 1.4/161.6
6 14.0/81.2 0.9/89.1
7 12.0/85.6 0.3/52.9
≥ 8 95.3/ 574.2 1.8/221.8
total 150/869.0 150/2577.1
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Figure 4: Distribution of mined and finally se-
lected compositional features regarding to eight
event classes.

In Fig. 4, we show the feature distributions regarding dif-
ferent event classes. In both GPS and visual cases, the se-
lected compositional features are roughly evenly distributed
with respect to the eight classes.

Table 3: Distribution of visual compositional features:

(1) in color modality, (2) in texture (SIFT) modality,

and (3) across color and texture (SIFT) modalities. The

values are averaged over all of the leave-one-out tests.
texture color cross total

# selected 79.3 69.9 0.8 150
# mined 1941.7 519.7 115.7 2577.1

In the visual mode, since both color and texture features
are extracted, the composed F may fuse feature primitives
from these two different modalities. To investigate how color
and texture (SIFT) information affect the visual classifica-
tion, we present in Table 3 the distribution of compositional
features in color, texture, respectively, and also across the
two modalities. In terms of the number of selected features,
both color and texture provide important information for
the visual classification. Also, it is interesting to note that
although a few compositional features across color and tex-
ture modalities are selected, very few of them eventually
contribute to the final committee through boosting.



7.2 Multiclass AdaBoost
In Table 4, we compare the performance of using only GPS

information and only visual information. Visual information
produces more reliable results (76.1%) compared with GPS
information (39.8%). The confusion matrix represents how
are samples of each class (in each row) classified into each
of the possible classes (each column). Therefore, a good
classifier should have a confusion matrix with most nonzero
values concentrated along the diagonal of the matrix.

Table 4: Boosting compositional features: class confu-

sion matrix of leave-one-out test results. Each row indi-

cates the classification results of the corresponding class.

Each element in the table shows the GPS/Visual results.

The accuracy of using GPS and visual features is 39.8%

and 76.1%, respectively.

G/V byd bgm bea cit hik rtp ski wed

byd 6/4 1/3 1/0 0/1 0/2 0/0 0/0 2/0
bgm 3/3 2/5 2/0 1/0 0/1 0/1 0/0 2/0
bea 3/0 4/1 0/10 0/0 0/0 0/0 1/1 3/0
cit 0/0 0/0 0/0 8/14 6/0 0/0 0/0 0/0
hik 0/1 0/0 0/0 6/0 7/13 0/0 0/0 1/0
rtp 0/1 0/1 0/1 0/0 0/0 11/8 0/0 0/0
ski 2/0 1/1 1/0 2/1 1/0 0/0 1/7 1/0
wed 3/1 5/2 0/0 0/0 0/0 0/0 1/0 0/6

Based on the confusion matrices, we calculate the confi-
dence weights of GPS and visual classifiers in Table 5. We
use these weights for the confidence-based fusion (akin to
using a Bayesian network [12]).

Table 5: Confidence regarding different event classes

using GPS and visual features.
byd bgm bea cit hik rtp ski wed

G 0.35 0.15 0.00 0.47 0.50 1.00 0.33 0.00
V 0.40 0.38 0.91 0.88 0.81 0.89 1.00 1.00

7.3 Confidence-Based Fusion
The overall performance of fusing GPS and visual infor-

mation is presented in Table 6. Road-trip is an example
where the GPS trace feature can help the visual feature.
Since road trips cover great distances, they have unique trace
features compared with the rest of the seven events. How-
ever, in terms of visual features, road-trip can be confused
with other classes. Skiing is a good example where the visual
features help the GPS features. In terms of GPS features,
skiing can cover either large or small spatial ranges depend-
ing on the actual activity. However, in terms of visual fea-
tures, it is easy to distinguish skiing from the other events.
Overall, the confusion mainly comes from the backyard and
ball-game events, which are difficult to distinguish by either
GPS or visual features.

Table 6: Overall performance by fusion GPS and vi-

sual results: class confusion matrix of leave-one-out test

results. The overall accuracy is 81.8%.
G+V byd bgm bea cit hik rtp ski wed

byd 5 2 0 1 2 0 0 0
bgm 3 5 0 0 1 1 0 0
bea 0 1 10 0 0 0 0 0
cit 0 0 0 14 0 0 0 0
hik 0 0 0 0 14 0 0 0
rtp 0 0 0 0 0 11 0 0
ski 0 0 0 2 0 0 7 0
wed 1 2 0 0 0 0 0 6

To further explain why fusing GPS and vision information
can boost the overall performance, we present the detailed
analysis of the 88 leave-one-out testing results in Table 7.
When both GPS and visual features produce correct results,
the final fusion is always correct. Moreover, since visual in-
formation is more reliable in our experiments, visual infor-
mation always helps GPS to get the correct results (41 out
of 41 times). On the other hand, five out of nine times, GPS
helps out when visual results are wrong, which validates that
our confidence-based fusion is effective in allowing weaker
predictions from different modalities to reinforce each other.
Unsurprisingly, when neither GPS nor visual information is
correct, fusion of them could not generate correct results.

Table 7: Fusion of GPS trace and visual features.
correct # / total # GPS correct GPS wrong

visual correct 26/26 41/41
visual wrong 5/9 0/12

A few event examples are presented in Fig. 5 to illustrate
how our overall approach outperforms its counterpart that
uses only visual information. our confidence-based fusion is
effective in allowing weaker predictions from different modal-
ities to reinforce each other (the correct classes are not at the
top but close to the top by the visual classifier in these cases).
In the backyard example (# 1), children played on the lawn
in the backyard. Using visual information alone, the visual
classifier misclassified the whole event as ball-game because
grass field is also common in ball games. However, with the
GPS trace carried by the pictures, the GPS trace classifier
is able to recognize that this is a backyard. After informa-
tion fusion, the final decision is that this event is a backyard
because our method learned that it is possible for a back-
yard event to contain pictures of green grass. In two other
examples (#3 and #4), the top class by visual features is
backyard, GPS traces help correct the final results (road-
trip and hiking) because the events covered a large spatial
extent. Another example (#2) is a hiking event where the
visual feature actually helps GPS. This hiking event was in-
deed within a smaller than usual area and thus is classified
as wedding according to the GPS trace.

8. CONCLUSION AND FUTURE WORK
We present a novel approach to event recognition that uti-

lizes both compositional visual features and GPS trace fea-
tures that characterize the underlying movement of an event.
This approach is effective for personal photo collections that
contain geotagged photos. As digital cameras with GPS ca-
pability become available in the market and more and more
people are geotagging their photos using other means, this
approach can potentially revolutionize photo annotations.
We are in the process of expanding both the event ontology
and dataset in order to fully reap the benefits. We also plan
to integrate this work with other brave new ways of manag-
ing the ever proliferating digital photos. For example, the
elegant work on ZoneTag [7], although designed for single
images instead of collections, is an effective way to suggest
annotation tags for GPS-capable camera-phones based on
the existing community tagging effort.
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