
Combining Component Caching and Clause Learning for Effective
Model Counting

Tian Sang1, Fahiem Bacchus2, Paul Beame1, Henry Kautz1, and Toniann Pitassi2

1 Computer Science and Engineering, University of Washington, Seattle WA 98195-2350
{sang,beame,kautz}@cs.washington.edu

2 Dept. Computer Science, University of Toronto, Toronto ON M5S 1A4
{fbacchus,toni}@cs.utoronto.ca

1 Introduction

While there has been very substantial progress in practical algorithms for satisfiability, there are many
related logical problems where satisfiability alone is not enough. One particularly useful extension to sat-
isfiability is the associated counting problem, #SAT, which requires computing the number of assignments
that satisfy the input formula. #SAT’s practical importance stems in part from its very close relationship to
the problem of general Bayesian inference.

#SAT seems to be more computationally difficult than SAT since an algorithm for SAT can stop once
it has found a single satisfying assignment, whereas #SAT requires finding all such assignments. In fact,
#SAT is complete for the class #P which is at least as hard as the polynomial-time hierarchy [10].

Not only is #SAT intrinsically important, it is also an excellent test-bed for algorithmic ideas in propo-
sitional reasoning. One of these new ideas is formula caching [7, 1, 5] which seems particularly promising
when performed in the form called component caching [1, 2]. In component caching, disjoint components
of the formula, generated dynamically during a DPLL search, are cached so that they only have to be solved
once. While formula caching in general may have theoretical value even in SAT solvers [5], component
caching seems to hold great promise for the practical improvement of #SAT algorithms (and Bayes infer-
ence) where there is more of a chance to reuse cached results. In particular, Bacchus, Dalmao, and Pitassi [1]
discuss three different caching schemes: simple caching, component caching, and linear-space caching and
show that component caching is theoretically competitive with the best of current methods for Bayesian
inference (and substantially better in some instances).

It has not been clear, however, whether component caching can be as competitive in practice as it
is theoretically. We provide significant evidence that it can, demonstrating that on many instances it can
outperform existing algorithms for #SAT by orders of magnitude. The key to this success is carefully in-
corporating component caching with clause learning, one of the most important ideas used in modern SAT
solvers. Although both component caching and clause learning involve recording information collected dur-
ing search, the nature and use of the recorded information is radically different. In clause learning, a clause
that captures the reason for failure is computed from every failed search path. Component caching, on the
other hand, stores the result computed when solving a subproblem. When that subproblem is encountered
again its value can be retrieved from the cache rather than having to solve it again. It is not immediately
obvious how to maintain correctness as well as obtain the best performance from a combination of these
techniques. In this paper we show how this combination can be achieved so as to obtain the performance
improvements just mentioned.

Our model-counting program is built on the ZChaff SAT solver [8, 11]. ZChaff already implements
clause learning, and we have added new modules and modified many others to support #SAT and to in-
tegrate component caching with clause learning. Ours is the first implementation we are aware of that is
able to benefit from both component caching and clause learning. We have tested our program against the
relsat [4, 3] system, which also performs component analysis, but does not cache the computed values of
these components. In most instances of both random and structured problems our new solver is significantly
faster than relsat, often by up to several orders of magnitude. 3

We begin by reviewing DPLL with caching for #SAT [1], and DPLL with learning for SAT. We then
outline a basic approach for efficiently integrating component caching and clause learning. With this basic

3 An alternative approach to #SAT was recently reported by Darwiche [6]. We have not as yet been able to test against
his approach.

Table 1 #DPLL Algorithm with component caching
#DPLLCache(Φ)

Φ = RemoveCachedComponents(Φ)
if Φ = {}, return
else

Pick a variable v in some component φ ∈ Φ
Φ− = ToComponents(φ|v=0)
#DPLLCache((Φ− {φ}) ∪ Φ−)
Φ+ = ToComponents(φ|v=1)
#DPLLCache((Φ− {φ}) ∪ Φ+)
AddToCache(φ, GetValue(Φ−) × 1

2
+ GetValue(Φ+) × 1

2
)

// RemoveFromCache(Φ− ∪ Φ+) // this line valid is ONLY for linear space
return

Table 2 DPLL Algorithm with learning
while(1)

if (decide next branch()) // Branching
while(deduce()==conflict) // Unit Propagation

blevel = analyze conflicts(); // Clause Learning
if (blevel == 0)

return UNSATISFIABLE;
else back track(blevel); // Backtracking

else return SATISFIABLE; // no branch means all variables were assigned.

approach, linear-space caching works correctly when combined with clause learning, but experimentally
has poor performance. (Simple caching also works but has even worse performance; we do not discuss it
further.) On the other hand, component caching with clause learning has good performance but we show,
somewhat surprisingly, that it will only give a lower bound rather than an exact count of the number of mod-
els. We then show how to refine this basic approach with sibling pruning. This allows component caching
to work properly without significant additional overhead. The key idea is to prevent the bad interaction
between cached components and learned clauses from spreading.

We mention other important implementation issues for component caching such as the use of hash tables
and a method, based on stale dating of cached components, that keeps space small but is more efficient than
linear-space caching. Finally, we show the results of a set of experiments on both random and structured
problems under various combinations of caching and clause learning.

2 Background

#DPLL with Caching: A component of a CNF formula F is a set of clauses φ the variables of which are
disjoint from the variables in the remaining clauses F − φ. Table 1 shows the #DPLL algorithm for solving
#SAT using component caching from [1]. #DPLL takes as input a set of components, each of which shares
no variables with any of the other components and whose union of represents the current residual formula
(the input formula reduced by the currently assigned variables). The algorithm terminates when the number
of satisfying assignments for each component has been computed and stored in the cache.

It first removes all components already in the cache and then instantiates a variable v from one of the
remaining components φ. The formulaΦ− is obtained by setting v = 0 in φ, and then breaking the resulting
formula up into components (if possible), Φ+ is defined likewise. The algorithm then recursively solves the
original set Φ of components, but with φ replaced by Φ−, and then again with φ replaced by Φ+. Upon
return from both recursions, the cache contains the value of all components in Φ+ and Φ−, and these values
can be combined to obtain the value of the original component φ.

The values computed for the components φ are maintained as the satisfying probability of φ, Pr(φ),
under a uniformly chosen assignment. The number of satisfying assignments of φ on n variables is thus
#(φ) = 2n · Pr(φ).

SinceΦ consists of disjoint component(s),Pr(Φ) =
∏

φ∈Φ Pr(φ). Furthermore, during the computation,
if a component reappears, duplicate computation is avoided by extracting its value from the cache. These
two properties are the keys to the efficiency of this method.

The number of cached components can become extremely large so [1] presents a variant of this algo-
rithm that uses only linear space. The only difference is to add one more line, RemoveFromCache(Φ −∪Φ+),
shown in Table 1, which removes all cached values of child components once their parent component’s value
has been computed.

In [1], the component caching algorithm was proved to have a worst case time complexity of n O(1)2O(w),
where n is is the number of variables and w is the underlying branch-width of the instance. The bound
shown for the linear-space version was somewhat larger: worst-case time complexity of 2 O(w log n) and
space complexityO(n).

DPLL with Learning: Our solver is based on the DPLL SAT solver ZChaff which performs clause learning.
ZChaff’s main control loop is shown in Table 2. This loop expresses DPPL iteratively, and uses the learned
clauses rather than explicit returns to guide the backtracking. The procedure is to first choose a branch to
descend (a literal to make true), after which unit propagation is performed (deduce). If an empty clause is
generated a (conflict) clause explaining that conflict is computed (analyze conflict), and added to the current
set of clauses. From the way the conflict clause is constructed it must be falsified by the current variable
assignments, and we can backtrack to a level where enough of the variable assignments have been retracted
so that it is no longer falsified. The loop terminates when a solution is found or when the conflict cannot be
unfalsified (which forces a backtrack to level 0).

3 Integrating Component Caching and Learning

Bounded Component Analysis In component caching, components are defined relative to the residual for-
mula Φ = F |π where F is the original formula and π is the current partial assignment. Component analysis
is performed by detecting components within the residual formula (which, as in ZChaff, is maintained only
implicitly).

A key to integrating clause learning with component caching is to notice that clause learning deduces
new clauses; i.e., all of the new clauses are entailed by the original formula. Hence, if F is the original
formula, andG is any set of learned clauses, then an assignment satisfies F∧G iff it satisfies F . Furthermore,
this one-to-one correspondence between satisfying assignments is preserved under partial assignments. That
is, if π is a partial assignment to the variables of F , then the satisfying assignments of F |π are identical to
the satisfying assignments of (F ∧G)|π (note that (F ∧G)|π = F |π ∧G|π).

This observation provides the basic intuition that to perform component caching it should be sufficient
to examine only the formula F , ignoring the learned clauses G. We call this approach bounded component
analysis. Bounded component analysis is in fact critical to the success of component caching in the presence
of clause learning for a number of reasons. First, for a typical formula F , the set of learned clauses G can
be orders of magnitude larger than F . Hence, component analysis on F ∧ G would require significantly
more overhead. Second, the residual learned clauses in G|π will often span the components of F |π. Hence,
component analysis on F ∧G would reduce the savings achievable from decomposition. Finally, the set of
learned clauses grows monotonically throughout the search; so, the clauses which lie in a cached component
at one stage may very well have been augmented by additional learned clauses the next time that component
would have been encountered. Hence, component analysis on F ∧G would significantly reduce the chance
of reusing cached information.

Although the learned clauses G are ignored when detecting and caching dynamically generated com-
ponents, these clauses are used in unit propagations to prune the search tree. This means that in the subtree
below a partial assignment π the search will only encounter satisfying assignments ofF | π∧G|π. As pointed
out above, there is no intrinsic problem with this, since every satisfying assignment ofF | π also satisfiesG|π.
The difficulty arises, however, from the values that might be computed for components of F | π. In particular,
if A is a component of F |π, the search below π will only encounter satisfying assignments to the variables
of A that do not falsify F |π ∧G|π. This might not include all satisfying assignments of A!

Lemma 1. There is a formula F = A∧B and clauseC such that F ⇒ C (and thusC is a potential clause
learned from input F) and a partial assignment π such that
(i) F |π splits into disjoint components A|π and B|π ,
(ii) C|π is defined entirely on the variables of A|π, and
(iii) Pr(A|π) �= Pr(A|π ∧ C|π).

Proof. LetA be the formula (p0∨a1∨p1)(p0∨p2∨a2)(a1∨a2∨a3) and letB be (p1∨b1)(b1∨b2)(b2∨p2).
It is not hard to check that C = (p0 ∨ a1 ∨ a2) is a consequence of F = A ∧B. Let π be {p0 ← 0, p1 ←
1, p2 ← 0}.

Observe that A|π = (a1 ∨ a2 ∨ a3) and B|π = (b1)(b1 ∨ b2)(b2) are disjoint and the learned clause
C becomes C|π = (a1 ∨ a2) which is entirely defined on the variables of A|π. One can easily check that
Pr(A|π ∧ C|π) = 5/8 < 7/8 = Pr(A|π).

Examining this example, we see that if clause learning was to discover C, then the number of different
satisfying assignments to A|π the search below π would encounter would only be 5 not 7: two of these
satisfying assignments would be pruned because they falsify C. The correct value for the whole residual
formula (A ∧ B)|π will be computed, however, because B|π is UNSAT and thus the value overall will be
zero. Nevertheless, unless we are careful the incorrect value of Pr(A|π) could be placed in the cache where
it might then corrupt other values computed in the rest of the search. For example, if A| π reappears as a
component of another residual formula which happens to be satisfiable, then the value computed for that
formula will be corrupted by the incorrect cached value of A| π. Although our example did not demonstrate
that the clauseC would actually be learned, in our experiments we have in fact encountered incorrect cached
values arising from this situation.

The fact that B|π is UNSAT in this example is not an accident. The problem of under-counting the
satisfying assignments of components of F |π cannot occur if F |π is satisfiable (all of its components must
then also be satisfiable).

Theorem 1. Let π be a partial assignment such that F |π is satisfiable, and let A be a component of F |π,
and G|π be the set of learned clauses G reduced by π. Then any assignment to the variables of A that
satisfies A can be extended to a satisfying assignment of F |π ∧G|π.

Proof. Let 〈ρA, ρĀ〉 be a satisfying assignment to F |π, where ρA is an assignment to the variables in A
and ρĀ is an assignment to the variables outside of A. Let ρ ′A be any assignment to the variables of A that
satisfies A. Then 〈ρ′A, ρĀ〉 must be a satisfying assignment of F |π, since A is disjoint from the rest of F |π.
Furthermore 〈ρ′A, ρĀ〉 must also satisfy F |π ∧ G|π since G|π is entailed by F |π. Hence ρĀ is the required
extension of ρ′A.

This theorem means for every satisfying assignment ρA of A there must exist at least one path visiting
ρA that does not falsify the current formula F |π ∧ G|π . Hence, in a satisfiable subtree if our algorithm
correctly counts up the number of distinct satisfying assignments to A in the subtree, it will compute the
correct value forA even if the learned clausesG are being used to prune the search. The only case we must
be careful of is in an unsatisfiable subtree. In this case the value computed for the entire residual formula
F |π, zero, will still be correct, but we cannot necessarily rely on the value of components computed in the
unsatisfiable subtree.

Our algorithm puts these ideas together. It performs component analysis along with clause learning,
exploring the subtree below a component in order to compute its value. The learned clauses serve to prune
the subtree and thus make exploring it more efficient. The computed values are cached and used again to
avoid recomputing already known values. Thus clause learning and component caching work together to
improve efficiency. The main subtlety of the algorithm is that when computing the value of a component
in a subtree, it applies its decomposition scheme recursively, much like the #DPLL algorithm presented
in Table 1. That is, component values are computed by further breaking up the components into smaller
components.

The Basic Algorithm for #DPLL with Caching and Learning We present our algorithm #DPLL with
caching and learning in Table 3. For simplicity of presentation assume that the input has no unit clauses and
contains only one component. (Our implementation is not restricted to this case.) The algorithm starts with
the input component on the branchable component stack. At each iteration it pops a component ψ from the
stack, chooses a literal � from the component and branches on that literal. Its aim is to compute Pr(ψ) by
first computing Pr(ψ|�) then Pr(ψ|�̄) and summing these values to obtain Pr(ψ). If all components have
been solved, then we backtrack to the nearest unflipped decision literal and flip that literal. This can generate
a new set of components to solve.

After � is instantiated unit propagation is performed (deduce), and as in ZChaff if a conflict is detected
a clause is learned and we backtrack to a level where the clause is no longer falsified. If ZChaff backtracks

Table 3 #DPLL Algorithm with caching and learning
while(1)

if (!branchable component stack.empty())
ψ = branchable component stack.pop();
choose a literal of ψ as the decision // Branching

else back track to proper level, or return if back level == 0;
while(deduce()==conflict) // Unit Propagation

analyze conflicts(); // Learning
percolate up(last branched component, 0);
back track to proper level, or return if back level == 0; // Backtracking

num new component = extract new component(); // Detecting components
if (num new component == 0)

percolate up(last branched component, 1); // Percolating and caching
else for each newly generated component φ

if (in cache(φ)) // Checking if in cache
sat prob = get cached value(φ));
percolate up(φ, sat prob);
if (sat prob == 0)

back track to proper level, or return if back level == 0;
else branchable component stack.push(φ);

Table 4 Routine remove siblings
if component φ has value 0

remove all its cached siblings and their descendants
if φ is the last branched component of its parent

add to cache(φ, 0)
else remove all the cached descendants of φ

to a node whose left hand branch is already closed, it can resolve the clause labeling the left hand branch
with the newly learned clause to backtrack even further. This is not always possible in #SAT, since the left
hand branch need not have been UNSAT.

After ψ|� has been reduced by unit prop, it is broken up into components by extract new component.
If there are no components, i.e., ψ|� has become empty, then this means that its satisfying probability is
1. This is recorded and percolated up by the percolate up routine as part of the value of Pr(ψ). Otherwise
each new component is pushed onto the branchable component stack after removing and percolating up the
value of all components already in the cache.

If one of the new components has value zero we know that ψ|π is UNSAT and we can backtrack. As
values of components are percolated up, the values of parent components eventually become known and
can be added to the cache. This allows an easy implementation of linear space caching: we simply remove
all children components from the cache once the parent’s value has been completed. When the algorithm
returns, the original formula with its satisfying probability is in cache.

To facilitate immediate backtracking upon the creation of zero-valued components we cache zero-valued
components. It should be noted that caching zero-valued components is not the same as learning conflict
clauses. Learning conflict clauses is equivalent to caching partial assignments (the partial assignment that
falsifies the clause) that reduce the input formula to an UNSAT formula. The reduced UNSAT formula might
in fact be UNSAT because it contains a particular UNSAT component. This UNSAT component might
reappear in the theory under different partial assignments. Hence caching UNSAT components can detect
some deadends that would be undetected by the learned clauses. On the other hand, the learned clauses can
be resolved together to generate more powerful clauses. There is no easily implementable analogous way
of combining UNSAT components into larger UNSAT components. Hence, the benefits of clause learning
and caching of zero-valued components are orthogonal and it is useful to do both.

Correctness To use full component caching we must insure that the cache is never polluted. This can
be accomplished by removing the value of all components that have UNSAT siblings using the following
routine within percolate up.

Theorem 2. Using bounded component analysis, #DPLL with component caching and clause learning in
Table 3, plus the routine remove siblings, computes the correct satisfying probability.

0

0.2

0.4

0.6

0.8

1

0 50000 100000 150000 200000 250000 300000 350000

cu
m

ul
at

iv
e

fr
ac

tio
n

of
 h

its
 b

y
ag

e

age

Fig. 1. Cumulative fraction of cache hits by cache age on 50-variable random 3-CNF formulas, clause/variable ratio=1.6,
100 instances

4 Implementation

We implement the dynamic component detection required by the algorithm using a simple depth-first search
on the component ψ in which the decision literal is chosen; this is repeated with unit propagation. While
it may seem that this is expensive, as seen by the results in the next section, the speed-ups that dynamic
component detection provides are typically worth the effort. Code profiling on our examples shows that on
hard random examples, roughly 38% of the total runtime is due to the cost of component detection, while
on structured problems the cost of component detection varied from less than 10% to nearly 46% of the
total run-time.

A component is represented as a set of unsatisfied clauses with falsified literals removed. Known com-
ponents and their value are stored in a component cache implemented as a hash table with separate chaining.
This table is checked when a new component is created to see if its value is already in the hash table.

With the number of components encountered during the execution of the algorithm, space complexity
can become a serious bottleneck if entries in the cache are never flushed; this also holds despite the routine
remove siblings, because remove siblings is not triggered when a residual formula is satisfiable. For exam-
ple, to solve a 75 variable random 3-CNF formula with a hard clause-variable ratio (for #SAT this is near
1.8 rather than 4.2 because of the large number of satisfying assignments that need to be examined), we
saw more than 9 million components, while 2GB of physical memory could only accommodate about 2.5
million components. However, as shown in Figure 1 (using somewhat smaller formulas so that we could
run the experiment) the utility of the cached components typically declines dramatically with age.

Therefore, we simply give each cached component a sequence number and eliminate those components
that are too old. This guarantees an upper bound on the size of the cache; we allow the age limit as an input
parameter. For efficiency reasons, age checking is not done frequently; when a new component is cached,
we only perform age checking on the chain that contains the newly cached component.

5 Experimental Results

As described in the last section, in our experiments we implemented the cache using a bounded hash table
and a scheme for lazily pruning old entries—this entails occasionally having to recompute the value of
some components. We also chose the heuristic of always branching on the literal of the current component
appearing in the largest number of clauses. Furthermore, we had to ignore unit propagations generated by
learned clauses that are outside the current component due to the difficulty of integrating them with the
ZChaff design. Hence, the full power of the learned clauses was not available to us.

We have conducted experiments on random 3-CNF formulas and structured problems from three do-
mains. For random 3-CNF formulas as shown in Figure 2, component caching+learning has a many orders

Ratio 1.0 1.2 1.4 1.6 1.8 2.0

relsat 3809 11719 9663 7060 7665 4043
CC+L 2 18 21 35 82 74

relsat 5997 12695 9895 20224 11173 7259
CC+L 5 25 32 41 184 150

relsat 5806 13740 17822 11155 13620 13510
CC+L 5 24 75 61 131 179

relsat 9213 23976 24066 12944 15344 18504
CC+L 6 12 70 90 133 273

relsat 31660 31175 24606 15047 12422 32998
CC+L 20 38 52 101 170 547

Fig. 2. Comparison of relsat and component caching+learning (CC+L) on 75 variable random 3-CNF formulas, 5
samples per clause/variable ratio. The number of solutions in these examples ranges from a low of 2.59 × 1013 at ratio
2.0 to a high of 1.96 × 1018 at ratio 1.0.

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

de
cis

ion
s o

r h
its

clause / variable ratio

Decisions
Hits

Fig. 3. Comparison of the median number of decisions and cache hits for 75 variable random 3-SAT formulas, 100
instances per ratio

of magnitude advantage over relsat. Figure 3 shows that a significant portion of that advantage is due to
the cache hits; there are roughly twice as many cache hits as decisions.

For structured problems, in order to compare the performance of different caching and learning schemes,
as well as component caching+learning, we also used several other variants of our implementation: caching
only, learning only and linear space caching with learning 4. The formulas are of three types: satisfiable
layered grid-pebbling formulas discussed in [9] (where we also add alphabetical tie-breaking for the variable
selection rule); circuit problems from SATLIB; and logistics problems produced by Blackbox. Component
caching+learning is the best over almost all problems, frequently by a large margin.

6 Conclusions and Future Work

We have presented work that makes substantial progress on combining component caching and clause
learning to create an effective procedure for #SAT that does extremely well when compared with either
technique alone. The experimental results on both random 3-SAT and structural problems indicate that our

4 A naive direct implementation of explicit counting on top of ZChaff times out on virtually all of the problems so we
do not include it

Grid-pebbing Formulas
layers vars clauses solns relsat caching+learning caching only learning only linear-space

7 56 92 7.79E+10 1 0.01 0.04 0.27 0.07
8 72 121 4.46E+14 49 0.02 0.18 4 0.04
9 90 154 5.94E+23 1438 0.06 0.50 62 6

10 110 191 6.95E+18 X 0.06 0.92 6961 0.67
15 240 436 3.01E+54 X 0.53 106 X 465
20 420 781 5.06E+95 X 3 X X X
25 650 1226 1.81E+151 X 35 X X X
30 930 1771 1.54E+218 X 37 X X X

Circuit Problems
Problem vars clauses solns relsat caching+learning caching only learning only linear-space

ra 1236 11416 1.87E+286 18 8 9 9 8
rb 1854 11324 5.39E+371 80 16 17 22 22

2bitcomp 6 150 370 9.41E+20 272 201 109 746 424
2bitadd 10 590 1422 0 667 475 X 509 505

rand1 304 578 1.86E+54 1731 31 186 1331 1128
rc 2472 17942 7.71E+393 2260 1485 3435 1327 1747

Logistics Problems
Problem vars clauses solns relsat caching+learning caching only learning only linear-space

prob001 939 3785 5.64E+20 < 1 0.57 588 0.75 102
prob002 1337 24777 3.23E+10 4 65 6432 66 245
prob003 1413 29487 2.80E+11 4 119 5545 118 261
prob004 2303 20963 2.34E+28 200 239 X 3766 2279
prob005 2701 29534 7.24E+38 4957 1507 X X X

prob0012 2324 31857 8.29E+36 12323 950 X 33082 16162

Fig. 4. Comparisons of relsat and different caching and learning schemes on structured problems. (X denotes that
the run exceeded the 12 hour time limit.)

program with caching+learning is frequently substantially better than rel-sat and other schemes without
caching or learning and is rarely worse. Bounded component analysis was important for the approach,
where only original clauses contribute to component analysis and learned clauses only contribute to unit
propagations.

However, our current procedure is still very much a work in progress. We have not yet accommodated
cross-component implications. More importantly, since the branching order is critical to the search space,
we need to have good heuristics on both what component to branch on and what variable in a component to
branch on. So far, we simply use DFS for the former and the greedy largest degree heuristic for the latter,
so certainly there is plenty of room for improvement.

References

1. F. Bacchus, S. Dalmao, and T. Pitassi. DPLL with Caching: A new algorithm for #SAT and Bayesian inference. In
Proceedings 44th Annual Symposium on Foundations of Computer Science, Boston, MA, October 2003. IEEE.

2. F. Bacchus, S. Dalmao, and T. Pitassi. Value elimination: Bayesian inference via backtracking search. In Uncer-
tainty in Artificial Intelligence (UAI-2003), pages 20–28, 2003.

3. Roberto J. Bayardo Jr. and Joseph D. Pehoushek. Counting models using connected components. In Proceedings,
AAAI-00: 17th National Conference on Artificial Intelligence, pages 157–162, 2000.

4. Roberto J. Bayardo Jr. and Robert C. Schrag. Using CST look-back techniques to solve real-world SAT instances.
In Proceedings, AAAI-97: 14th National Conference on Artificial Intelligence, pages 203–208, 1997.

5. Paul Beame, Russell Impagliazzo, Toniann Pitassi, and Nathan Segerlind. Memoization and DPLL: Formula
Caching proof systems. In Proceedings Eighteenth Annual IEEE Conference on Computational Complexity, pages
225–236, Aarhus, Denmark, July 2003.

6. Adnan Darwiche. A compiler for deterministic, decomposable negation normal form. In Proceedings, AAAI-02:
18th National Conference on Artificial Intelligence, pages 627–634, 2002.

7. S. M. Majercik and M. L. Littman. Using caching to solve larger probabilistic planning problems. In Proceedings
of the 14th AAAI, pages 954–959, 1998.

8. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff: Engineering an
efficient SAT solver. In Proceedings of the 38th Design Automation Conference, pages 530–535, Las Vegas, NV,
June 2001. ACM/IEEE.

9. Ashish Sabharwal, Paul Beame, and Henry Kautz. Using problem structure for efficient clause learning. In Pro-
ceedings of the Sixth International Conference on Theory and Applications of Satisfiability Testing (SAT 2003),
2003.

10. Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing, 20(5):865–877,
October 1991.

11. Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and Sharad Malik. Efficient conflict driven learning in
a boolean satisfiability solver. In Proceedings of the International Conference on Computer Aided Design, pages
279–285, San Jose, CA, November 2001. ACM/IEEE.

