
Integer Optimization Models
of AI Planning Problems

Henry Kautz
AT&T Shannon Labs

180 Park Avenue
Florham Park, NJ 07932, USA

kautz@research.att.com

Joachim P. Walser
i2 Technologies

11701 Luna Road
Dallas, TX 75234, USA

walser@i2.com

December 7, 1999

Abstract

This paper describes ILP-PLAN, a framework for solving AI planning problems
represented as integer linear programs. ILP-PLAN extends the planning as satisfi-
ability framework to handle plans with resources, action costs, and complex ob-
jective functions. We show that challenging planning problems can be effectively
solved using both traditional branch-and-bound integer programming solvers and
efficient new integer local search algorithms. ILP-PLAN can find better quality
solutions for a set of hard benchmark logistics planning problems than had been
found by any earlier system.

1 Introduction
In recent years there has been a growing awareness in the artificial intelligence (AI)
and operations research research (OR) communities that the fields deal with similar
kinds of combinatorial problems. The similarities are often hidden by the differences
in problem representations that each field has traditionally used.

Work in planning in AI has its roots in symbolic logic, starting with the work by
Green (Green 1969) on planning as theorem-proving in first-order logic. The basic
statement of an AI planning problem is to find a sequence of actions that transform a
given initial state into a desired goal state. States are described by lists of facts that
hold true in the state. Each action is described a list of preconditions that must hold
when it is applied, and a list of its effects in terms of making some facts true and
others false. STRIPS notation (Fikes & Nilsson 1971) was introduced as a way to
improve the efficiency of theorem-proving, and is still the most popular notation for
representing planning problems in AI. For example, one of the best current planning
systems, Graphplan (Blum & Furst 1995), takes STRIPS-style input, and several au-
thors (Kautz & Selman 1996; Kambhampati, Lambrecht, & Parker 1997) have shown
how the Graphplan algorithm can be viewed as a form of specialized theorem-proving.

1

The SATPLAN system (Kautz & Selman 1992; 1996; Weld 1999) showed that an ef-
fective strategy for solving AI planning problems is to directly represent problems in
propositional logic and use satisfiability checking algorithms. By contrast, the roots of
OR are in mathematical programming. The notion of planning in OR is more diverse
and includes a variety of problems from production planning, facility location, or in-
ventory management. Planning problems in OR are usually represented as either linear
programs or integer linear programs.

At a high level the distinction between logical and mathematical representations
corresponds to a distinction in the kinds of planning problems and solution techniques
that each field studied. AI has concentrated on discrete feasibility problems, and devel-
oped algorithms based on backtracking and local search. OR has concentrated on op-
timization problems and has developed sophisticated mathematical techniques, many
of which build on linear programming. From a more detailed view, however, there
is a great deal of overlap in the kinds of problems and solution approaches that the
two fields study: For once, there is no clear line between feasibility and optimization,
and there is a growing interest in AI in real-world optimization problems. Historically,
there has been a significant overlap in the area of local search such as simulated an-
nealing and genetic algorithms. Branch-and-bound and backtracking algorithms are
a central topic of integer programming in OR, and appear in the guise of constraint
programming, a discipline that draws practitioners in equal number from both fields.

One of the main reasons for the increased interest in optimization problems in AI
planning is that researchers are tackling more realistic problem domains. In almost
any real domain different actions incur different costs, and low-cost solutions are most
desirable. Furthermore, many domains involve actions that consume or produce re-
sources that are most naturally modeled by numeric variables. Because both STRIPS
and SATPLAN only include Boolean variables, modeling resources that can take on a
wider range of values is problematic as it requires to encode each possible value using a
distinct variable, or to make use of encoding schemes (e.g., binary or Grey codes) that
are computationally less favorable. These facts have led a number of researchers to
extend the STRIPS representation with resources and action costs, and develop various
specialized planning algorithms that take these factors into account, usually in a purely
heuristic manner (see Section 4).

OR, of course, has long studied general optimization algorithms, particularly for
linear and integer linear programs. However, it has not been obvious how to repre-
sent the kind of planning problems studied in AI in these formalisms. One goal of
this paper, therefore, is to show how AI planning problems extended with costs and
optimization criteria can be encoded as integer optimization problems. We will discuss
extensions of the SATPLAN framework, where problems are specified using axioms in
propositional logic, as well as compilation issues for the translation from an extended
STRIPS representation, where problems are specified using operator schemas. We use
the name ILP-PLAN to refer to this general approach to representing and solving AI
planning problems as integer linear programs.

In summary, the ILP-PLAN framework provides a foundation for representing AI
planning problems with resources, action costs, and complex objective functions as
integer linear programming (ILP) models. ILP-PLAN does not commit to a specific
approach for solving the planning models, and we will present empirical results on

2

solving ILP problem encodings using both traditional branch-and-bound solvers and
new efficient integer local search algorithms.

The first part of this paper will demonstrate how STRIPS-style planning problems
extended with costs, resources, and optimality conditions can be represented as an ILP
and solved using a LP-based branch-and-bound. For the experiments, use a commercial
modeling language (AMPL) (Fourer, Gay, & Kernighan 1993) and a mixed integer pro-
gramming package (ILOG CPLEX). We will argue that specifying a planning problem
by a combinationof STRIPS operators (to represent logical constraints between actions
and their preconditions and effects) and linear inequalities (to represent resource usage
and objective functions) is more elegant and natural than using only extend STRIPS
operators or only linear inequalities.

One reason that the ILP approach has been rarely investigated in AI is that branch-
and-bound is a relatively inefficient algorithm for solving problems that are mainly
logical in nature. However, recently a new approach to integer programming has been
developed by Walser (1997, 1998) based on randomized local search. This algorithm,
WSAT(OIP), generalizes the Walksat algorithm for satisfiability (Selman, Kautz, &
Cohen 1994) to a form of ILP’s called “over-constrained integer programs (OIP)”. In an
OIP the objective function is represented by a set of “soft constraints” – that is, linear
inequalities that may or may not hold for a feasible solution. Walser demonstrated
that WSAT(OIP) is can outperform ILP branch-and-bound in a number of challenging
domains, including sports scheduling and capacitated production planning (CLSP).1

The second part of this paper presents a case study of using WSAT(OIP) to find
better quality solutions to a set of difficult logistics planning benchmark problems
that have been frequently cited in recent literature on planning systems, including
SATPLAN, Graphplan, and algorithms such as ASP and LRTA* (Bonet, Loerincs, &
Geffner 1997). We will demonstrate that the known computational advantages of using
local search on SATPLAN’s best propositional encoding (Kautz & Selman 1996) of
this domain can be retained, while the integer local search framework allows us to find
solutions of lower cost. (The encoding used is called “state-based”, and we will briefly
describe how it differs from the more straightforward encoding used in the first part of
the paper.) The ILP-PLAN approach improves on the best published solutions for this
domain.

ILP-PLAN thus brings together work on generalizing the expressive power of SAT-
PLAN with work on generalizing the Walksat inference engine originally employed by
that system. ILP-PLAN also builds a bridge between AI or OR technology. It shows
how powerful and sophisticated OR solvers can be applied to AI planning. As a con-
tribution to OR, ILP-PLAN shows how STRIPS operators can be used to make the
specification of complex optimization problems that involve action selection concise
and easy to express.

1CLSP is unlike the kind of AI planning discussed in this paper in that it does not involve action selection,
but rather optimizing the quantities of materials produced at different points in a production process.

3

2 ILP Translations of Extended STRIPS Problems
All of the “classical” AI planning systems mentioned above (the original STRIPS,
Graphplan, and SATPLAN) solve what are called deterministic state-space planning
problems. In this model states assign truth values to time-varying propositions called
fluents. A state can thus be identified with the set of fluent that it assigns true. An
action is a partial function over states. Actions are specified by a precondition, add list,
and delete list of fluents. An action is only defined on states in which the precondition
holds, and yields the state that is identical except that the fluents in the add list are
assigned true and those in the delete list are assigned false. A planning problem consists
of an initial state a set of actions, and a set of goals (also represented by a set of
fluents). A solution to a planning problem is a sequence of actions whose application
to the initial state yields a state that assigns all the goals to true. A bounded planning
problem is a planning problem which also specifies a maximum number of actions that
may appear in a solution.

These semantics can be refined to allow parallel actions as is done in Graphplan and
SATPLAN. The set of states is assumed to form a linear sequence (corresponding to
the natural numbers). The parallel composition of a set of actions is defined for a state
if all possible sequential compositions of the actions are well-defined and equivalent. A
necessary and sufficient condition for parallel compositionality is that no action deletes
a precondition or effect of another. The parallel length of a solution is then the number
of actions where such composite actions are counted as a single step, and the sequential
length is the number of atomic actions. Koehler et al. (1997) and Anderson, Smith,
and Weld (1998) have further extended STRIPS and the state-space model to handle
actions with quantified conditional effects; in Section 2.4 below, we show that such
actions can also be represented in ILP-PLAN in a straightforward manner.

The first major extension we make to classical AI planning is the introduction of
quantitative resources. Resource variables are assigned a numeric value (integer or
real-valued) by each state. Every resource variable has a global minimum and max-
imum value. Actions are extended with resource preconditions and resource effects.
A resource precondition is a simple linear inequality that must hold in any states in
which the action is applicable. We distinguish actions whose effects are to consume
(decrease), produce (increase), or provide (set to an absolute value, regardless of it’s
previous value) a resource.2 As before, the parallel composition of a set of actions is
defined for a state only if all possible sequential executions of the actions are well-
defined and equivalent. In Section 2.2 below we will describe a set of necessary and
sufficient conditions for a set of actions with resources to be parallel composable. One
contribution of this work is demonstrating that these constraints can be captured us-
ing only linear inequalities, even though the most straightforward way of representing
them uses quadratic equations.

The second extension to STRIPS is the addition of optimization criteria to the
planning problems. We will want to find solutions that minimize one or more linear
functions of resources, actions, and facts. Although resource consumption is a most

2In this paper we only consider resource effects involving a single variable, e.g., , not general
linear equations.

4

common objective function, note that we also allow such functions as the number of
actions that occur, or the number of objects for which a predicate holds.

The ILP-PLAN encoding consists of three parts: constraints for the logical proper-
ties of actions; for resource usage; and for optimization objectives. After discussing
each component and an implemented example, we will consider in more detail the ex-
pressivity of the framework in relation to extensions to STRIPS to handle conditional
effects.

2.1 The Logical Component
Previous papers (Kautz, McAllester, & Selman 1996; Ernst, Millstein, & Weld 1997)
have described how the logical properties of bounded-time STRIPS planning problems
can be represented in clausal form. The following kinds of axioms are used:

1. Actions imply their preconditions and effects (meaning that for an action occur-
rence at time , its preconditions must hold at and its effects hold at);

2. Non-parallel-composable actions may not occur at the same time step;

3. Explanatory frame axioms (Haas 1987; Schubert 1989) which state that if a fluent
changes its truth value between states, then one of the actions that changes it must
have occurred;

4. The initial state holds at time 0 and the goals hold at a given final time point .

Following are schemas for axioms of types (1)–(3), where the Boolean variable
means ground action occurs at time ; means fluent holds at time ; and pre(),
add(), and del() are the sets of fluents in the precondition, add, and delete lists of
ground action respectively.

pre() (1)
add() (2)
del() (3)

del() pre() add() (4)

add(a)

del(a)
(5)

The most straightforward way to capture these constraints in ILP is to simply indi-
vidually convert each clause into an inequality over 0/1 variables (Hooker 1988). For
example, becomes . We used this translation in the experiments
reported in this paper. Recent work by Vossen et al. (1999) describes a more complex
ILP translation of these logical constraints that usually results in sets of equations with
stronger linear relaxations. The technique improves the performance of branch-and-
bound solvers, and could be combined with the conventions for encodings resources
and optimality conditions described below.

5

2.2 The Resource Usage and Optimization Components
The second set of constraints maintains the value of each resource at each point in
time, and makes sure that parallel actions are free of resource conflicts. The following
are a set of necessary and sufficient conditions for a set of actions to be parallel
composable (Koehler 1998).3

The set is logically conflict-free, as defined above.

If contains a provider for , it contains no other effect for .

The value of at minus the sum of the consumers of in satisfies the global
lower bound for .

The value of at plus the sum of the producers of in satisfies the global
upper bound for .

For any action in with a resource precondition that puts a lower bound on ,
the value of at minus the sum of the consumers of in other than satisfies
that precondition. Likewise for an in with a resource precondition that puts
an upper bound on , the value of at plus the sum of the producers of other
than in satisfies the precondition.

These conditions ensure that every way of sequencing a set of parallel actions is well-
defined and equivalent. Note too that explicit resource preconditions on actions are
redundant if they are the same as the global bounds on the resource.

Now we consider the ILP encoding of these constraints. For each resource we
introduce a set of numeric variables that stand for the quantity of at the start of step
. Let and be minimum and maximum bounds on . For each ground operator

we use the variable to represent the action of that ground operator occurring at time
. For each consumer, producer, or provider ground operator let be the amount

by which the operator decreases, increases, or sets . Let Prod and Con be the sets of
producing and consuming ground operators for respectively. For simplicity we will
say there is exactly one providing ground operator, , which resets to its maximum

. Finally, let Prec be the set of ground operators that have a resource precondition,
e.g. a lower bound .

The main technical challenge is to find a linear encoding of domains with providing
actions. The most straightforward equation for updating the value of a resource is
quadratic:

Con Prod
(6)

That is, if the provider occurs, the resource is set to , otherwise it is linearly updated
by the consumers and producers. To overcome this problem we introduce a new set of

3Note that composability is now relative to a particular state; e.g., two actions may be parallel composable
from states where the value of a resource is sufficiently large.

6

resource fuel
action fly(: airport):

precondition: at-plane
effects: at-plane at-plane

fuel –=
passenger : boarded

effects: at at
action refuel:

effects: fuel

Figure 1: Airplane example with conditional effects. Notice that refueling fills the tank
to capacity.

variables that stand for amount of resource created by provider if it occurs. We
call the provider reset variables. Then the resource conflict constraints () are:

Con Prod
(7)

Prod Con (8)
(9)

(10)
(11)

Con
Prec (12)

(7) propagates the value of the resource from one time step to the next. (8) makes
providers exclusive of other actions that affect the resource, while (9) and (10) establish
the amount of resource created by a providing action (if any). (11) enforce the global
bounds on the resource. (12) enforces resource preconditions for the (most common)
case where the precondition places a lower bound on the resource. is not further
constrained and gets set by propagating the resource balance (7).

Equations (8)–(10) mix logical and mathematical connectives. Again some care
must be taken to expand these constraints in linear form. They can be rewritten as
follows:

(13)
(14)
(15)

Finally, resource optimization constraints are simply arbitrary linear inequalities
over all the variables described above (not being limited to resource variables).

7

Indices Definition
action step (is the last step)
airports
passenger

Constants Definition
tank capacity, fuel use per dist. unit
Distance from to

Variables Definition
fly flight from to occurs in step
refuel refuel occurs at step
refuel amount provider reset variable
fuel plane’s fuel level
board boarding of all checked passengers

at airport occurs at step
deplane deplaning of in step
at person is at airport at step
at-plane plane is at airport at step
checked-in person has checked-in status at
boarded person has boarded status at

Table 1: Parameters in the ILP translation of the airplane example. All variables binary
unless declared otherwise.

2.3 Example: Resource Optimization Planning.
We illustrate this translation with a a modified version of the airplane example from
(Penberthy & Weld 1992) and (Koehler 1998). It simplifies the original example by
ignoring timing aspects but extends it for optimization of passenger routings. The sce-
nario is a plane that can fly between a number of different airports and consumes fuel.
Passengers with checked-in status at the location of the plane can be boarded. Boarded
passengers move with the plane until they are deplaned, which can occur individually
in our variation. The ILP-PLAN version of the example extends the task from a decision
problem (with resources) to resource optimization: An explicit optimization objective
is included to minimize resource usage, in this case “fuel”. Figure 1 and Table 1 de-
scribe some of the operators and variables used.

The following inequalities state the resource aspect of the model ().

refuel fuel (16)
refuel refuel amount (17)

fuel fuel refuel amount fly (18)

refuel fly (19)

(16) and (17) link the decision variables for refueling with the fuel and refuel amounts

8

777

Paris 490
343

London

Zurich (plane)
Scott Dan

Ernie

Figure 2: Scenario of initial state and travel destinations (arrows) of airplane-a. The
resource-optimal plan found by CPLEX given the state-based ILP encoding has 8 steps:
board Scott, fly to Paris, deplane Scott, refuel board Dan and Ernie, fly to London,
deplane Ernie, fly to Zürich, deplane Dan.

and (18) states the fuel balance. As described above, (16) and (17) can be directly
translated to linear inequalities. (19) is a compact way of making refuel (a provider)
and flying (a consumer) mutually exclusive. (Using a single equation rather than a set
of pairwise mutual exclusion inequalities leads to a stronger linear relaxation.)

The optimization objective is stated as

minimize fuel fuel refuel amount

where refuel amount is the provider reset variable corresponding to the refuel action
at time .

Figure 2 shows an example problem and Tables 2 and 3 report experimental results
on several instances using CPLEX 6.5. CPLEX standard automatic parameter settings
were used except for experiments with CPLEX’s “probing” heuristic. (Probing is a
proprietary variable selection heuristic.) Additionally, we attempted different types of
automatic cutting plane generation implemented in Cplex, i.e., cover cuts, flow cover
cuts, clique cuts, GUB cover cuts, and implied bound cuts, but none of these improved
performance.

Finding optimal solutions to the Airplane domain turns out to be computationally
challenging. Therefore, to reduce the computational effort, we first reduced the number
of necessary time steps by relaxing the conditions for parallel actions given in section
2: In our ILP model, instead of requiring that all possible sequentializations be equiv-
alent, we allow for parallel actions whenever there exists one valid sequentialization
that achieves the correct effects. In the following experiments, we thus allow for par-
allelizing e.g. a ‘fly’ and a ‘deplane’ action because we can always construct a feasible
plan from the parallel solution.

Each instance in the test set includes one more city than the previous, and we see
from Table 2 that the solution time increases in each case by about an order of mag-
nitude. It has been suggested in the literature (Giunchiglia, Massarotto, & Sebastiani
1998) that performance of backtracking solvers on AI planning problems can be im-
proved by restricting branching to variables representing actions. We tried this in the
column labeled “fv-relax” by relaxing the integrality of the fluent variables. (A branch
and bound solver like CPLEX only branches on integer variables.) Surprisingly, this
degraded performance, both in terms of the number of nodes expanded and the over-

9

[std] [fv-relax] [av-relax] [av-rlx+prob]
airplane-a 1s: 8 2s: 38 2s: 15 2s: 4
airplane-b 11s: 364 19s: 726 10s: 336 12s: 238
airplane-c 206s: 1331 296s: 1730 181s: 1205 130s: 667

Table 2: Experimental results for the airplane example, basic encoding and two encod-
ing variants. Results in seconds (:) number of explored MIP nodes. All experiments
were run on an HP-8000 using CPLEX 6.5. The columns report results for all fluent and
action variables integer (except resource variables [std]), relaxed integrality of fluent
variables [fv-relax], relaxed integrality of action variables [av-relax], and the use of a
probing heuristic [av-rlx+prob].

all running time. However, as shown in the “av-relax” column, relaxing integrality of
the action variables, and thus branching only on fluent variables, does lead to a signif-
icant decrease in the number of nodes expanded. Finally, combining relaxing action
variables with use of CPLEX’s probing heuristic (column “av-rlx probe”) decreases
the number of nodes expanded by about 50%, and also reduces the total solution time
by about 30% on the largest instance. (Improvement using probing without relaxing
action variables was marginal.) Although a full examination of this phenomena awaits
future research, it is interesting to note that SATPLAN encodings considered in Section
3 below also boost performance by emphasizing the role of the fluent variables.4

problem / steps acts p/a vars cnstrs min.fuel LP-lb
airplane-a / 5 10 3 134 551 805 387.91
airplane-b / 7 15 4 304 1774 897 109.21
airplane-c / 9 21 5 576 4405 2096.5 33.24

Table 3: Problem specification of the airplane example. Columns are problem name
and minimum number of times steps in a parallel plan, the number of actions in such a
minimal solution, the number of passengers and airports (p/a), problem size in number
of variables and constraints, the minimal fuel consumption in an optimal IP solution,
and the LP lower bound.

Table 3 provides an explanation for the rapid increase in the CPLEX solution time as
the problem size grows. The last two columns compare the fuel usage in an optimal so-
lution and the minimum fuel usage in the linear relaxation of the problem instance. We
see that the linear relaxation provides a very weak lower bound on the optimal value,
and actually decreases as the problem size increases. Because of this weak bound,
the linear relaxation cannot be effectively used to prune the branch and bound search
tree. Thus, while the encodings provided in this section provide a general basis for

4A particular issue that requires investigation is the conditions under which the relaxed problem yields
an integer solution. It is clear from the form of the encoding that fluent variables can be safely relaxed. For
the airplane example integer solutions were also found when the action variables were relaxed, but this may
not occur in general.

10

transforming extended STRIPS into ILP, it is clear that there is room for improving the
encodings to enhance the performance of branch and bound solvers on large instances.
As noted above, a promising direction would be to combine our work on resources with
Vossen et al.’s translation of the logical (non-resource) component.

2.4 Quantified Conditional Effects
An important aspect of a modeling language for complex planning domains is its ex-
pressivity. In particular, quantification and conditional effects in the style of ADL
(Pednault 1989) are interesting expressive features, and several authors have described
ways to incorporate them into Graphplan (Anderson, Smith, & Weld 1998; Koehler
et al. 1997; Gazen & Knoblock 1994). Here, some aspects of a translation of condi-
tional effects in ILP-PLAN will be sketched, in particular quantified conditional effects,
to be able to model the subsequent examples. Fortunately, some of the complexities
that arise with Graphplan are avoided in ILP-PLAN, since they relate to the handling of
mutex conditions which Graphplan uses.

To motivate the problem of quantification and describe its solution for ILP-PLAN,
we continue with our discussion of the ILP-PLAN representation of the airplane prob-
lem (Koehler 1998). In this model, a “boarding” action at an airport causes all passen-
gers at the airport to obtain boarded status and lose their status as checked-in passenger
(note that in the example, there is only one plane). The complete rule for boarding is:

action: board(: airport):
precondition: at-plane
effect: passenger : checked-in at

effect: boarded checked-in .

Aside from the usual translation of the implied preconditions “board at-plane ”,
the ILP translation needs to assert the implied conditional effects:

board checked-in at
boarded checked-in (20)

Further, explanatory frame axioms need to be generated as ILP constraints. For in-
stance, the frame axiom for boarded requires the introduction of a disjunction over
all airports to express that at some airport, boarding has occurred, and the conditional
preconditions hold:

boarded boarded

airport
board checked-in at (21)

Note that here the disjunction binds , which is otherwise unbound in the boarded
predicate. In general, to convert (21) to a set of linear inequalities, we can introduce
auxiliary variables aux (meaning “ is boarded at ”) and assert that one of those

11

needs to be true for every that gets boarded. This yields the following clauses which
are equivalent to (21):

boarded boarded
airport

aux (22)

aux board checked-in at (23)

Intuitively, this means that for every aux equal to true, all conditional preconditions
need to be true. All clauses are now equivalent to linear inequalities as can be seen by
considering the equivalence of (23) to:

board checked-in at aux (24)

This technique of introducing auxiliary variables to properly handle variable binding
provides a general solution for encoding conditional effects in ILP-PLAN.

3 ILP Translations of SATPLAN Problems
In the Section 2.1 we described how STRIPS problems can be translated to proposi-
tional logic. An alternative approach is to directly model planning domains in propo-
sitional logic — as was done in the original work on the SATPLAN system (Kautz
& Selman 1992) — instead of starting with a STRIPS formulation. One advantage
of the direct approach is that it makes it easy to express complex intermediate goals
and domain-specific control knowledge in axiomatic form (Kautz & Selman 1998;
Mali & Kambhampati 1998). Another advantage is in experimenting with different en-
coding schemata, including action-based encodings (similar to the STRIPS conventions
treated above), causal encodings (Kautz, McAllester, & Selman 1996), and in partic-
ular, state-based encodings (Kautz & Selman 1996). We call an encoding state-based
if it only uses variables to represent fluents, not actions. The axioms in a state-based
encoding directly relate changes in fluents between adjacent states or place constraints
on the relationships between fluents within a state. For certain challenging planning
domains the solution times for direct state-based SAT encodings are better by an order
of magnitude or more than for either STRIPS translations or non-SAT approaches.

Despite the power and generality of the SATPLAN framework, it lacks the ability
to express the kind of resource constraints and optimality conditions needed for many
realistic domains. In this section we will focus on strengthening SATPLAN’s optimiza-
tion abilities. SATPLAN allows one to minimize the parallel length of a solution. This
notion of optimality (shared by Graphplan, as noted above) is an advance over planning
frameworks that treat all feasible solutions indifferently: for many popular test domains
finding a shortest solution is at least NP-hard, while finding a feasible solution can be
done in linear time (Bylander 1991). However, even if all actions have the same cost,
one may wish to minimize the number of actions in a solution, that is, the sequential
length rather than the parallel length. The two notions of length may actually be in
conflict, where the parallel-minimum solution has non-minimum sequential length.

12

We will investigate the issue of improving solution quality by moving from a SAT
to an ILP encoding in the context of a popular benchmark, the logistics planning do-
main (Veloso 1992). The scenario is the transportation of a set of packages that in-
volves flights and truck-drives between locations. There are various possible criteria
to optimize in this domain: (a) The sequential length, (b) the parallel length, (c) some
function of the sequential and parallel lengths, and (d) yet more realistic measures of
plan quality, e.g. including specific action costs for the different action types (flying an
airplane is typically more expensive than driving a truck or loading a packet), or finally
(e) timing aspects.

Previous approaches to the logistics domain include finding parallel optimal solu-
tions (criterion b) using SATPLAN (Kautz & Selman 1996); more recently, Bonet,
Loerincs and Geffner (1997) presented a method that found better serial optimal solu-
tions (criterion a) using LRTA*, however at high computational cost for near-optimal
solutions. We will concentrate on criteria (c), where our goal is find solutions of min-
imal sequential length among all solutions of minimal parallel length. (However the
encoding we use also makes it easy to assign different costs to different types of actions
if desired.)

To model the problem, we will use an ILP variant of the state-based encodings pre-
sented in (Kautz & Selman 1996) that is extended to encode a notion of plan optimality.

3.1 Local Search Algorithms
The best known algorithm for solving state-based SATPLAN encodings of the lo-
gistic domain is Walksat (Selman, Kautz, & Cohen 1994). Walksat performs local
search over the space of (complete) variable truth assignments. At each step it “flips”
(reverses) the truth-value assigned to some variable which appears in an unsatisfied
clause, with preference given to choices that would increase the number of satisfied
clauses. On some domains Walksat greatly outperforms traditional backtrack-style sat-
isfiability algorithms (Selman & Kautz 1993).

We employ a similar strategy for optimization encodings in ILP-PLAN. The ILP-
PLAN approach to the domain casts the problem in integer constraints and solves it
using integer local search, WSAT(OIP). The experimental results reported in the fol-
lowing demonstrate that ILP-PLAN can find plans with fewer actions than SATPLAN.
In comparison with LRTA it finds plans with the same number of actions or fewer at
reduced computational cost. In contrast to all previous approaches to this domain, it
allows for stating planning objectives explicitly and opens up the way for even more
practical criteria of plan-optimality.

To include optimization objectives into local search, the integer local search frame-
work uses a representation introduced as over-constrained integer programs (OIPs)
(Walser 1999). OIP formulates optimization criteria by means of soft inequality con-
straints over bounded integer variables and can be reduced to ILP. An OIP consists
of hard and soft inequality constraints, wherein the optimization objectives are repre-
sented by the soft constraints. If all inequalities are linear, the OIP problem can be

13

formulated in matrix notation as

(soft)

where and are -matrices, are -vectors, and is
the variable vector, ranging over positive finite domains . A variable as-
signment that satisfies all hard constraints is called a feasible solution. Given a tuple

, the OIP minimization problem is

min

where the objective is to find a feasible solution with minimal soft constraint violation,
. The contribution of each violated soft constraint to the overall

objective is thus its degree of violation. The WSAT(OIP) algorithm then performs local
search over the space of variable assignments, where in each step it increments or
decrements the value of some variable that appears in a violated constraint.

3.2 Augmented State-Based Encodings
The criterion of plan optimality that we will consider in this section is to minimize
sequential plan length over plans of bounded (minimum) parallel length. To formulate
this, the scheme is augmented by action variables, and optimization (soft) constraints
are used to formulate the objective function. However, instead of adding the full de-
scriptive set of action variables and requiring state/action consistency, a much smaller
reduced set of action variables is used. We will refer to this encoding scheme as an
“augmented state-based encoding”.5 It is interesting to note that the obvious alterna-
tive of using an encoding that uses of the type described in Sec. 2 yields encodings that
are much harder to solve by local search. In fact, we were surprised to discover that the
conjunction of an encoding using explicit action variables with a state-based encoding
also is problematic for local search. An open question we are currently investigating
is why the inclusion of a full (unreduced) set of action variables and corresponding
axioms in this domain slows down the search; an understanding of this issue may help
us devise more robust heuristics for local search that are immune to the effect. We
currently hypothesize that the underlying problem is that it is costly for local search to
maintain consistency between the settings of an action variable and those for its precon-
ditions and effects (a inference step that is, by contrast, trivial for systematic inference
engines).

As before, AMPL was used as a modeling language, and we consider the logical
and optimization constraints in turn.

5A solution to the original planning problem can be extracted from a model of the state-based encoding
by a post-processing phase which determines the set of actions whose preconditions and postconditions are
true in the model, which can be done in linear time. This entire set of actions can be taken to be the plan under
the condition (which holds in the logistics domain) that mutually exclusive actions have mutually exclusive
preconditions or effects (taking into consideration the state invariant axioms).

14

Indices Definition
plan steps.
objects.
locations.
vehicles : plane , truck .

Constants Definition
cost of load/unload, flight, truck drive.

Variables Definition
vehicle is at in step .
object is at in step .
object is in vehicle in step .

load load in step .
unload unload in step .
drive truck drive truck in step .
fly plane fly plane in step .

Table 4: Parameters for the OIP encoding of ‘logistics’.

Feasibility Constraints The logical part of the OIP encoding for the domain is the
direct translation of the CNF encoding with parallel (non-conflicting) actions used in
SATPLAN. Table 4 describes the indices and action variables used. First, axioms are
stated that directly relate changes in fluents between adjacent states without reference
to action variables, as described in (Kautz & Selman 1996). An example in the logistics
domain is “objects stay in place or are loaded”:

at at in (25)

Further, state invariant axioms are included that describe the relationships between
fluents within a state. For example, these include “a truck is always at one location”:

at (26)

In order to allow us to count the number of actions in a plan, we introduce a small
number of reduced action variables, as mentioned above. These variables are used
to help direct the search for optimal solutions, but not to constrain the set of feasible
solutions. A reduced variable stands for the occurrence of any of a set of mutually ex-
clusive actions. For example, we introduce the variable drive truck , meaning “truck

is driven (from somewhere to somewhere else) at time ”, in place of the set of vari-
ables drive truck for all locations and . Similarly, the variable load stands
for “package is loaded (onto some vehicle)”, in place of the set of actions load
for loading onto particular vehicles, because a package can only be loaded into one
vehicle at a time.

State changes are linked uni-directionally to the action variables by constraints of
the type of implied reduced actions, e.g.

at at drive truck (27)

15

We do not include implications in the opposite direction, that would assert that an ac-
tion implies its effects and preconditions. Encoding bi-directional consistency would
require full action specification and thus degrade performance for local search as men-
tioned above.

Optimization Constraints To optimize sequential plan length, all action variables
appear in the minimization objective, weighted by cost coefficients, and formulated
using soft constraints. There are many ways to write down this function; for example,
one could write a single constraint that simply summed all the action variables. Al-
ternatively, one could write a constraint for each time step: minimize the sum of the
actions at time 1, then also at time 2, and so on. We obtained the best performance in
this domain by encoding a separate soft constraint for each object in the domain, that
is, each package, truck, or airplane. For example, for each package there is a soft
constraint that minimizes the number of times the package is loaded or unloaded:

(soft) load unload (28)

As noted in Table 4, the represents a cost factor for a load or unload. represents a
valid lower bound on the number of load/unload actions required to transport object .

could be chosen as zero, but local search performance can be improved by making
such bounds as tight (large) as possible (Walser 1999). It is possible to determine such
tight lower bounds by static analysis of the problem domain. For example, in this
logistics domain at least 6 load/unload actions are required for any object whose initial
and goal locations are at non-airport locations in different cities.6 In a similar fashion
one can write a separate soft constraint for each truck (minimizing driving) and each
airplane (minimizing flying). We did not attempt static analysis for these constraints,
and simply took the right-hand sides of the soft constraints to be 0.

In summary, the representation consists of constraints for (i) state-transition con-
sistency, (ii) state invariant axioms, (iii) implied reduced actions, and (iv) optimization
criteria.

Post-optimization. To construct the full set of actions from a consistent solution en-
coded by fluent variables, a post-optimization stage is applied. In an AMPL control
script, after a solution has been reached, all fluent variables are fixed at their current
values. Subsequently, the full (bi-directional) set of state/action consistency constraints
is posted, and the system is re-optimized according to the same minimization function
as before, this time using ILP branch-and-bound. This post-optimizationprocess yields
the actual plan encoded by the action variables, and is a simple yet general strategy to
derive valid plans.

6We obtained the values for the problem instances in this study by simple inspection; a formal devel-
opment of the static analysis necessary to derive lower bounds is beyond the scope of this paper.

16

problem/steps GRAPHPLAN SATPLAN ASP LRTA ILP-PLAN
state-based encoding functional encoding augmented state-based OIP encoding

acts time acts K-flips time acts time acts acts (f-d) K-flips time
log-a / 11 54 5942s 63 149 2.7s 57 34s 54 54 (6-6) 330 27s
log-a / 11 53 (5-6) 1,795 141s
log-a / 11 52 (4-6) 41,104 3,178s

log-a* / 13 51 (3-6) 4,938 401s
log-b / 13 47 2538s 68 93 0.7s 51 29s 42 42 (4-8) 3,478 340s
log-c / 13 – – 72 161 1.4s 61 53s 52 52 (6-8) 2,466 274s
log-d / 14 86 1,425 13.3s 71 (7-15) 1,416 224s
log-d / 14 68 (7-15) 15,171 2,402s

Table 5: Performance of different planning systems. The columns are: number of sequential
actions and runtime. A blank space indicates that no attempt was made at solving the problem.
A dash (–) indicates that the problem could not be solved due to memory limitations. For SAT-
PLAN, ‘acts’ reflects the mean number of actions found in 1,000 runs. The (f-d) column reflects
the actual plan quality in number of required flights and truck drives. Note that the LRTA and
ASP algorithms are finding serial plans only. Solution times of LRTA were not published. Re-
sults for SATPLAN and ILP-PLAN run on a 194 MHz R10000 SGI Challenge. ASP and LRTA
were reported for an IBM RS/6000 C10 with 100 MHz PowerPC 601 processor.

3.3 Experimental Results
The encodings were first simplified by AMPL’s presolving algorithms (Fourer & Gay
1994) and subsequently solved by integer local search, WSAT(OIP). We were not
able to solve the described encoding using integer programming branch-and-bound
techniques, although such techniques are potentially applicable. To ensure that every
ILP-PLAN solution meets the given plan length requirement, the value of the objective
function was read off from the solutions and subsequently used as a lower bound on
the objective function; the WSAT(OIP) search was then terminated upon reaching the
bound. The SATPLAN numbers stem from evaluating the sequential plan length found
in the solutions without encoding any planning objective.

Table 5 gives the experimental results. The parallel solution length were given as
input to Graphplan, SATPLAN, and ILP-PLAN; ASP and LRTA* did not take such as
parameter. The parallel lengths, except for the line labeled “log-a*”, were the optimal
(smallest) values. The LRTA and ASP algorithms find serial plans, and their actual
parallel length is unknown but may be much greater. Note that the solutions found
by ILP-PLAN are as good or better than the solutions found by the other solvers by
both the parallel and sequential length criteria. Solution times of LRTA were not pub-
lished, but it was noted that the algorithm did not converge after 500 trials (Bonet,
Loerincs, & Geffner 1997). The state-based OIP encodings of ILP-PLAN were solved
by WSAT(OIP) and averaged over 20 runs. Also note that SATPLAN times are for
running the Walksat solver only, and do not include generating the wff (which requires
approximately 1 minute on the test machines).

In addition to just sequential plan length, a more meaningful measure is given in
the (f-d) column. It gives the actual number of flights and truck-drives in the solutions

17

(all other actions are load/unload). It is clear that those numbers represent the most
realistic quality measure. In general, of course one cannot infer the (f-d) value from
the number of actions; however, for log-a we never observed a 54 action plan with 4
flights rather than 6. Also for log-a, we observe that it is possible to further reduce
the number of actions to 51 (only 3 flights by making a circular plane trip around the
airports with a single plane). This exemplifies that there is a tradeoff between short
parallel and resource-optimal plans because it can be shown that a circular trip requires
at least 13 steps. To compute the solution, we aided ILP-PLAN by removing one plane
from the encoding labeled “log-a*/13”.

The setting of action costs was (flying), (driving), and
(loading), and was tuned in pre-experiments to favor short plans. For completeness, we
give the used parameter settings for WSAT(OIP), but refer the reader to (Walser 1999)
for further details. Throughout the experiments, WSAT(OIP) was run with parameters
hard , zero , noise . The computational results are relatively

sensitive to the particular parameter settings.
In interpreting these results it is important to note that we are comparing not just

algorithms, but algorithms together with representations. Indeed, the same algorithm
can yield quite different results when the same problem is encoded in different ways
(Bonet, Loerincs, & Geffner 1997). In particular, only Graphplan and LRTA* took as
input a “bare” STRIPS representation of the problem domain; for each of the others,
the form of the input was tailored to the system and incorporated some degree of what
is considered domain-specific knowledge. For example, SATPLAN included state-
invariant axioms (e.g., a package is only at one location), and ILP-PLAN added soft
constraints as described above. The Graphplan and SATPLAN systems attempt to
optimize parallel length only. ASP and LRTA* attempt to optimize sequential length
only.

4 Related Work
As previously noted, the work on ILP-PLAN was partially inspired by that of Koehler
(1998) on extending Graphplan to handle resource constraints. Unlike ILP-PLAN, how-
ever, that system handled resource usage strictly by annotations on STRIPS operators,
and did not include objective functions. The ZENO planner (Penberthy & Weld 1994)
included a rich language that could express complex resource constraints, although it
too lacked explicit optimization functions. It also differed from ILP-PLAN in that the
underlying planner was a least commitment, regression planner, and the architecture
involved a collection of specialized routines to handle different kinds of constraints
(including a linear programming subroutine), rather than a single technique (as in ILP-
PLAN) like local search or branch-and-bound. Other planners that extended nonlinear
planning to include metric constraints in constraint programming type frameworks in-
clude O-PLAN (Tate 1996) and parcPLAN (El-Kholy & Richards 1996). The IxTeT
planner (Laborie & Ghallab 1995) is a least-commitment planner notable for using an
efficient graph-based algorithm for detecting resource conflicts between parallel ac-
tions. The Remote Agent Planner (Muscettola et al. 1998) incorporates resources and
temporal information, however it does not do any optimization.

18

The work cited above by Vossen et al. (1999) on an alternative formulation of ILP
encodings for planning problems does not deal with resources or optimality conditions.
Their formulation eliminates fluent variables instead of action variables. However, they
do introduce auxiliary variables that strongly resemble the reduced action variables
discussed above. Independent work by Bockmayr and Dimopoulos (1998) develops
ILP encodings for planning where the linear relaxation gives guidance to the branch-
and-bound strategy by including (i) an objective function that maximizes the number of
goals achieved, and (ii) a domain-specific strengthening of the linear relaxation which
they show to be effective for the blocks world domain, but not strong enough in the
logistics domain.

Finally, while the ILP solvers used in our work so far (CPLEX and WSAT(OIP))
require all constraints to take the form of linear inequalities, recent work on mixed
logical/linear programming (Hooker & Osorio 1999) may provide the underpinnings
for systems that more efficiently handle ILPs that have a large logical component. In
this vein (Wolfman & Weld 2000) have recently developed an IP encoding for plans
with resource constraints that separates the logical (integer) constraints from the linear
resource constraints. This encoding allows them to take advantage of a specialized
search engine called LPSAT that combines the Davis-Putnam SAT procedure with an
LP solver.

5 Conclusions
We have described ILP-PLAN, a new framework for solving AI planning problems un-
der resource constraints and optimization objectives. By casting AI planning as integer
programming, ILP-PLAN allows for constraints and objective functions over resource
usage, action costs, or regular fluents. Using ILP as the base representation, it brings
together threads in AI planning and integer optimization and extends previous frame-
works (SATPLAN) to new practical planning optimization domains. The conceptual
approach of ILP-PLAN integrates STRIPS style operator descriptions with linear in-
equality constraints. This can be seen as making ILP machinery applicable to AI plan-
ning, or conversely, as adding a new representational layer on top of linear inequalities.
Like SATPLAN, ILP-PLAN is flexible with respect to inference methods and can be
used in conjunction with both systematic and local search algorithms for integer opti-
mization. We have demonstrated that two challenging planning problems can be solved
effectively using a traditional ILP branch-and-bound solver and a new strategy for in-
teger local search. For a set of hard benchmark logistics planning problems, ILP-PLAN
can find better quality solutions than had been found by any earlier system.

6 Acknowledgements
We would like to thank the valuable feedback provided by the editor and anonymous
reviewers of this special issue.

19

References
Anderson, C.; Smith, D.; and Weld, D. 1998. Conditional effects in graphplan.
In Proceedings Fourth International Conference on AI Planning Systems (AIPS-98).
Pittsburgh, PA.
Blum, A., and Furst, M. 1995. Fast planning through planning graph analysis. In Pro-
ceedings Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-
95). Montreal, Canada.
Bockmayr, A., and Dimopoulos, D. 1998. Mixed integer programming models for
planning problems. InWorking Notes of the CP-98ConstraintProblem Reformulation
Workshop. Pisa, Italy.
Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust and fast action selection
mechanism for planning. In Proceedings Fourteenth NationalConference on Artificial
Intelligence (AAAI-97), 714–719. Providence, RI.
Bylander, T. 1991. Complexity results for planning. In Proceedings Twelveth In-
ternational Joint Conference on Artificial Intelligence (IJCAI-91), 274–279. Sidney,
Australia.
El-Kholy, A., and Richards, B. 1996. Temporal and resource reasoning in planning:
the parcPLAN approach. In Proceedings Third International Conference on AI Plan-
ning Systems (AIPS-96). Edinburgh.
Ernst, M.; Millstein, T.; and Weld, D. 1997. Automatic SAT-compilation of plan-
ning problems. In Proceedings Fifteenth International Joint Conference on Artificial
Intelligence (IJCAI-95). Nagoya, Japan.
Fikes, R., and Nilsson, N. 1971. Strips: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2(3/4).
Fourer, R., and Gay, D. M. 1994. Large scale optimization: State of the art. In Hager,
W.; Hearn, D.; and Pardalos, P., eds., Experience with a Primal Presolve Algorithm.
Kluwer Academic Publishers. 135–154.
Fourer, R.; Gay, D. M.; and Kernighan, B. W. 1993. AMPL, A Modeling Language
for Mathematical Programming. Boyd & Fraser publishing Company.
Gazen, B., and Knoblock, C. 1994. Combinding the expressivity of UCPOP with
the efficiency of Graphplan. In Steel, S., ed., Proceedings Fourth European Conf. on
Planning. Springer. vol. 1248 of LNAI.
Giunchiglia, E.; Massarotto, A.; and Sebastiani, R. 1998. Act, and the rest will
follow: Exploiting determinism in planning as satisfiability. In Proceedings Fifteenth
National Conference on Artificial Intelligence (AAAI-98).
Green, C. 1969. Application of theorem proving to problem solving. In Bajcsy, R.,
ed., Proceedings International Joint Conference on Artificial Intelligence (IJCAI-69).
Washington, D.C.
Haas, A. 1987. The case for domain-specific frame axioms. In Brown, F., and
Lawrence, K., eds., The Frame Problem in Artificial Intelligence, Proceedings of the
1987 Workshop. Morgan Kaufmann. Los Altos, CA.

20

Hooker, J., and Osorio, M. 1999. Mixed logical/linear programming.Discrete Applied
Mathematics 96-97:395–442.

Hooker, J. 1988. A quantitative approach to logical inference. Decision Support
Systems 4:45–69.

Kambhampati, S.; Lambrecht, E.; and Parker, E. 1997. Understanding and extending
graphplan. In Steel, S., ed., Proceedings Fourth European Conference on Planning.
Springer. vol. 1248 of LNAI.

Kautz, H., and Selman, B. 1992. Planning as satisfiability. In Proceedings Tenth
European Conference on Artificial Intelligence (ECAI ’92). Vienna, Austria.

Kautz, H., and Selman, B. 1996. Pushing the envelope: Planning, propositional logic,
and stochastic search. In Proceedings Thirteenth National Conference on Artificial
Intelligence (AAAI-96), 1194–1201. Portland, OR.

Kautz, H., and Selman, B. 1998. The role of domain-specific knowledge in the
planning as satisfiability framework. In Proceedings Fourth International Conference
on AI Planning Systems (AIPS-98). Pittsburgh, PA.

Kautz, H.; McAllester, D.; and Selman, B. 1996. Encoding plans in propositional
logic. In Principles of Knowledge Representation and Reasoning: Proceedings of the
Fifth International Conference (KR’96). Cambridge, MA.

Koehler, J.; Nebel, B.; Hoffmann, J.; and Dimopoulos, Y. 1997. Extending planning
graphs to an adl subset. In Steel, S., ed., Proceedings Fourth European Conference
on Planning. Springer. vol. 1248 of LNAI.

Koehler, J. 1998. Planning under resource constraints. In Proceedings Thirteenth
European Conference on Artificial Intelligence (ECAI-98). Brighton, England.

Laborie, P., and Ghallab, M. 1995. Planning with sharable resource constraints.
In Proceedings Fourteenth International Joint Conference on Artificial Intelligence
(IJCAI-95). Montreal, Canada.

Mali, A., and Kambhampati, S. 1998. Encoding htn planning in propositional logic.
In Proceedings Fourth International Conference on AI Planning Systems (AIPS-98).
Pittsburgh, PA.

Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams, B. C. 1998. Remote agent: To
boldly go where no ai system has gone before. Artificial Intelligence 103(1/2).

Pednault, E. 1989. ADL: Exploring the middle ground between strips and the situa-
tion calculus. In Proceedings First International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’89), 324–332. Toronto, Canada.

Penberthy, J., and Weld, D. 1992. UCPOP: A sound, complete, partial order plan-
ner for ADL. In Proceedings of the Third International Conference on Knowledge
Representation and Reasoning, (KR’92), 108–114. Boston, MA.

Penberthy, J., and Weld, D. 1994. Temporal planning with continous change. In
Proceedings Twelfth National Conference on Artificial Intelligence (AAAI-94), 1010–
1015. Seattle, WA.

21

Schubert, L. 1989. Monotonic solution of the frame problem in the situation calculus:
an efficient method for worlds with fully specified actions. In Kyburg, H.; Loui, R.;
and Carlson, G., eds., Knowledge Representation and Defeasible Reasoning. Boston:
Kluwer Academic Publishers.

Selman, B., and Kautz, H. 1993. Domain-independent extensions to GSAT: Solving
large structured satisfiability problems. In Proceedings Thirteenth International Joint
Conference on Artificial Intelligence (IJCAI-93). Chambery, France.

Selman, B.; Kautz, H.; and Cohen, B. 1994. Noise strategies for improving local
search. In Proceedings Twelfth National Conference on Artificial Intelligence (AAAI-
94), 337–343. Seattle, WA.

Tate, A. 1996. Representing plans as a set of constraints - the I-N-OVA model.
In Proceedings Third International Conference on AI Planning Systems (AIPS-96).
Edinburgh.

Veloso, M. 1992. Learning by analogical reasoning in general problem solving.
Ph.D. Dissertation, CMU.

Vossen, T.; Ball, M.; Lotem, A.; and Nau, D. 1999. On the use of integer pro-
gramming models in ai planning. In Proceedings Sixteenth National Conference on
Artificial Intelligence (AAAI-99). Orlando, FL.

Walser, J. 1997. Solving linear pseudo-boolean constraint problems with local search.
In Proceedings Fourteenth National Conference on Artificial Intelligence (AAAI-97).
Providence, RI.

Walser, J. P. 1999. Integer Optimization by Local Search, A Domain-Independent
Approach. Springer Lecture Notes in Artificial Intelligence.

Weld, D. 1999. Recent advances in AI planning. AI Magazine 20(2).

Wolfman, S. A., and Weld, D. S. 2000. Combining linear programming and satisfia-
bility solving for resource planning. Knowledge Engineering Review (this issue).

22

