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Abstract

It is well known that the performance of a stochastic local
search procedure depends upon the setting of its noise pa-
rameter, and that the optimal setting varies with the prob-
lem distribution. It is therefore desirable to develop general
priniciples for tuning the procedures. We present two sta-
tistical measures of the local search process that allow one
to quickly find the optimal noise settings. These properties
are independent of the fine details of the local search strate-
gies, and appear to be relatively independent of the structure
of the problem domains. We applied these principles to the
problem of evaluating new search heuristics, and discovered
two promising new strategies.

Introduction

The performance of a stochastic local search procedure crit-
ically depends upon the setting of the “noise” parameter
that determines the likelihood of escaping from local min-
ima by making non-optimal moves. In simulated annealing
(Kirkpatrick et al. 1983, Dowsland 1993) this is the tem-
perature; in tabu search (Glover 1986, Glover and Laguna
1993), the tenure (the length of time for which a modified
variable is tabu); in GSAT (Selman et al. 1992), the random
walk parameter; and in WSAT (also called “walksat”, Sel-
man et al. 1994), the parameter is simply called noise. The
optimal noise parameter setting depends both upon charac-
teristics of the problem instances, and on the fine-grained
details of the search procedure, which may be influenced
by other parameters. It requires considerable effort to find
the optimal noise parameter setting for a given problem
distribution using trial-and-error. Furthermore, sometimes
one is faced with a unique, difficult problem to solve, and
therefore cannot tune the noise by solving similar problems.
Thus it would be extremely desirable to find a way to set the
noise parameter that does not vary with the particular search
algorithm or the particular problem instance.
This paper presents empirical evidence that such useful

invariants (i.e., properties that hold across strategies and do-
mains) do indeed exist. We first studied six variations of the

basic WSAT architecture on a class of hard random prob-
lem instances. Based on this study we uncovered two in-
variants. First, for a given problem class, the “noise level”
measured by the objective function value (the number of
unsatisfied clauses) at the optimal parameter settings was
approximately constant across solution strategies. We call
this the “noise level invariant”. We also discovered an even
more general principlewhich shows that the optimal param-
eter setting is one that approximately minimizes the ratio of
the objective function's mean to its variance. We will show
how this “optimality invariant” can be used to tune the noise
parameter for a unique problem instance, without having to
first solve that instance or a similiar one. As we will see,
the optimal value of the noise parameter for a given strat-
egy can be quickly and accurately estimated by analyzing
the statistical properties of several short runs of the strategy.
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In order to verify that these invariants are not simply
due to special properties of random instances, we then con-
firmed our findings on highly structured instances from the
domains of planning and graph coloring.
The results presented in this paper provide immediate

practical guidelines for parameter tuning for WSAT and
its variants. We further hypothesize that the same invari-
ants hold across other classes of local search procedures,
because the variants of WSAT we considered were in fact
based on some of these other procedures: for example, a
tabu version, a GSAT-like version, and so on. Confirming
this hypothesis will require future work. Our results also
suggest that the invariants we observed may hold in gen-
eral, because the domains we considered were so distinct in
other aspects. Along with the presentation of the empirical
results we will also discuss intuitive explanations as to why
these invariants may hold. The current state of the theory
of local search does not allow one to analytically derive the
existence of these invariants, and we present the develop-
ment of such a predictive framework as a challenge to the
theory community.
Another practical consequence of our work is that it can

be used to help design new local search heuristics. It can be
very time-consuming to empirically evaluate a suggested



heuristic. Because local heuristics are so sensitive to the
setting of their noise parameter, one can only rule out a
heuristic if it is tested at its optimal setting. When test-
ing dozens or hundreds of heuristics, however, it is com-
putationally prohibitive to exhaustively test all parameter
settings. In our own search for better heuristics, however,
the parameter settings determined by the invariants consis-
tently yielded the best performance for each strategy. This
allowed us to quickly identify two new heuristics that out-
performed all the other variations of WSAT on our test in-
stances.
There have been, of course, previous comparative studies

of the performance of different local search algorithms for
SAT. For example, Gent and Walsh (1993) compared the
performance of an “alphabet soup” of variations of GSAT,
concluding that one called “HSAT” could solve random
problems most quickly. Our aim here is different: we
are less interested in finding the best algorithm for ran-
dom instances than in finding general principles that reveal
whether or not different algorithms are in fact searching
the same space in approximately the same manner. Parkes
and Walser (1996) studied a modified version of WSAT, us-
ing GSAT's minimization function at the “ 50%” noise
level. They concluded the original WSAT was superior to
the modified version. As we shall see, however, the param-
eter has different optimal values for different strategies,
and in particular is not optimal at 50% for the modified
WSAT. Recent work by Battiti and Protasi (1996) is similar
in spirit to the present study, in that they develop a general
feedback scheme for tuning the noise parameters of local
search SAT algorithms. Their calculation is based on the
“mean Hamming distance” the algorithm travels in the tail
of the search. By contrast, we believe that the statistical
measures we employed (described below) more accurately
and clearly reveals the optimal noise settings for a variety
of algorithms.

Local Search Procedures for Boolean Satisfiability

We consider algorithms for solving Boolean satisfiability
problems in conjunctive-normal form (CNF). A formula is
a conjuction of clauses; a clause is a disjuction of liter-
als; and a literal is a propositional variable or its negation.
In 3SAT, each clause contains exactly three distinct liter-
als. Clauses in a “random 3SAT” formula are generated
by choosing three distinct literals uniformly at random, and
then negating each or not with equal probability. Mitchell
et al. (1992) showed that random 3SAT problems are com-
putationally hard when the ratio of clauses to variables in
such formula is approximately 4.3.
A local search procedure moves in a search space where

each point is a truth assignment to the given variables. A so-
lution is an assignment in which each clause of the formula
evaluates to true. The WSAT procedure begins by consider-

ing a random truth assignment. It searches for a solution by
repeatedly selecting a violated clause at random, and then
employing some heuristic to select a variable in that clause
to “flip” (change from true to false or vice-versa).
The objective function that local search for SAT attempts

to minimize is the total number of unsatisfied clauses.
The characteristic of a search strategy that causes it to
make moves that are non-optimal — in the sense that the
moves increase or fail to decrease the objective function,
even when such improving moves are available in the lo-
cal neighborhood of the current state — is called noise.
As noted earlier, noise allows a local search procedure to
escape from local optima. Each heuristic described below
takes a parameter that can vary the amount of noise in the
search. As we will see, the values assumed by this param-
eter are not directly comparable across strategies: e.g., a
value of 0.4 for one strategy may yield a search with more
frequent non-improving moves than the search performed
by a different strategy with the same parameter value. In
fact, the noise level invariant we will describe later can be
simply viewed as a normalized way of measuring noise that
is comparable across strategies.
We considered six heuristics for selecting a variable from

within a clause. The first four are variations of known pro-
cedures, while the last two were created during this study,
and are described here for the first time. They are:

G: With probability pick any variable, otherwise pick a
variable that minimizes the total number of unsatisfied
clauses. The value is the noise parameter, which ranges
from 0 to 1.

B: With probability pick any variable, otherwise pick a
variable that minimizes the number of clauses that are
true in the current state, but that would become false if
the flip were made. In the original description of WSAT,
this was called “minimizing breaks”. Again is the noise
parameter.

SKC: Like the previous, but never make a random move if
one with a break-value of 0 exists. Note that when the
break-value is 0, then the move is guaranteed to also im-
prove the objective function. This is the original WSAT
strategy proposed by Selman, Kautz, and Cohen (1994).

TABU: The strategy is to pick a variable that minimizes
the number of unsatisfied clauses. At each step, however,
refuse to flip any variable that had been flipped within the
past steps; if all the variables in the chosen unsatisfied
clause are tabu, choose a different unsat clause instead.
If all variables in all unsatisfied clauses are tabu, then the
tabu list is ignored. The tabu list length is the noise
parameter.

NOVELTY: This strategy sorts the variables by the total
number of unsatisfied clauses, as does G, but breaking



ties in favor of the least recently flipped variable. Con-
sider the best and second-best variable under this sort. If
the best variable is not the most recently flipped variable
in the clause, then select it. Otherwise, with probability
select the second-best variable, and with probability
select the best variable.

R NOVELTY: This is the same as NOVELTY, except in
the case where the best variable is the most recently
flipped one. In this case, let be the difference in the
objective function between the best and second-best vari-
able. (Note that .) There are then four cases:

1. When and , pick the best.
2. When and , then with probability
pick the second-best, otherwise pick the best.

3. When and , pick the second best.
4. When and , then with probability

pick the second-best, otherwise pick the best.

The intuition behind NOVELTY is that one wants to
avoid repeatedly flipping the same variable back and forth.
The intuition behind R NOVELTY is that the objective
function should influence the choice between the best and
second-best variable — a large difference in the objective
function favors the best. Note that R NOVELTY is nearly
deterministic. To break deterministic loops in the search,
every 100 flips the strategy selects a random variable from
the clause. Although few flips involve non-determinism, as
we shall see the performance of R NOVELTY is still quite
sensitive to the setting of the parameter .

The Noise Level Invariant
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Figure 1: Sensitivity to noise.

As we have discussed, noise in local search can be con-
trolled by a parameter specifying the probabilityof a locally

non-optimal move, as in strategies G, B, and SKC, NOV-
ELTY, and R NOVELTY. Tabu procedures instead take a
parameter specifying the length of the tabu list. Searches
with short tabu lists are more susceptible to local minima
(i.e. are less noisy) than searches with long tabu lists.
In Figure 1 we show the results of a series of runs of

the different strategies as a function of the setting of the
noise parameter, on a collection of 400 variable hard ran-
dom 3SAT instances. The horizontal access is the proba-
bility of a random move. The tabu length ranged from 0 to
20, and was normalized in the graph to the range of 0 to
100. The vertical axis specifies the percentage of instances
solved. Each data point represents 16,000 runs with a dif-
ferent formula each run, where the maximum number of
flips per run is fixed at 10,000.
We have plotted the value of the noise parameter versus

the fraction of the instances that were solved. For example,
R NOVELTY solved almost 16% of the problem instances
when was set to 60%. Considering the fraction solved
with a fixed number of flips allows us to gather accurate
statistics on the effectiveness of each strategy. If instead
we tried to solve every instance, we would face the prob-
lem of dealing with the high variation in the run-time of
stochastic procedures — for example, a few runs could re-
quire millions of flips, simply by chance— and the problem
of dealing with runs that never converged.
As is clear from the figure, the performance of each strat-

egy varies greatly depending on the setting of the noise pa-
rameter. For example, running R NOVELTY at a noise
level of 40% instead of 60% degrades its performance by
more than 50%. Furthermore, the optimal performance ap-
pears at different parameter settings for each strategy. This
immediately suggests that in comparing strategies one has
to carefully optimize the parameter setting for each, and
that even minor changes to a strategy require that the pa-
rameters be appropriately re-adjusted.
Given the preceding observation, the question arises: is

there a better characterization of the noise level, which is
less sensitive to the details of individual strategies? We ex-
amined a number of different measures of the behavior of
the local search strategies. Let us define the normalized
noise level of a search procedure on a given problem in-
stance as the the mean value of the objective function dur-
ing a run on that instance. Then we can observe that the
optimal normalized noise level is approximately constant
across strategies. This is illustrated in Figure 2. In other
words, when the noise parameter is optimally tuned for
each strategy, then the mean number of unsatisfied clauses
during a run is approximately the same across strategies.
We call this phenomena the noise level invariant. It pro-

vides a useful tool for designing and tuning local search
methods: Once we have determined the mean violation
count giving the optimal performance for a single strategy
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Figure 2: Strategy invariance of normalized noise level on
random formulas.

over a given distribution of problems, we can then sim-
ply tune other strategies to run at the same mean violation
count, in the knowledge that this will give us close to the
optimal performance.
After hypothesizing the existence of this invariant based

on our study of random formulas, we wished to see whether
it also held for classes of real-world, structured satisfiability
problems. Figures 3 and 4 present confirming evidence.
Figure 3 is based on solving a satisfiablity problem

that encodes a blocks-world planning problem (instance
“bw large.a”, from (Kautz and Selman 1996)). The orig-
inal problem is to find a 6-step plan that solves a planning
problem involving 9 blocks, where each step moves a block
(i.e., a pickup followed by a putdown). After the problem
is encoded and then simplified by unit propagation, it con-
tains 459 variables and 4675 clauses. Each stochastic pro-
cedure was run 16,000 times, with a different random seed
for each run, at each data point. (Note that this is unlike
the case with the random formulas, where a different for-
mula was generated for each try. Of course, the entire point
of this exercise was to test our hypothesis on a real struc-
tured problem, not on a collection of randomly-generated
instanced. We wanted to make sure that the observed in-
variant was not simply due to some statistical property of
random formulas.)
Figure 4 shows the noise level invariant on a SAT encod-

ing of a graph coloring problem. The instance is based on
an 18 coloring of a 125-node graph (Johnson et al. 1991).
This formula contains 2,250 variables and 70,163 clauses.
Because this formula is so large, we could not perform as
many runs for each data point as in the previous experi-
ments. Each point is based on just 1,000 samples. The
explains the somewhat irregular nature of the curves.
The noise level invariant does not imply that all strategies
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Figure 3: Strategy invariance of normalized noise level on
a planning formula.

are equivalent in terms of their optimal performance level.
We have informally experimented with a large number of
heuristics for selecting the variable to change in the WSAT
program for solving Boolean satisfiability problems. The
noise level invariant allowed us to quickly evaluate more
than 50 variations ofWSAT, while being confident that each
was tested at its optimal noise level. This led to the develop-
ment of the NOVELTY and R NOVELTY strategies, which
consistently outperform the other variants, by roughly a fac-
tor of two.

The Optimality Invariant

The noise level invariant gives us some handle on dealing
with the noise sensitivity of local search procedures. In or-
der to use it, however, one needs to be able to gather statis-
tics on the success rate of at least one strategy across a sam-
ple of a given problem distribution. In practice we are often
faced with the need to solve a particular novel problem in-
stance. Furthermore, this instance can be extremely hard,
and solving it even once may require a large amount of
computation even at the (yet unknown) optimal noise set-
ting. What is desirable, therefore, is a way of quickly pre-
dicting the setting of the noise parameter for a single prob-
lem instance, without actually having to solve it.
Fortunately, our empirical study of noise sensitivity has

yielded a preliminary principle for setting noise parameters
based on statistical properties of the search. More specif-
ically, we make many short runs of the search procedure.
We record the final value of the objective function for each
run and the variance of the values over that run. We then
take the average of these values over the runs.
At low noise levels (running too “cold”), the mean value

of the objective function is small — i.e., we are reach-
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Figure 5: Tuning noise on random instances.
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Figure 4: Strategy invariance of normalized noise level on
a graph coloring formula.

ing states with low numbers of unsatisfied clauses. How-
ever, the variance is also very small; so small, in fact, that
the algorithm seldom reaches a state with zero unsatisfied
clauses. When this occurs, the algorithm is stuck in a deep
local minima. On the other hand, at high noise levels (run-
ning too “hot”), the variance is large, but the average num-
ber of unsatisfied clauses is even larger. Once again, the
algorithm is unlikely to reach a state with zero unsatisfied
clauses.
Therefore, we need to find the proper balance between

the mean and variance. Our experiments show that the ra-
tio of the mean to the variance provides a useful balance. In

fact, optimal performance is obtained when the noise value
is slightly above that at which the ratio is minimized. We
call this observation the optimality invariant. Furthermore,
this invariant holds for all the variations of WSAT we con-
sidered.
To illustrate the principle, In Figure 5 we present the

fraction of problems solved as a function of the mean to
variance ratio on a collection of hard random problem in-
stances. For each strategy the data points form a loop.
Traversing the loop in a clockwise direction starting from
the lower right hand corner corresponds to increasing the
noise level from 0 to its maximum value. As we see, at
some point during this traversal one reaches a minimum
value of the mean to variance ratio. For example, the
R NOVELTY strategy (the highest curve) has a minimum
mean to variance ratio of around 2.5. At that point it solves
about 11% of the instances. By raising the noise somewhat
further, and thus increasing again the mean to variance ra-
tio, we reach the peak performance of 15% at a ratio of 2.8.
We observe the same pattern for all strategies. In our exper-
iments we found the optimal performance when the ratio is
about 10% higher than its minimum value.
Figures 6 and 7 again confirm this observation on the

planning and graph coloring instances. Again we see that
all the curves reach their peak slightly to the right of the
minimal mean to variance ratio.
We should stress again that measuring the mean to vari-

ance ratio does not actually require solving the problem in-
stance. We can measure the ratio at each noise value by sim-
ply doing several short runs where we compute the mean
and the variance of the violation count during the run. Then,
by repeating this procedure at different noise parameter set-
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Figure 6: Tuning noise on a planning instance.
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Figure 7: Tuning noise on a graph-coloring instance.

tings we can determine the settings necessary to obtain a
mean to variance ratio that is 10% above its minimum. This
gives a noise parameter setting at which we can then invest
a significant amount of computational effort in order to ac-
tually solve the instance.
Another way of solving a unique problem instance is to

start a run at an arbitrary noise level. Then, one can measure
the mean to variance ratio during the run, and dynamically
adjust the noise level to obtain optimal performance. We
are currently experimenting with such a self-tuning version
of WSAT.

Conclusions

We presented two statistical measures of the progress of lo-
cal search algorithms that allow one to quickly find optimal
noise settings. First, we showed that the optimalmean value

of the objective function is approximately constant across
different local search strategies. Second, we showed that
one can optimize the performance of a local search proce-
dure by measuring the ratio of the mean to variance of the
objective function during a run. The second measure allows
one to find good noise level settings for previously unseen
and unsolved problem classes. Finally, we applied these
principles to the task of evaluating new local search heuris-
tics, and as a result discovered two new heuristics that sig-
nificantly outperformed other versions of WSAT on all the
test data.
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