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Abstract

Modal Markov Logic for a single agent has previously been
proposed as an extension to propositional Markov logic.
While the framework allowed reasoning under the principle
of maximum entropy for various modal logics, it is not feasi-
ble to apply its counting based inference to reason about the
beliefs and knowledge of multiple agents due to magnitude
of the numbers involved. We propose a modal extension of
propositional Markov logic that avoids this problem by coars-
ening the state space. The problem stems from the fact that in
the single-agent setting, the state space is only doubly expo-
nential in the number of propositions in the domain, but the
state space can potentially become infinite in the multi-agent
setting. In addition, the proposed framework adds only the
overhead of deciding satisfiability for the chosen modal logic
on the top of the complexity of exact inference in proposi-
tional Markov logic. The proposed framework allows one to
find a distribution that matches probabilities of formulas ob-
tained from training data (or provided by an expert). Finally,
we show how one can compute lower and upper bounds on
probabilities of arbitrary formulas.

1 Introduction
The goal of this work is to provide a framework for proba-
bilistic reasoning for modal logic in the multi-agent setting.
More specifically, if we are given a set of modal formu-
las and their probabilities, the goal is to infer the probabil-
ity of an arbitrary propositional modal logic formula. This
problem formulation is different from the concept of us-
ing probabilistic Kripke structures (Shirazi and Amir 2007;
2008) where the probabilistic model was assumed to be al-
ready learned, and probabilistic queries were answered us-
ing this model.

(Papai, Kautz, and Stefankovic 2013) recently proposed a
single agent modal extension to propositional Markov logic.
In their extension the state space consisted of epistemic sit-
uations that describe both the state of the real world and
the beliefs of an agent. Despite the fact that the state space
was doubly exponential in the number of propositions, they
provided a single exponential time algorithm for exact in-
ference building on the idea of partitioning the state space
into equivalence classes with respect to the formulas in the
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knowledge base, and reducing the computation of the parti-
tion function (hence inference as well) to computing the size
of these partitions. The straightforward extension of this ap-
proach does not work for the multi-agent case. Therefore,
we define a probability distribution not over epistemic situa-
tions, but, instead over equivalence classes of epistemic sit-
uations. This way the state space becomes less-fine grained,
but probabilistic inference becomes more tractable. One of
the main benefits of our proposed framework is that we are
no longer restricted to reason about the beliefs of a single
agent. We can use any propositional modal logic instead of
propositional logic, with the extra computational cost of de-
ciding satisfiability in our choice of modal logic.

The paper is organized as follows. First, we provide the
background for the modal logics we are interested in and
for Markov logic based probabilistic reasoning. Next, we
describe the computational challenges of dealing with in-
dividual epistemic situations in a counting based inference
algorithm in Sec. 2.3. In Sec. 3 we show how to define a
probability distribution over sets of equivalent epistemic sit-
uations rather than over individual epistemic situations us-
ing a knowledge base of weighted modal logic formulas. We
show how inference can be performed when we fix the set
of query formulas in advance, and how approximate infer-
ence with lower and upper bounds on probabilities of for-
mulas can be performed for a formula not part of the previ-
ously fixed set of queries. In Sec. 5 we show the connection
between the distribution defined by the framework in (Pa-
pai, Kautz, and Stefankovic 2013) and ours. We point out
the issue with weight learning in the fine grained state space
of epistemic situations and how this issue is avoided in our
framework in Sec. 6. We conclude the paper with summariz-
ing our results in Sec. 7.

2 Background
2.1 Propositional Markov Logic
While Markov Logic (Domingos and Lowd 2009) is a first-
order probabilistic logic, we are concerned here with its
propositional subset. A propositional Markov logic net-
work consists of a knowledge base KB = {(wi, Fi)|i =
1, . . . ,m}, where wi ∈ R and Fi is a propositional formula
over a fixed set of propositions Ω = {p1, . . . , p|Ω|}, and de-
fines a probability distribution over truth assignments X to



Ω as follows:

Pr(X = x) =
1
Z

exp(
∑
i

wifi(x)) , (1)

where fi(x) = 1 if Fi is true under x, otherwise fi(x) = 0,
and where

Z =
∑
x∈X

exp(
∑
i

wifi(x)) , (2)

is the partition function, and X denotes the set of all pos-
sible truth assignments to Ω, (i.e, |X | = 2|Ω|). Note that
(1) defines an exponential family of probability distributions
(see e.g. (Wainwright and Jordan 2008; Koller and Friedman
2009; Murphy 2012)). Exponential families have the prop-
erty that for a given set of fi they describe the maximum
entropy distribution that satisfies the set of consistent con-
straints E[fi] = ci. Consistent here means that there exists
a probability distribution that satisfies all the constraints si-
multaneously. We can interpret ci as the probability of the
propositional formula being satisfied under a randomly cho-
sen truth assignment x, hence (1) defines the maximum en-
tropy distribution over the state space of truth assignments to
the propositions with the constraints E[fi] = ci. The proba-
bility of an arbitrary propositional formula F over Ω is de-
fined to be the probability of F being true under a randomly
chosen truth assignment X , i.e.:

Pr(F ) =
∑

x∈X :F is satisfied under x
Pr(X = x) = E[fi] .

(3)
Note that applying the principle of maximum entropy
(Jaynes 1979) is an appealing choice, since it does not use
any more information than what is given by the constraints
of the form Pr(Fi) = ci, however, the defined distribu-
tion can become sensitive to the choice of state space, e.g.,
when we are dealing with first-order logic formulas, or in
our case when we reason with modal logic formulas (for fur-
ther reading on the topic see, e.g., (Halpern and Koller 1995;
Jain, Barthels, and Beetz 2010)).

2.2 Modal Logics K45, KD45, and S5
Modal logics K45, KD45 and S5 (Chellas 1980) extend
propositional or first-order logic by adding a non-truth-
functional sentential operators; we will again only discuss
the propositional case here. We use the symbol Bi to repre-
sent the i-th modal operator in the language. Where α is a
well formed sentence, then Biα is a well formed sentence.

Different modal operators for concepts such as belief,
knowledge, desire, obligation, etc., can be specified by the
axiom schemas that they satisfy. In this paper, we will only
discuss in detail modal logics K45, KD45 and S5. The prop-
erties of this logic are summarized as the following axioms
and rules (Fagin et al. 1995):

R1. From φ and φ ⊃ ψ infer ψ (Modus ponens)

R2. From ψ infer Biψ (Knowledge Generalization)

A1. All tautologies of propositional calculus

A2. (Biφ ∧Bi(φ ⊃ ψ)) ⊃ Biψ (Distribution Axiom)

A3. Biφ ⊃ φ (Knowledge Axiom)
A4. Biφ ⊃ BiBiφ (Positive Introspection Axiom)
A5. ¬Biφ ⊃ Bi¬Biφ (Negative Introspection Axiom)
A6. ¬Bifalse (Consistency Axiom)

We get K45 if we take R1, R2, A1, A2, A4, and A5. Be-
sides the axioms of K45, KD45 contains A6 and S5 contains
A3. S5 is generally used to represent knowledge, and KD45
beliefs. K45 is similar to KD45; however, it allows believing
in contradicting statements.

A Kripke structure over a set of propositions Ω is a tuple
M = (S, π,K1, . . . ,KA) where S 6= ∅ is the set of states,
π : S → X , where X is the set of truth assignments over
Ω and Ki ⊆ S × S describes the relation corresponding to
modal operatorBi. If s ∈ S then for a propositional formula
F , we have M, s |= F if F is satisfied under π(s). For
a formula BF , we have M, s |= BiF iff ∀(s, r) ∈ Ki :
M, r |= F . Moreover,M, s |= F1 ∧ F2 iffM, s |= F1 and
M, s |= F2, andM, s |= ¬F iffM, s 6|= F .

For each different modal logic, Kripke structures with
different properties are associated. Reflexive, symmetric,
and transitive relations (equivalence relations) are associ-
ated with modal operators that satisfy S5. Euclidean, serial,
and transitive relations are associated with KD45. While Eu-
clidean, and transitive relations are associated with K45. For
a more detailed description of Kripke structures see, e.g.,
(Chellas 1980) or (Fagin et al. 1995).

A Kripke structure with a distinguished state (generally
denoting the real world) is called a pointed Kripke struc-
ture or epistemic situation, hence an epistemic situation
σ = (s, S, π,K1, . . . ,KA) where s ∈ S. We call two epis-
temic situations σ1 and σ2 equivalent if for every formula F
we have σ1 |= F if and only if σ2 |= F . We call two epis-
temic situations σ1 and σ2 equivalent with respect to a set of
formulas F if for every formula F ∈ F we have σ1 |= F if
and only if σ2 |= F .

Using this definition of equivalence, we can partition sit-
uations into equivalence classes.

In the single-agent case we can enumerate all the non-
equivalent epistemic situations for K45, KD45 and S5, i.e.,
we can select a member from each equivalence class by stor-
ing the worlds the agent considers possible and a distin-
guished real world state (Fagin et al. 1995). Hence, in the
single-agent case all the non-equivalent epistemic situations
could consitute the state space Σ, where |Σ| ≈ 22|Ω|2|Ω|
for all the above mentioned modal logics. However, in the
multi-agent case, there are infinitely many non-equivalent
epistemic situations, since two agents can make statements
about each other’s beliefs about each other’s belief ad infini-
tum. We can still create equivalence classes with respect to a
bounded depth of modal formulas and consider them in the
limit when the bound on the depth approaches infinity. The
depth of a formula is defined as follows:
• d(φ) = 0 if φ is a primitive proposition,
• d(¬φ) = d(φ),
• d(φ ∧ ψ) = max(d(φ), d(ψ)),
• d(φ ∨ ψ) = max(d(φ), d(ψ)),



• d(Biφ) = d(φ) + 1,
In the multi-agent case, if we consider only formu-

las of depth D the number of non-equivalent situations
with respect to these formulas would be in the range of

2|Ω|
(

2
2|Ω|

„
22|Ω|(...)A

«A)A
, where A is the number of

modal operators (agents), and we altogether have D + 1
levels of exponentiations nested into each other. If ΣK45

D ,
ΣKD45
D , and ΣS5

D denotes the sets of non-equivalent epis-
temic situations w.r.t. formulas of depth at mostD for modal
logics K45, KD45, and S5, respectively, then it can be shown
that:

|ΣK45
D | = 2|Ω|(2|Σ

K45
D |)A

|ΣKD45
D | = 2|Ω|(2|Σ

K45
D | − 1)A

|ΣK45
D | = 2|Ω|(2|Σ

K45
D −1|)A

where A is the number of agents. The main challenge in the
multi-agent setting is to deal with a state space that grows
with this rate.

In the multi-agent setting deciding whether an arbitrary
formula is satisfiable, i.e., if there exists an epistemic situa-
tion where the formula holds is a PSPACE-complete prob-
lem (Halpern and Moses 1992; Fagin et al. 1995).

2.3 Defining Distribution over Epistemic
Situations

Here we review how a probability distribution was defined
in (Papai, Kautz, and Stefankovic 2013), and describe the
problem that arise in generalizing it to the multi-agent case.

Papai et al. extended propositional Markov logic by a
modal operator corresponding to one of modal logics K45,
KD45, or S5. A probability distribution over epistemic sit-
uations was defined first and the probability of a formula is
defined as the sum of the probabilities of the epistemic situ-
ations where the formula holds. This idea can be generalized
to any set of epistemic situations Σ. Given a non-empty set
of epistemic situations Σ over a fixed Ω propositions, we can
define the probability of σ ∈ Σ as:

Pr(σ) =
1
Z

exp(
∑
i

wiI[σ |= Fi]) , (4)

where I is the indicator function and the partition function
Z is defined as:

Z =
∑
σ∈Σ

exp(
∑
i

wiI[σ |= Fi]) . (5)

The probability of a formula φ (modal or non-modal) is
defined as:

Pr(φ) =
∑

σ∈Σ:σ|=φ

Pr(σ) . (6)

If the knowledge base consists of the weighted formu-
las {(w1, F1), . . . , (wn, Fn)}, let T be the set of length n
Boolean vectors, and for t ∈ T let Φ(t) denote the conjunc-
tion where the ith term is Fi if ti = true, otherwise it is ¬Fi.

Inference can be reduced to computing the partition function
in (5), which can be rewritten as:

Z =
∑
t∈T

N(Φ(t)) exp(w(t)) , (7)

where N(φ) denotes the number of epistemic situations
where φ holds, i.e., N(φ) = |{σ ∈ Σ|σ |= φ}|.

The probability of any query formula F can be written as:

Pr(F ) =
1
Z

∑
t∈T

N(Φ(t) ∧ F ) exp(w(t)) . (8)

The benefit of the single-agent case is that there are
finitely many non-equivalent epistemic situations, hence Σ
could be chosen to be an enumeration of all non-equivalent
epistemic situations w.r.t to our choice of modal logic.

Papai et al. showed how N(F ) could be computed
in 2O(|F |+|Ω|) time using basic counting rules and the
inclusion-exclusion principle.

In the multi-agent setting, as it was pointed out in the
previous section, even if we are dealing with formulas with
bounded depth D, the state space gets too large to describe
the quantities such as N(Φ(t)) with sufficient precision un-

less we use more than 22...|Ω|

space, where we have D nest-
ings of exponentiations. To avoid dealing with such large
numbers, we could try to restrict the state space to contain a
subset of all possible epistemic situations that does not grow
that fast as we increase D. However, this way we would
lose the flexibility that an agent can have arbitrary beliefs
about another agent’s beliefs and so on. Moreover, if the
state space grows with D, we are likely to face the issue of
having always 0 probability for the formulas in the knowl-
edge base so long as the weights are finite in the knowledge
base (we discuss this in Sec. 6). Therefore, we follow a dif-
ferent approach and define probability distribution over sets
of epistemic situations.

3 Defining Distribution over Partitions of
Epistemic Situations

To avoid the computational issues presented in the previous
section, and to have a way of assigning probabilities differ-
ent from 0 and 1 for arbitrary formulas in the infinite state
space of non-equivalent epistemic situations in the multi-
agent case, we define probability distributions over the set of
equivalence classes of epistemic situations rather than over
the set of individual epistemic situations. Given a knowledge
base KB = {(w1, F1), . . . , (wn, Fn)}, t ∈ T partitions a
set of non-equivalent situations Σ into at most 2n disjoint
partitions. Using the previous definition of Φ(t), a consis-
tent Φ(t) creates a partition Πt defined as follows:

Πt , {σ ∈ Σ|σ |= Φ(t)} . (9)

We can define a distribution over partitions

Pr(Πt) = (1/Z)c(Φ(t)) exp(
∑
i

wiI[ti]) (10)

= (1/Z)c(Φ(t)) exp(w(t)) ,



where c(F ) is a function that returns 1 if and only if F is a
modally consistent formula, and 0 otherwise1. The partition
function Z is defined as:

Z =
∑
t∈T

c(Φ(t)) exp(w(t)) . (11)

In the single-agent the decision problem associated with
the computation of c(F ) is NP-complete and for multi-
agents it is PSPACE-complete for modal logics K45, KD45,
and S5 (Fagin et al. 1995).

Given a knowledge base, probabilities of Φ(t) can be in-
ferred using any inference algorithm applicable for Markov
logic networks with the extra additional step of rejecting the
modally inconsistent states (or samples in case of relying
on sampling based algorithms such as, e.g., MC-SAT (Poon
and Domingos 2006)) , thus yielding an exponential running
time algorithm for computing the partition function Z ex-
actly in the multi-agent case for modal logics K45, KD45,
and S5.

Using (10) we can assign probabilities to situations if we
assume that each situation in a given equivalence class con-
tributes with equal weight to the probability of the partition.
Hence, for σ ∈ Πt we have:

Pr(σ) =
1

N(Φ(t)
Pr(Πt) . (12)

(10) defines a probability distribution over Πt, and hence
over formulas Φ(t), however, it does not directly define the
probability of an arbitrary query formulaQ. If we follow the
definition (6) from Sec. 2.3, we get:

Pr(Q) = (1/Z)
∑
t∈T

c(Φ(t))
N(Φ(t) ∧Q)
N(Φ(t))

exp(w(t))

(13)
This way we would still need to compute the ratios
N(Φ(t)∧Q)
N(Φ(t)) ; hence we are not much better off compared to

the approach that assigns probabilities directly to epistemic
situations. We propose two workarounds to avoid dealing
with this computational challenge.

In the first proposed solution, we assume that we know
in advance the query formulas we are interested in; there-
fore we can create partitions using the query formulas
in addition to the formulas in the knowledge base. Let
F1, . . . , Fn be again the formulas in the knowledge base, and
let Q1, . . . , Qm be the query formulas of interest. We can
then choose T to be truth assignments of length n + m and
Φ(t) to be a conjunction composed of positive and negated
forms of F1, . . . , Fn, Q1, . . . , Qm. This approach is sensi-
tive to the choice of Q, which is not surprising, since in
general maximum entropy models can be sensitive to the
choice of state space (see, e.g., (Grove, Halpern, and Koller
1994)). The same would occur if we were to define probabil-
ity distribution over epistemic situations directly and would

1We placed c(F ) outside of the exponential to make clear its
role as a filter. Alternatively, c(F ) could be added to the summa-
tion in the exponent, by having it return 0 for a modally consistant
theory and −∞ for an inconsistent one.

change the state space from non-equivalent epistemic situ-
ations with respect to formulas of depth D (ΣD) to non-
equivalent epistemic situations with respect to formulas of
depth D + 1 (ΣD+1). In fact, it can always be shown that
it is enough to consider a minimal set of formulas such that
the truth values of these formulas always determine the truth
values of the formulas both in the knowledge base and in the
set of possible queries. E.g., if B1(p ∧ q), B1q are formulas
in the knowledge base and B1p is a query formula, then it
is enough to partition Σ according to truth assignments to
B1p and B1q. We discuss in more details how to partition
the state space in the next section.

The second approach provides bounds on the proba-
bility of arbitrary query formulas. The key idea is that
N(Φ(t)∧Q)
N(Φ(t)) = 0 if Φ(t) ∧ Q is modally inconsistent. Con-

sequently,∑
t∈T

I[Φ(t) ∧Q is consistent] Pr(Φ(t)) ≥ Pr(Q)

(14)

1−
∑
t∈T

I[Φ(t) ∧ ¬Q is consistent] Pr(Φ(t)) ≤ Pr(Q)

(15)

Therefore, if we want to answer a query Q not being
among the previously fixed set of query formulas, we can
still get an estimate for the probability of Q. The exact
probability would depend on the choice of Σ we are deal-
ing with, but the exact probability would be within the
bounds provided by (14). If we, e.g., fix the state space
to be the partitions of ΣD created by truth assignments to
F1, . . . , Fn, Q1, . . . , Qm then after changing the state space
to the partitions of ΣD+1 we would assign a different prob-
ability to Q, but it would still be within the bounds in (14).
The statement would hold even in the limit D →∞.

4 Choosing the Partitions
When we choose T to be the truth assignments to
F1, . . . , Fn, Q1, . . . , Qm, we might create many inconsis-
tent truth assignments. Consider, e.g., if in the single-
agent setting we have formulas p1 ∧ Bp1, p2 ∧ ¬Bp1, p3 ∧
Bp1, p4 ∧ ¬Bp1, . . . , p|Ω|−1 ∧ Bp1, p|Ω| ∧ ¬Bp1 in the
knowledge base. Any truth assignment that assigns true
to a formula at an odd position and true to an even po-
sition is modally inconsistent, hence using any sampling
algorithm for Markov logic most of our samples would
be rejected for being modally inconsistent. Let us define
modal atom to be formulas that start with a modal op-
erator. As a solution to this particular case we should
not choose T to be all the possible truth assignments to
F1, . . . , Fn, Q1, . . . , Qm; instead, we choose the truth as-
signments to be all the propositions together with those
modal atoms from F1, . . . , Fn, Q1, . . . , Qm that are not
part of a modal atom within the same formula. E.g., from
B2p ∨ B1B2p we would extract two modal atoms, while
fromB1B2p only one. Although the size of T may increase,
in domains where different formulas in the knowledge base,
build on information about the same basic beliefs of agents,



we will no longer create more than necessary modally in-
consistent truth assignments. More importantly, the set of
queries we can answer can grow exponentially with the size
of A.

5 Connection between the Two Approaches
When using the state space of truth assignments to
F1, . . . , Fn, Q1, . . . , Qm or to truth assignments to modal
atoms and propositions A, one might ask what happens if
we keep adding query formulas (modal atoms).

We show the connection between the two approaches for
defining maximum entropy distributions over epistemic sit-
uations and sets of epistemic situations. Then, we prove
that in the limit of adding all possible non-equivalent modal
atoms, we end up defining the same distribution as we would
get if we considered all non-equivalent epistemic situations
to be Σ and defined the probability distribution using (4).

We first show that for a given knowledge base and A (the
set of propositions and modal atoms), how one can find a Σ
such that both approaches will assign the same probabilities
to every query formulas.

Theorem 1. For a given knowledge base andA it is always
possible to find a set of situations Σ s.t. every query for-
mula will be assigned the same probability by the different
approaches when using the same knowledge base.

Proof. We can construct Σ as follows. For every consistent
truth assignment t there must exist a situation σt, where the
propositional formula Φ(t) corresponding to t (a conjunc-
tion of propositional and modal literals) is satisfied, but any
other Φ(t′) is not, where t′ is a consistent truth assignment
different from t. Since every consistent truth assignment t
can decide whether a formula is satisfied or not both in the
knowledge base and among the queries, the same subset of
formulas in the knowledge base and the queries are satisfied
in σt as satisfied under truth assignment t. Therefore, if

Σ = {σt|t ∈ T and Φ(t) is consistent} ,

then we have
Pr(Φ(t)) = Pr(σt) ,

where on the left hand side of the equation the distribution
is defined over partitions created by truth assignments while
on the right hand side over situations. Consequently, every
query formula will be assigned the same probability using
the two different state spaces.

We only prove here the converse of the statement for the
single-agent case when Σ contains all the non-equivalent
epistemic situations (for modal logics K45, KD45, or S5).
For a given set of propositional and modal atomsA let S(A)
be the family of equivalence classes of situations that the
formulas Φ(t) – corresponding to truth assignments t toA –
would create, i.e., S(A) contains all the partitions Πt where
t ranges over all the possible truth assignments to A. Since
it is enough to consider only depth one formulas over a finite
Ω, A is always finite in the single-agent case. (In the multi-
agent case we can make a similar statement when we only
consider formulas of bounded depth.).

Theorem 2. IfA contains all the possible propositional and
modal atoms w.r.t. to modal logic K45(, KD45, or S5) then
the members of ΣK45 (ΣKD45, ΣS5) are contained in S(A)
as singletons.

Proof (sketch). Since any consistent truth assignment t to
A is capable of deciding whether any modal formula F is
true or not, the number of consistent truth assignments to A
must be equal to |ΣK45|, |ΣKD45| or |ΣS5| depending on
the underlying modal logic used, and since these numbers
are the upper bounds on the number of non-equivalent situ-
ations every epistemic situation in a singleton of S(A) must
be equivalent to a σ ∈ ΣK45 (σ ∈ ΣKD45 or σ ∈ ΣS5).

Note that instead of enumerating all the possible modal
atoms, it suffices forA to contain all the modal atoms of the
form B¬(l1 ∧ . . . ∧ lQ), where every li is either pi or ¬pi
where Ω = {p1, . . . , pQ}. Intuitively, this way every con-
sistent truth assignment would correspond to the situation
where the real world state is described by the truth assign-
ment to the propositions and a world with label l1 ∧ . . . lQ
would be in the set of possible worlds if B¬(l1 ∧ . . . lQ) is
set to false, since ¬B¬(l1 ∧ . . . lQ) is only true if the world
with label l1 ∧ . . . lQ is among the possible worlds.

Also, we could generalizeA to contain arbitrary formulas
instead of propositional and modal atoms. Even in this set-
ting Theorem 2 would hold if we enumerate all the (count-
able infinite) formulas.

The analogue could be stated for the multi-agent case for
using the state space ΣD and then taking the limit D →∞.

6 Weight Learning
The task of weight learning is that given a set of proposi-
tional modal formulas F1, . . . , Fn with their probabilities
c1, . . . , cn, find a weighted set of formulas which if we use
as our knowledge base then the distribution defined by (13)
will satisfy the constraints Pr(Fi) = ci. Generally, we re-
quire the constraints to be consistent, hence there must exist
a distribution satisfying the constraints, which is guaranteed
when we are working with training data. If the constraints
come from experts, we can use, e.g., the framework pro-
posed in (Papai, Ghosh, and Kautz 2012).

One more justification for defining a probability distribu-
tion over sets of epistemic situations rather than epistemic
situations is that in the latter approach even simple formulas
such as, e.g., Bip will always have probability 0 in the limit
D → ∞ (assuming finite weights). For modal logic K45 it
can be shown that even if we only have 2 agents,

N(Bip) = 2|Ω|22|Ω|−12|ΣD−2|2|ΣD−1| ,

while
|ΣD| = 2|Ω|(2|ΣD−1|)2 ,

hence

N(Bip)/|ΣD| = 22|Ω|−1|ΣD−2|−|ΣD−1| .

Since

|ΣD−1| = 2|Ω|
(

2|ΣD−2|
)2

,



we have
lim
D→∞

N(Bip)/|ΣD| = 0 ,

therefore, there is no finite weight for which Pr(Bip) > 0
could be achieved. Even if we fix D, we still have the chal-
lange of dealing with large numbers during the weight learn-
ing procedure.

We now show that if F1, . . . , Fn are the formulas in
the knowledge base and if there is a distribution over
epistemic situations that satisfy the given constraints, then
there must be a distribution over sets of epistemic situ-
ations where the constraints are satisfied. To prove this
statement, we will use the fact that if there is a distri-
bution that satisfies Pr(Fi) = ci then there is a maxi-
mum entropy distribution coming from an exponential fam-
ily of probability distributions that satisfies this distribu-
tion (see, e.g., (Wainwright and Jordan 2008)). Suppose
D is finite and we learned a distribution over epistemic
situations with weights w1, . . . , wn, then the knowledge
base {(w(t),Φ(t))|t ∈ T and Φ(t) is consistent} defines
the same distribution. Comparing (7) and (6) with (11) and
(10), we can conclude every Φ(t) will have the same prob-
ability if we use a knowledge base {(w(t) lnN(Φ(t)))|t ∈
T and Φ(t) is consistent} to define a probability distribution
over the partitions created by Φ(t). This proves that a distri-
bution over sets of epistemic situations exist that satisfies
the Pr(Fi) = ci constraints, hence one exists when we use
a knowledge base with only formulas F1, . . . , Fn.

7 Conclusions
We showed how to extend propositional Markov logic with
modal operators for multiple agents. In contrast to the pre-
vious approach (Papai, Kautz, and Stefankovic 2013), we
defined a probability distribution over sets of epistemic situ-
ations rather than over individual epistemic situations. Each
set contained an equivalence class of epistemic situations
with respect to a set of selected formulas. We gave guide-
lines how to select these formulas. The main advantage
of our approach compared to the one described in (Papai,
Kautz, and Stefankovic 2013) is that we no longer have to
deal with infeasibly large numbers. Moreover, the straight-
forward extension of the framework of Papai et. al. (2013)
suffers from the issue of simple formula probabilities con-
verging to 0 as we increase allowed maximum depth for
modal formulas; however, this does not arise in our pro-
posed framework. Computation of the partition function
(and hence performing exact inference) can be accomplished
in single exponential time for all of the modal logics we dis-
cussed, regardless of the number of agents or the number of
nestings of modal operators we have. Finally, inference al-
gorithms based on sampling and designed for the standard
Markov logic framework can be applied in our framework
by simply adding an extra rejection step.
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