
Control Knowledge in Planning: Benefits and Tradeoffs

Yi-Cheng Huang
Department of Computer Science

Cornell University
ychuang@cs.cornell.edu

Bart Selman
Department of Computer Science

Cornell University
selman@cs.cornell.edu

Henry Kautz
Shannon Laboratory

AT&T Labs – Research
kautz@research.att.com

Abstract

Recent new planning paradigms, such as Graphplan
and Satplan, have been shown to outperform more tra-
ditional domain-independent planners. An interesting
aspect of these planners is that they do not incorpo-
rate domain specific control knowledge, but instead
rely on efficient graph-based or propositional represen-
tations and advanced search techniques. An alterna-
tive approach has been proposed in the TLPlan sys-
tem. TLPlan is an example of a powerful planner in-
corporating declarative control specified in temporal
logic formulas. We show how these control rules can
be parsed into Satplan. Our empirical results show up
to an order of magnitude speed up. We also provide a
detailed comparison with TLPlan, and show how the
search strategies in TLPlan lead to efficient plans in
terms of the number of actions but with little or no
parallelism. The Satplan and Graphplan formalisms
on the other hand do find highly parallel plans, but
are less effective in sequential domains. Our results
enhance our understanding of the various tradeoffs in
planning technology, and extend earlier work on con-
trol knowledge in the Satplan framework by Ernst et
al. (1997) and Kautz and Selman (1998).

Introduction

In recent years, there has been a burst of activity in
the planning community with the introduction of a
new generation of constraint and graph-based meth-
ods, such as graphplan and satplan (Blum and Furst
1995; Kautz and Selman 1996; Kambhampati 1997;
Weld 1999). These planners are domain-independent
and outperform more traditional planners on a range
of benchmark problems. The surprising effectiveness of
these planners represents a departure from the long held
believe that the use of domain-specific planning control
knowledge is unavoidable during plan search. Neverthe-
less, control knowledge has the potential to significantly
increase the performance of the new planners. In fact
the constraint-based framework behind graphplan and
satplan allows one, at least in principle, to incorporate

Copyright c⃝1999, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

control knowledge in a purely declarative manner by
encoding the control as additional constraints.

A recent example of the effectiveness of declarative
control knowledge is the TLPlan system by Bacchus
and Kabanza (1996; 1998). In the TLPlan system, con-
trol knowledge is represented by formulas in temporal
logic. For example, the “next” operator from temporal
logic allows one to specify what can and cannot happen
at the next time step. The control knowledge is used to
steer a forward chaining planner. One of the surprises
of this system is that, despite the rather basic search
method, with the right control knowledge, the system
is highly efficient on a range of benchmark problems,
often outperforming Graphplan and Blackbox (Black-
box is the latest version of the Satplan system (Kautz
and Selman 1999); Bacchus and Kabanza 1998). Of
course, in this comparison Graphplan and Blackbox ran
without any control; in addition, developing the right
control formulas for TLPlan is a non-trivial task.

As Bacchus and Kabanza point out, the forward
chaining approach is a good match with the declara-
tive control specification. At each node in the search
tree, the control formula is evaluated to determine what
new nodes are reachable from the current state. With
good control knowledge, many nodes are pruned and
the search is “pushed” towards the goal state. To give
some intuition as to how this is achieved, note that
the control rules can encode information about the dif-
ference between the current state and the goal state
by using a predicate that states, for example, “package
currently not at goal location.”

One interesting research question is whether the same
level of control can be effectively incorporated into the
Graphplan or Blackbox style planner. This is a non-
trivial question because TLPlan’s efficiency stems from
the tight coupling between the pruning rules and the
forward chaining search strategy. In addition, TLPlan
allows for almost arbitrary complex control formulas
that can generally be evaluated efficiently at each node
(the process is in general intractable but in practice it
appears efficient for control information Bacchus and
Kabanza 1998). In the Graphplan or Blackbox frame-
work the search proceeds very differently. The planning
task is captured as a set of constraints mapped out over



a fixed number of time steps. In Graphplan, the con-
straints are captured in a planning graph, which is sub-
sequently searched for a valid plan. In Blackbox, the
constraints are translated into a propositional formula
(CNF), which can be searched with a satisfibility tester
of the user’s choice. In any case, in both Graphplan and
Blackbox, the search does not proceed through a set of
well-defined world states. In fact, the search may even
involve as intermediate states states that are unreach-
able from the initial state or even physically impossible.
Especially in Satplan the search is difficult to character-
ize, because the problem is reduced to a generic propo-
sitional representation, without an explicit link to the
original planning problem. The SAT solvers proceed
in finding a truth assignment for the encoding (corre-
sponding to a valid plan) without taking into account
the fact that the encoding represents a planning prob-
lem (Baioletti et al. 1998; Ernst et al. 1997; Kautz and
Selman 1998).

One way to incorporate the control knowledge from
TLPlan into a Satplan encoding is by specifying addi-
tional constraints. We have extended the PDDL plan-
ning input language (McDermott 1998) of the Blackbox
planner to allow for plan control as specified in tempo-
ral logic formulas.1 The control knowledge is automat-
ically translated into a class of additional propositinal
clauses, which are added to the planning formula. We
will discuss below the kinds of control that can be ef-
ficiently translated into a set of constraints, as well as
the rules that cannot be captured efficiently.

Using a detailed experimental evaluation, we will
show that control knowledge can indeed speed up the
plan search significantly in the Blackbox framework.
We also provide a detailed comparison with TLPlan.
As we will see, our planner becomes competitive with
the TLPlan performance. Initially, this was somewhat
of a disappointment to us because we assumed that the
Blackbox framework with control should be able to out-
perform TLPlan with the same control. However, a
closer inspection of the results clarified the difference
in approaches.

TLPlan is good at finding plans with a relatively few
actions but it does not do well in domains that allow
for parallel actions. In particular, we studied the logis-
tics planning domain. This domain involves the task
of delivering a set of packages to a number of differ-
ent locations using one or more planes and vehicles.
When several planes are available, one can find parallel
plans, where different packages are moved using differ-
ent planes simultaneously, allowing one to minimize the
overall time span of the plan. Much of the combina-
torics of the domain arises from the problem of finding
good ways to interleave the movements of packages and
planes. The sophisticated control in TLPlan will dra-
matically narrow the search. However, combined with
the depth-first forward chaining strategy, the planner
generates highly sequential plans. In fact, on the larger

1Source code and data available from the first author.

problems, the plan will use a single plane to deliver all
packages. (Such plans can actually be found in poly-
nomial time.) Blackbox, on the other hand, naturally
searches for the shortest parallel plan because it oper-
ates by searching plans that fit within a certain number
of time steps. So, although both planners with con-
trol find plans in comparable amounts time, Blackbox
produces plans that have a much higher level of paral-
lelism, thereby tackling the true combinatorial nature
of the underlying planning problem. It is not clear how
TLPlan can be made to generate more parallel plans.
(We decribe several attempts to increase TLPlan’s par-
allelism below.) Which planner should be preferred will
depend on one’s application and the level of inherent
parallelism in the domain.

We believe our analysis provides new insights into the
relative performance of different state-of-the-art plan-
ning methods. We hope that our findings can be used to
further enhance these methods, and in general deepen
our understanding of the design space of planning sys-
tems (Kambhampati 1997).

Temporal Logic for Control
In TLPlan the control knowledge is encoded in temporal
logic formulas (Bacchus and Kabanza 1996; 1998). The
best way to introduce this approach is by considering
an example control formula:

(∀ [p : airplane(p)]∃ [l : at(p, l)]
∀ [o : in wrong city(o, l)] in(o, p) ⇒ ⃝ in(o, p))

In temporal logic, f means f is true in all states from
the current state on and ⃝f means f is true in the next
state. Therefore, the above formula can be read as “If a
package o is in airplane p, p is at location l, and l is not
in o’s goal city, then package o should stay in airplane
p in the next time step”, and the above sentence should
“always” hold. Predicate in wrong city is defined as
follows:
in wrong city(o, l) ≡
∃ [g:GOAL(at(o, g))] ∃ [c : in-city(l, c)] ¬in-city(g, c)
After careful review of the control rules used by Bac-

chus and Kabanza, we found that the rules can be clas-
sified into the following categories:
I Control that involves only static information deriv-

able from the initial state and goal state;
II Control that depends on the current state and can be

captured using only static user-defined predicates;
III Control that depends on the current state and re-

quires dynamic user-defined predicates.
The meaning of these categories may not be immedi-
ately obvious. Hopefully, the detailed examples below
will clarify the distinctions. We will focus on two differ-
ent ways of incoporating control: by pruning the plan-
ning graph (rules from category I), and and by adding
additional propositional clauses to the planning formula
(rules from categories I and II). The rules in catergory
III cannot be captured compactly.



Control by Pruning the Planning Graph
Graphplan constructs a special graph structure, called
the planning graph, from the initial plan specification.
Graphplan uses this graph to search for a plan leading
from the intial state to the goal state. Blackbox trans-
lates the graph into a propositional encoding and then
uses various SAT solution methods to search for a sat-
isfying assignment, which corresponds to a plan. (This
strategy closely mimics the original Satplan approach
using linear encodings generated directly from a set of
logical axiom schemas.) The planning graph contains
two types of nodes, proposition nodes (“facts”) and ac-
tion nodes, arranged into levels indexed by time.

We can use a control formula to directly prune nodes
in this planning graph. Consider the following control
rule (category I) in the logistics domain.
Rule 1 Do not unload an object from an airplane un-

less the object is at its goal destination.
To illustrate this rule, suppose object obj-1 is initially
located in city A and its destination location is in city
C. Once obj-1 is loaded into an airplane plane-1, it is
not necessary to unload obj-1 at the airports in cities
other than C. In other words, action (UNLOAD-AIRPLANE
obj-1 plane-1 B-airport) can be removed from the
planning graph at all levels (provided that B is another
city). After pruning these nodes, one can also prune,
facts nodes (at obj-1 B-airport), since this cannot
be achieved by any other action except for the one we
just pruned.

In constructing the planning graph, the planner can
be instructed to prune action nodes in the plan-graph as
implied by the category I rules. In our implementation,
rule #1 is captured by augmenting the original PDDL
(Mcdermott 1998) planning language as follows:

(:action UNLOAD-AIRPLANE
:parameters (?obj ?airplane ?loc)
:precondition

(and (obj ?obj) (airplane ?airplane)
(location ?loc) (in ?obj ?airplane)
(at ?airplane ?loc))

:effect
(and (not (in ?obj ?airplane))

(at ?obj ?loc)))

(:defpredicate in_wrong_city
:parameters (?obj ?loc)
(exists (?goal_loc)
(goal (at ?obj ?goal_loc))

(exists (?city) (in-city ?loc ?city)
(not (in-city ?goal_loc ?city)))))

(:action UNLOAD-AIRPLANE
:exclude (in_wrong_city ?obj ?loc))

The user-defined predicate in wrong city is used to
determine whether a location is the goal location for
an object. It is worth noting that the value for pred-
icate in wrong city can be decided purely based on

the information in the goal state. The instantiated ac-
tion UNLOAD-AIRPLANE will not be added to the plan-
ning graph when the predicate (in wrong city ?obj
?loc) is true. (Note the “exclude” condition in the
UNLOAD-AIRPLANE rule.) The in wrong city predicate
is purely an auxiliary predicate, it is not incorporated
in the final planning graph.

Before an instantiated action is added into the graph,
it will be checked against all exclude conditions for that
action; if any of them holds, the action will be pruned
and the effects introduced by that action at the next
proposition node level may be pruned as well.

Table 1 shows the planning graph size before and af-
ter pruning. We see that, in the logistics domain, when
applying the category I control rules from TLPlan, the
number of nodes is reduced by ≈40%.

problem length #nodes #nodes
orig. w. pruning

log-a 11 4246 2825
log-b 13 5177 3437
log-c 13 6321 3815
log-d 14 9842 5135

Table 1: The effect of graph pruning (category I rules).

This approach can be easily applied to the descen-
dants of Graphplan and Blackbox. However, pruning
of the planning graph does require that the rules rely
solely on information of the goal state and possibly the
initial state. Adding new propositional clauses provides
a more powerful mechanism for adding control.

Control by Adding Constraints
For some domain-specific knowledge, which cannot be
captured via pruning of the planning graph, we can
often add additional clauses to the propositional plan
formulation as used in Blackbox to capture the control
information. Consider the following control rule (cate-
gory II):

Rule 2 Do not move an airplane if there is an object
in the airplane that needs to be unloaded at that
location.

First note that this rule cannot be captured using graph
pruning. For example, consider removing the node
(FlY-AIRPLANE plane-1 city1 city2) node in layer
i (i.e., time i). Whether this can be done would de-
pend on the truth value of the predicates that indicate
what is in plane-1 at time t, but of course, those truth
values are not known in advance and are actually dif-
ferent for different plans. Therefore the node cannot
be removed from the graph without the risk of losing
certain plans. What we need to do is add clauses to the
formula that in effect capture the rule but depend also
on truth values of the propositions that indicate what
is in the plane.

Logically, the rule can be illustrated as follows:



∀ pln, loc ∀[obj : (not (in wrong city(obj, loc)))]
(at(pln, loc, i) ∧ in(obj, pln, i)) ⇒ at(pln, loc, i + 1)

The following shows how to translate the above rule in
our implementation:
(:wffctrl w3
:scope
(forall (?pln) (airplane ?pln)

(forall (?loc) (airport ?loc)
(forall (?obj) (obj ?obj)

(not (in_wrong_city ?obj ?loc))
)))

:precondition
(and (at ?pln ?loc) (in ?obj ?pln))

:effect (next (at ?pln ?loc)))

The :scope field defines the domain where the rule
applies, while :precondition and :effect fields repre-
sent the antecedent and consequent for the implication
expression which will be added to the propositional for-
mula. As mentioned earlier, predicate in wrong city
is only used by the system and it will not be added into
the formula.

Similary, we can also translate rule #1 into proposi-
tional form:
(:wffctrl wg6
:scope
(forall (?pln) (airplane ?pln)

(forall (?obj) (obj ?obj)
(forall (?loc) (airport ?loc)

(in_wrong_city ?obj ?loc)
)))

:precondition
(and (at ?pln ?loc) (in ?obj ?pln))

:effect (next (in ?obj ?pln)))

before simpl. after simpl.
Problem length pruning prop. pruning prop.

#vars #vars #vars #vars
rocket-a 7 1004 1337 826 826
rocket-a 7 1028 1413 868 868

log-a 11 2175 2709 1505 1511
log-b 13 2657 3287 2182 2182
log-c 13 3109 4197 2582 2590
log-d 14 4241 6151 3547 3551
log-e 15 5159 7818 4285 4285

Table 2: Comparison between planning graph pruning
and propositional control of category I control rules.

One important observation about the application of the
above rule is that the predicate in wrong city does
not need to be added to the formula. It simply func-
tions as a filter (indicated by the “scope” keyword)
for adding the clauses defined by :precondition and
:effect part. By doing so we do not lose any informa-
tion because the in wrong city is static (independent
of current state) and completely defined by the goal
state. For example, if the goal destination of package1

is in city A, it follows that (in wrong city package1
B) is true, independent of the current state. Below, we
will see that category III rules involve defined predicates
that do not have this property.

One reasonable question to consider is how adding
rules of category I using additional clauses compares to
the graph pruning approach discussed earlier. In the
table 2, we consider the planning formulas as created
from the planning graph. (We used the 6 category I
control rules from TLPlan.) The first two columns give
the number of variables for the two different strategies.
As might be expected, planning graph pruning strategy
gives the smallest number of variables. However, we
also included the result of running a polynomial time
simplification procedure (Crawford 1994). As can be
seen from the last two columns, the remaining numbers
of variables are identical for most formulas, with only
some small differences for certain instances. When we
checked into the remaining differences, we found that
those result from some specialized additional pruning
Blackbox does specifically for the final layer of the plan-
ning graph. Overall, table 2 shows that direct graph
pruning or a coding via additional clauses leads to for-
mulas on essentially the same set of variables. (We also
verified that the variables actually refer to the same
planning propositions in terms of the original planning
problem.) As a result, the two mechanisms are essen-
tially equivalent, although they do capture the plan-
ning problem using a different clause set. Below we
will compare the computational properties of these two
approaches.

Rules With No Compact Encoding
We now consider the category III rules. Although these
rules can be translated into additional propositional
constraints in principle, they do lead to an impracti-
cal number of large clauses to be added to the formula.
Consider the following rule from TLPlan:
Rule 3 Do not move a vehicle to a location unless, (1)

the location is where we want the vehicle to be in
the goal, (2) there is an object at that location that
needs to be picked up, or (3) there is an object in the
vehicle that needs to be unloaded at that location.

The main purpose of rule #3 is to avoid unnecessary
move of vehicles. First of all, the rule requires cur-
rent state information, and therefore cannot be handled
by graph pruning. Secondly, in order to translate the
rule into propositional constraints, we need to intro-
duce extra predicates to represent the idea that there
is an object in the destination location that needs to
be loaded or unloaded by the vehicle. For example, in
order to avoid unnecessary move of airplanes (a form of
vehicle), one way to to encode it is to define predicate
need to move by airplane for each airport first:
∀apt ∀[obj : in wrong city(obj, apt)]

at(obj, apt, i) ⇒ need to move by airplane(apt, i)
∀apt need to move by airplane(apt, i) ⇒
∃[obj : in wrong city(obj, apt)] at(obj, apt, i)



blackbox blackbox(Ia) blackbox(Ib) blackbox(II) blackbox(Ia&II) blackbox(Ib&II)
Problem length time time time time time time
rocket-a 7 2.06 4.20 3.41 2.10 3.92 3.82
rocket-b 7 2.87 2.09 2.46 3.26 1.85 2.49

logistics-a 11 3.80 2.78 3.64 3.74 2.78 3.63
logistics-b 13 4.83 3.46 4.56 4.75 3.41 4.66
logistics-c 13 6.75 3.89 5.64 6.71 3.94 5.81
logistics-d 14 15.85 7.29 10.4 15.69 6.82 10.23
logistics-e 15 3522 151 201 2553 60 148

logistics-1 9 4.80 3.68 4.97 4.83 3.70 4.98
logistics-2 11 406 >7200 270 360 130 141

tire-a 12 1.37 1.34 1.35 1.36 1.33 1.34
tire-b 30 114 93 72 55 21 23

Table 3: Blackbox with control knowledge. Experiments were run on a 300Mhz Sparc Ultra. Times are given in cpu
seconds.

Ia: Category I control knowledge used for pruning planning graph.
Ib: Category I control knowledge added in propositional form.
II: Category II control knowledge added in propositional form.

Similarly, we can also define an extra predicate
need to unload by airplane. And finally, we will need
the following to translate the rule:
∀pln ∀[apt1, apt2, (not (= apt1 apt2))]

(at(pln, apt1, i)∧
¬need to unload by airplane(apt2, i)∧
¬need to move by airplane(apt2, i))
⇒ ¬at(pln, apt2, i + 1)

Suppose there are n objects, m cities, and k airplanes.
The encoding will introduce O(mn) predicates and
O(mn + km2) propositional clauses in each time step.
Furthermore, some of them are lengthy clauses, contain-
ing up to mn number of literals. We explored adding
this kind of control information to our formulas but, ex-
cept for the smallest planning problems, the formulas
become too large for our SAT solvers. The key differ-
ence with a category II rule (such as rule #2) is that in
this case we also need to add clauses that capture our
defined predicates, such as need to move by airplane.
This is in contrast with the encoding of, e.g., rule #2,
where, because of the static nature of the defined pred-
icates, they can simply be used as a filter when adding
clauses (see discussion on :scope above). This cannot
be done for our need to move by airplane because its
truth value depends on where a package is at the current
time. As a consequence, the category III rules are ex-
amples of rules that cannot effectively be captured into
a constraint-based planner, such as Blackbox. Fortu-
nately, as we will see below, in terms of computational
efficiency the category I and II rules appear to do most
of the work, at least in the domains we considered. An
interesting research question is whether there is a more
effective way to encode rules such as rule #3.

Empirical Evaluation
The testbed used in this paper is a series of problems
from the logistics planning domain and the rocket do-

main (Veloso 1992; Blum and Furst 1995; Kautz and
Selman 1996; Mcdermott 1998), and the tire-world do-
main from the TLPlan distribution (Bacchus and Ka-
banza 1998). In addition, we created two new prob-
lem instances: logistics-1 and logistics-2, which can be
solved with highly parallel plans (up to 20 actions in
parallel).

Table 3 gives the result of Blackbox running on prob-
lems with different levels of domain knowledge. The col-
umn labeled “Blackbox” gives the runtime without any
control knowledge. Subsequent columns give results for
the different control strategies. (Results of randomized
solvers were averaged over 10 runs. We used 6 category
I rules and 5 category II rules.) As a general observa-
tion, we note that the effect of control knowledge be-
comes more apparent for the larger problem instances.
For example, on our hardest problem, “logistics-e”, ba-
sic Blackbox takes almost one hour, but with control
(catergory Ia & II) it only takes 60 seconds. The re-
sults on the larger instances are more significant than
those for the smaller problems, because the solution
times on the smaller instances are often dominated by
basic I/O operations such as reading the formula from
disk, as opposed to the actual compute time for solving
the formulas.

Based on the table, we can make the following obser-
vations:

• Control information does reduce the solution time,
especially on the harder problem instances. Consider
the data on logistics-e, logistics-2, and tire-b.

• Control category I rules, encoded via graph prun-
ing and as additional clauses (columns Ia &Ib) lead
to roughly the same speedup on the larger prob-
lems. One notable exception is the logistics-2 prob-
lem, where the solution time actually goes up for
strategy Ia. This is most likely a consequence of the
fact that clauses are eliminated by the pruning, lead-



tlplan-dfs blackbox(Ia&II) tlplan-rand-dfs
problem length #action time length #action time length #action time

logistics-a 13 51 0.49 11 72 2.78 15 57 0.66
logistics-b 15 42 0.4 13 71 3.41 15 46 0.43
logistics-c 17 51 0.64 13 83 3.94 15 55 0.72
logistics-d 26 70 2.13 14 104 6.82 18 75 2.43
logistics-e 24 89 4.27 15 107 60 23 96 4.57
logistics-1 15 44 0.9 9 77 3.70 15 49 1.01
logistics-2 29 93 33.16 11 147 130 16 100 34.52

Table 4: Comparison between TLPlan and Blackbox.

ing to less propagation in the SAT solver. We do
not see this problem when the knowledge is added
via additional clauses (Ib), which therefore appears
to be a more robust strategy. The smaller problems
instances are already solved within a few seconds by
basic Blackbox: not much can be gained from con-
trol (again, partly because I/O dominates the overall
times).

• Category I rules are most effective on problems from
the logistics domain; category II rules are more effec-
tive in the tireworld. One interesting research issues
is whether one can identify in advance which kinds
of rules are most effective. (Measurements such as
clause-to-variable ratios and degree of unit propaga-
tion may be useful here.)

• The effect of control is largely cumulative. Our
category I rules combined with category II lead to
the best overall performance (see columns Ia&II and
Ib&II).

Next, we compare the performance of TLPlan and
Blackbox. Table 4 gives our results. We note that, in
general, TLPlan is still somewhat faster than Blackbox
with similar control. Note that both planners now use
the same control information except for some category
III rules in TLPlan. However, the differences are much
smaller than with the original Blackbox without control
(Table 3 and Bacchus and Kabanza 1998). We believe
these results demonstrate that we can meet the chal-
lenge, proposed by Bacchus and Kabanza, to effectively
incorporate declarative control as used in TLPlan into
a constraint-based planner. Nevertheless, as noted in
the introduction, we were somewhat disappointed that
Blackbox with control was not faster than the TLPlan
approach, given the more sophisticated search of the
SAT solvers. In order to get a better understanding of
the issues involved, we consider the plan quality of the
genrated plans.

Table 4 gives plan length in terms of number of ac-
tions and parallel time steps for the logistics domain.
Note that the logistics domain allows for a substantial
amount of parallelism because several planes can fly si-
multaneously. We see that TLPlan often finds plans
with fewer actions; however, in term of parallel lengths
the plans are much longer than those found by Black-
box. In fact, Blackbox because of its plan represen-

tation can often find the minimal length parallel plan.
Especially on the larger problems, we observe a sub-
stantial difference. For example, on logistics-e, TLPlan
requires 24 time steps versus 15 for Blackbox. After a
closer look at the plans generated by TLPlan, we found
plans that only use a single plane to transport the pack-
ages. Such plans can be found very fast (polynomial
time) but ignore much of the inherent combinatorics
of the domain. The reason TLPlan finds such plans is
a consequence of its control rules and the depth-first
search strategy.

It is not clear how one can improve the (parallel)
quality of the plans generated by TLPlan. Part of the
difficulty lies in the fact that the control knowledge is
taylored towards more sequential plans. For example,
rules that keep a plane from flying if there are still pack-
ages to be picked up at a location. (This prevents a plan
where another plane picks up the package later.) In ad-
dition, the depth-first style search also tends to steer
the planner towards more sequential plans (e.g., always
picking plane-1 to move). We experimented with sev-
eral different search strategies to try to improve the
plans generated by TLPlan. First, we checked wether
the parallel quality of plans obtained with breadth first
search was better. This does not appear to be the case.
(We could only check this on very small instances, be-
cause the search quickly runs out of memory.) An ap-
proach that does lead to some improvement is to ran-
domize the depth-first search. Table 4 shows some im-
provement in parallel length but still not close to the
minimal possible. The reason for the improvement is
that TLPlan now can pick different planes more easily
in its branching. (The deterministic depth-first search
repeatedly selects planes in the same order.) It is an
interesting question how TLPlan can be made to find
more parallel plans and how this would affect its per-
formance.

Conclusions

Intuitively speaking, the control in TLPlan attempts to
push the planning problem into a polynomial solvable
problem. This is along the lines of the general focus
in planning on eliminating or avoiding search as much



as possible.2 TLPlan achieves its objective in a very
elegant manner because the control rules are quite in-
tuitive and purely declarative. In combination with the
forward chaining planner, the rules do lead to polyno-
mial scaling in a number of interesting domains. Our
analysis shows that there is a price to be paid for this
gain in efficiency, which is the loss of much of the par-
allel nature of many planning tasks.3

We have shown that one can obtain the benefits of
the control rules in terms of efficiency, without paying
the price of reduced parallelism, by incorporating the
control rules in the Blackbox planner. In a sense, the
SAT solvers in Blackbox still tackle the combinatorial
aspect of the task but the extra constraints provide sub-
stantial additional pruning of the search space.

We implemented the system by enhancing the Black-
box planner with a parser for temporal logic control
rules, which are translated in additional propositional
clauses. We also showed that a subset of the control
(category I rules) can also be handled by direct prun-
ing of the planning graph. Our experimental results
show a speedup due to the search control of up to or-
der of magnitude on our problem domains. Given the
effectiveness of the control, it would be interesting to
add further constraints, such as state invariants (Fox
and Long 1998; Gerevini and Schubert 1998; Kautz and
Selman 1998).

We believe our work demonstrates that declarative
control knowledge can be used effectively in constraint-
planners without loss of (parallel) plan quality. Com-
pared to TLPlan, which is a highly efficient planner in
and of itself, the main advantage of our approach is
that we maintain parallel plan quality. Overall, incor-
porating declarative control in constraint-based plan-
ning appears to be a promising research direction. With
more sophisticated control, another order of magnitude
speedup may be achievable.

Another fascinating direction for future research is
the possible use of rule-based learning techniques for ac-
quiring control knowledge automatically by “training”
the planner on a sequence of smaller problems. Learn-
ing of control knowledge has been explored previously
for other, more procedural, planners. See, for exam-
ple, Etzioni (1993), Knoblock (1994), Minton (1988),
and Veloso (1992). We are currently exploring forms of
control rule learning in our declarative constraint-based
framework.

Acknowledgements We thank Fahiem Bacchus,
Carla Gomes, Dana Nau, and Dan Weld for many useful
comments and suggestions. The second author received
support from by an NSF Career grant and a Sloan Fel-
lowship.

2Austin Tate is said to have said “If you need to search,
you’re dead.”

3Given that these planning problems are NP-complete,
it is clear that something will be lost by solving them in
polynomial time.

References
Bacchus, F. and Kabanza, F. (1996). Using temporal logic

to control search in a forward-chaining planner. In New
Dir. in Planning, M. Ghallab and A. Milani (Eds.), IOS
Press.

Bacchus, F. and Kabanza, F. (1998). Using Temporal
Logics to Express Search Control Knowledge for Plan-
ning. See http://www.lpaig.uwaterloo.ca/˜fbacchus/on-
line.html.

Baioletti, M. , Marcugini, S., and Milani, A. (1998). C-
SATPlan: a SATPlan-based tool for planning with con-
straints. AIPS-98 Wrks. on Planning as Combinatorial
Search, Pittsburgh, PA.

Blum, A. and Furst, M.L. (1995). Fast planning through
planning graph analysis. Proc. IJCAI-95 , Canada.

Crawford, C. (1984). Compact: A fast simplifier of Boolean
formulas. Available via Crawford’s web page.

Ernst, M.D., Millstein, T.D., and Weld, D.S. (1997). Au-
tomatic SAT-compilation of planning problems. Proc.
IJCAI-97 , Nagoya, Japan.

Etzioni, Oren (1993). Acquiring search-control knowledge
via static analysis. Artificial Intelligence, 62(2), 255–302.

Fikes, R. E., and Nilsson, N. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artificial Intelligence 5(2): 189-208.

Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM. Forthcoming.

Geffner, H. (1998). HSP: Heuristic Search Planner, Work-
ing notes of the Workshop on Planning as Combinatorial
Search, Pittsburgh, PA, 1998.

Gerevini, A. and Schubert, L. 1998. Inferring state con-
straints for domain-independent planning. Proc AAAI-
98, Madison, WI.

Kambhampati, S. (1997). Challenges in bridging plan syn-
thesis paradigms. Proc. IJCAI-97 , Nagoya, Japan.

Kautz, H. and Selman, B. (1992). Planning as satisfiability.
Proc. ECAI-92, Vienna, Austria, 359–363.

Kautz, H. and Selman, B. (1996). Pushing the envelope:
planning, propositional logic, and stochastic search. Proc.
AAAI-1996, Portand, OR.

Kautz, H. and Selman, B. (1998). The role of domain-
specific axioms in the planning as satisfiability framework.
Proc. AIPS-98, Pittsburgh, PA.

Kautz, H. and Selman, B. (1999). Unifying SAT-based and
Graph-based planning. Proc. IJCAI-99, to appear.

Knoblock, C. (1994). Automatically generating abstrac-
tions for planning. Artificial Intelligence 68(2).

Koehler, J., Nebel, B., Hoffmann, J., and Dimopoulos, Y.
(1997). Extending planning graphs to an ADL subset.
Proc. 4th European Conf. on Planning, S. Steel, ed., vol.
1248 of LNAI, Springer.

McDermott, D., et al. (1998). PDDL — the planning do-
main definition language. Draft.

Minton, S. (1988). Quantitative results concerning the util-
ity of explanation-based learning. Proc. AAAI-88, St.
Paul, MN, 564–569.

Veloso, M. (1992). Learning by analogical reasoning in gen-
eral problem solving. Ph.D. Thesis, CMU, CS Techn.
Report CMU-CS-92-174.

Weld, D. et al. (1999). Recent advances in AI planning. AI
Magazine (to appear). Available from author’s web site.


