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Background: The identification of surgical site infections for infection surveillance in hospitals depends on the manual
abstraction of medical records and, for research purposes, depends mainly on the use of administrative or claims data.
The objective of this study was to determine whether automating the abstraction process with natural language pro-
cessing (NLP)-based models that analyze the free-text notes of the medical record can identify surgical site infections with
predictive abilities that match the manual abstraction process and that surpass surgical site infection identification from
administrative data.

Methods: We used surgical site infection surveillance data compiled by the infection prevention team to identify surgical
site infections among patients undergoing orthopaedic surgical procedures at a tertiary care academic medical center
from 2011 to 2017. We compiled a list of keywords suggestive of surgical site infections, and we used NLP to identify
occurrences of these keywords and their grammatical variants in the free-text notes of the medical record. The key
outcome was a binary indicator of whether a surgical site infection occurred. We estimated 7 incremental multivariable
logistic regression models using a combination of administrative and NLP-derived variables. We split the analytic cohort
into training (80%) and testing data sets (20%), and we used a tenfold cross-validation approach. The main analytic cohort
included 172 surgical site infection cases and 200 controls that were repeatedly and randomly selected from a pool of
1,407 controls.

Results: For Model 1 (variables from administrative data only), the sensitivity was 68% and the positive predictive value
was 70%; for Model 4 (with NLP 5-grams [distinct sequences of 5 contiguous words] from the medical record), the
sensitivity was 97% and the positive predictive value was 97%; and for Model 7 (a combination of Models 1 and 4), the
sensitivity was 97% and the positive predictive value was 97%. Thus, NLP-based models identified 97% of surgical site
infections identified by manual abstraction with high precision and 43% more surgical site infections compared with
models that used administrative data only.

Conclusions: Models that used NLP keywords achieved predictive abilities that were comparable with the manual
abstraction process and were superior to models that used administrative data only. NLP has the potential to automate
and aid accurate surgical site infection identification and, thus, play an important role in their prevention.

Clinical Relevance: This study examines NLP’s potential to automate the identification of surgical site infections. This
automation can potentially aid the prevention and early identification of these surgical complications, thereby reducing
their adverse clinical and economic impact.

S
urgical site infections are frequently occurring and are the
most expensive of all hospital-acquired infections1-3. In
orthopaedics, the mean surgical site infection rates range

from 0.5% to 3% following hip and knee replacement surgical
procedures4-6 and from 0.2% to 7.2% following spine surgical

procedures7-9, and the cost of treating a surgical site infection
can be as high as $65,0009. Surgical site infections are also
among the most common causes of readmissions following
joint replacement surgical procedures10 and are included as
quality metrics in several payment reforms such as the U.S.
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Comprehensive Care for Joint Replacement model11 and the
U.S. Hospital Readmissions Reduction Program12.

Successful surgical site infection prevention requires
elaborate surveillance mechanisms that identify signs of im-
pending surgical site infections, expeditiously treat early surgical
site infections, and generate knowledge from these events to
inform future prevention efforts13. In several institutions across
the United States, the gold standard for surgical site infection
identification is the manual abstraction of the patient’s medical
record by trained infection prevention personnel1. Although this
practice may be suitable for single institutions14, large-scale
research to inform surgical site infection prevention strategies
generally depends on the use of administrative data and diag-
nostic codes, with attendant limitations of both sensitivity and
specificity15. Thus, there are important opportunities in auto-
mating the identification of surgical site infection from the
medical record and potentially avoiding the limitations of both
manual abstraction (e.g., timeliness, reproducibility, and scal-
ability) and administrative data.

One approach is the use of natural language processing
(NLP) to analyze the free text of a patient’s medical record. NLP
is a subfield of artificial intelligence and includes a set of tools
that can be used to analyze the unstructured free text in a
patient’s medical record to encode concepts and to derive
meaning16,17. This is conducted using rule-based approaches,
which require a lexicon of words indicative of surgical site
infections as well as machine learning-based approaches that
have greater dependencies on the computer for extracting
meaningful patterns18. In clinical practice, surgical site infec-
tions are identified using guidelines specified by the voluntary
U.S. National Healthcare Safety Network (NHSN) program19.
These guidelines include the level of involvement of the skin
and subcutaneous tissue, the presence of purulent drainage,
and the reporting of the signs and symptoms. Frequently,
these observations are documented as free text in the
patient’s medical record. Thus, in the absence of discrete and
codified systems for capturing these conversations, the
capabilities of NLP make it a suitable approach for analyzing
this information.

Few NLP studies have demonstrated the advantages of
NLP-based models for surgical site infection identification in a
mix of medical and surgical patients17,20,21. However, whether
similar methods can be reliably used in orthopaedics is an open
question. The objective of our study was to construct rule-
based NLP algorithms for retrospectively identifying patients
who developed surgical site infections following orthopaedic
surgical procedures. We hypothesized that the predictive
accuracy of the NLP-based models would be comparable with
results from the gold-standard manual surgical site infection
abstraction process and would be considerably superior to
models based solely on administrative data.

Materials and Methods
Data Sources and Cohort

We used the gold-standard surgical site infection surveil-
lance data for orthopaedic patients from January 2011

through June 2017 at Strong Memorial Hospital, the major
teaching hospital of the University of Rochester, New York.
This data set was generated by the infection prevention team as
a part of their surveillance efforts, which are based on the
NHSN guidelines22. It included patient, surgery, and surgical
site infection details from orthopaedic patients who developed
‡1 surgical site infection (hereafter called cases) in the 90 days
following the surgical procedures. Notably, at StrongMemorial
Hospital, the infection prevention team tracks the occurrence
of surgical site infections following every surgical procedure,
and, hence, the data are not limited to the surgical procedures
monitored by the NHSN. We included 172 cases and linked
these data to the patients’ administrative and medical record
data. The medical record data included free-text notes such as
progress notes, discharge summaries, history and physical
examination notes, and telephone encounter notes. Because
surgical site infection-relevant language is most likely to be
found in notes written by the clinical team, we limited the notes
to those written by physicians, residents, advanced practice
providers, and registered nurses and to notes written within 10
days before and 14 days after the detection of a surgical site
infection.

We obtained administrative and medical record data for
1,407 patients who underwent orthopaedic surgical procedures
at Strong Memorial Hospital from 2015 to 2016, did not
develop surgical site infections in the 90-day postoperative
period (hereafter called controls), and had combinations of
diagnosis and procedures similar to cases. The distribution of
demographic characteristics and clinical comorbidities of these
controls were similar to those of controls from previous years
(Appendix Table 1). To ensure that there was no class imbal-
ance23, we repeatedly and randomly sampled 200 patients from
the controls at various steps in the analysis, resulting in analytic
cohorts of 372 patients at each instance.

The University of Rochester’s Research Subject Review
Board approved the study protocol. Data management and
analysis were performed using Stata/MP 1524 (StataCorp) and
Python 3.025 on Unix.

Outcome
The key outcome was a binary indicator of any surgical site
infection (superficial, deep, or organ or space) within 90 days of
the primary surgical procedure as recorded in the surgical site
infection surveillance data set.

Linguistic Variables and Features
We cleaned the free-text notes by detecting and managing
inconsistencies such as the removal of stop words (i.e., words
such as “a,” “an,” “the,” and “to” that occur frequently but do
not contribute in formulating the main context or the true
meaning of a sentence) and filtering out non-English words.
We reviewed the clinical literature and used the clinical ex-
pertise of our team to compile a list of >40 clinical keywords
that are most frequently used by clinicians to describe surgical
site infections (Table I). Next, we created an exhaustive list of
stemmed or lemmatized versions of the keywords to capture
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the variable grammatical forms of these keywords. For exam-
ple, for the keyword “infection,” the stemmed version was
“infecti,” and the lemmatized version was “infection.” We also
created 5-grams (distinct sequences of 5 contiguous words) of
each note, and we examined the presence of the keywords and
their variants in these 5-grams. We also captured instances when
the clinical team documented the absence of a keyword. For this,
we used web-based resources to create an extensive list of nega-
tions that were treated as prefixes for the keywords to capture
linguistic cues that were suggestive of a patient not developing a
surgical site infection26-28. Examples of these negations include
“no purulent drainage” and “rule out infection.”

During the notes analysis, the occurrence of a keyword,
its stemmed or lemmatized version, or its 5-grams were ex-
pressed as counts for the variable or feature. This was further
refined such that none of the negation prefixes were present in
the 4 words preceding a keyword and that the negation prefix
and the keyword did not appear in the note. Notably, because a
mention of the keyword “pain” can occur among both cases
and controls, we used the 5-gram strategy to identify persis-
tence of pain among the 2 groups. Controls were also deter-
mined by the absence of other linguistic patterns suggestive of
surgical site infections.

Covariates
Some models controlled for important covariates from ad-
ministrative data such as demographic characteristics (age, sex,
and race), clinical comorbidities (identified using the Elix-
hauser comorbidity algorithm)29, the year of the surgical pro-
cedure, and the Clinical Classification Software30 diagnosis
categories to control for the clinical heterogeneity among
orthopaedic subspecialties.

Analysis
We examined the distribution of demographic and clinical
characteristics in the cohort. We examined the distribution
of surgical site infections in surgical subspecialties among
the cases from the main analytic cohort (n = 172) and the
cases from an external validation cohort (n = 36) that were
obtained from another tertiary care hospital affiliated with
Strong Memorial Hospital. We constructed a series of se-
quential and incremental logistic regression models to
determine whether models with NLP-derived features and
variables could reasonably predict surgical site infections.
The models included predictors from administrative data
(described in the covariates section) (Model 1), NLP key-
words (Model 2), stemmed or lemmatized versions of key-
words (Model 3), and 5-grams (Model 4). We further
combined Model 1 with Model 2 to create Model 5, Model
1 with Model 3 to create Model 6, and Model 1 with Model 4
to create Model 7.

For training and validation, we split the analytic cohort
(composed of 172 cases and 200 repeatedly and randomly
selected controls) into training (80%) and testing data sets
(20%). Next, we used tenfold cross-validation to randomly
split the data set into 10 groups, fromwhich 9 groups were used

TABLE I List of Keywords Used for Describing Surgical Site
Infections and Classifying Notes*

Abscess

Acinetobacter

Antibiotic

Apnea

Bradycardia

Candida

Clostridium difficile

Cough

Culture

Dehiscence

Delayed healing

Drainage

Dysuria

E. coli (Escherichia coli)

Emesis

Enterobacter

Enterococcus

Erythema

Escherichia

Fever

Heat

Hypothermia

Incision drained

Incision opened

Infection

Inflammation

Klebsiella

Lethargy

Material

MRSA (methicillin-resistant Staphylococcus aureus)

Nausea

Organism

Pain

Pathogen

Pseudomonas

Purulent

Redness

Serous

Sinus tract

SSI (surgical site infection)

Staphylococcus

Swelling

Tenderness

Vomiting

Wound

*The exact keywords and the stemmed or lemmatized versions of these
keywords were used to generate linguistic variables and features. This
list was compiled using the NHSN’s guidelines for identification of
surgical site infections and from the input of the clinical team members.

3

THE JOURNAL OF BONE & JOINT SURGERY d J B J S .ORG

VOLUME 00-A d NUMBER 00 d OCTOBER 9, 2019
NATURAL LANGUAGE PROCESS ING FOR THE IDENTIF ICAT ION OF

SURGICAL SITE INFECT IONS IN ORTHOPAEDICS

Copyright � 2019 by The Journal of Bone and Joint Surgery, Incorporated. Unauthorized reproduction of this article is prohibited.

IN
-P

RESS A
RTIC

LE



for training the models, and 1 group was used to test the
models. We externally validated the findings by reestimating
the 5-gram model (Model 4) to ascertain whether the main
analysis findings were robust.

We report the positive predictive value (precision) and
sensitivity (recall) for each model because these aid in identi-
fying cases with high precision; these records can subsequently
be reviewed by infection prevention personnel. We also focus
our discussion on the F1 score, as it is the harmonic mean of
the positive predictive value and sensitivity, and the C-statistic
for model discrimination.

Results
Characteristics of Cases and Controls

Themean age (and standard deviation) of the overall cohort
was 45.8 ± 20.7 years, 48% (n = 760) were female, and 87%

(n = 1,373) were white (Table II). Of the 208 surgical site
infection cases (172 from the main analytic cohort and 36 from
the external validation cohort), 72% (n = 150) met deep or
organ or space surgical site infection criteria and 26% (n = 53)
met superficial surgical site infection criteria. Twenty percent
(n = 42) of the cases had undergone spine surgical procedures,
18% (n = 37) were trauma cases, and 17% (n = 36) underwent
joint replacement surgical procedures (Table III).

Distribution of Keywords Among Cases and Controls
Figure 1 presents the heat maps for the frequency distributions
of the keywords among the cases and controls. Notably, among
the cases, keywords such as “wound,” “pain,” “infection,” and
“fever” were the more frequently occurring words. Among the
controls, although “pain” was the more frequently occurring
keyword, we did not note mentions of other keywords.

Performance Parameters of Models Examining the Variation
in Surgical Site Infections
For Model 1 (variables from administrative data only), the
sensitivity was 68% and the positive predictive value was 70%;
for Model 4 (with NLP 5-grams from the medical record),

the sensitivity was 97% and the positive predictive value was
97%; and for Model 7 (a combination of Models 1 and 4), the
sensitivity was 97% and the positive predictive value was 97%.
Thus, NLP-based models identified 97% of surgical site
infections identified by manual abstraction with high precision
and 43% more surgical site infections compared with models
that used administrative data only.

Model 1 had the lowest F1 score (66%) and C-statistic
(78% ± 7%) (Table IV). The F1 scores and C-statistic for
Models 2 to 4 were comparable with those from Models 5 to 7
and were far superior to those from Model 1; the F1 score was
93% for Model 2, 95% for Model 3, and 97% for Model 4, and
the C-statistic was 95% ± 4% forModel 2, 97% ± 4% forModel
3, and 96% ± 3% for Model 4. Figure 2 presents the C-statistic
curves forModel 1, which had the lowest C-statistic, andModel

TABLE II Characteristics of Cases and Controls in the Cohort

Cases* (N = 172) Controls† (N = 1,407) Total (N = 1,579) P Value‡

Age§ (yr) 44.7 ± 22.1 45.9 ± 20.5 45.8 ± 20.7 0.6

Female sex# 71 (41%) 689 (49%) 760 (48%) 0.1

Race# 0.1

White 142 (83%) 1,231 (87%) 1,373 (87%)

Black 24 (14%) 124 (9%) 148 (9%)

Other 6 (3%) 52 (4%) 58 (4%)

No. of comorbidities** 1.5 (0 to 3) 0 (0 to 1) 0 (0 to 1) <0.001

*These are the patients who developed surgical site infections in the 90 days following the surgical procedure. †These are the patients who did
not develop surgical site infections in the 90 days following the surgical procedure. ‡P values were determined with chi-square tests for
categorical variables and with Kruskal-Wallis tests for continuous variables. §The values are given as the mean and the standard deviation.
#The values are given as the number of patients, with the percentage in parentheses. **The values are given as the median, with the
interquartile range in parentheses. Comorbidities were identified using the Elixhauser comorbidity algorithm.

TABLE III Distribution of Surgical Subspecialties Among the
Surgical Site Infection Cases from the Main Analytic
Cohort and the Cohort Used for External Validation
(N = 208)*

Orthopaedic Subspecialty No. of Cases†

Spine 42 (20%)

Trauma 37 (18%)

Reconstructive surgery‡ 36 (17%)

Oncology 26 (13%)

Foot and ankle 20 (10%)

Upper extremity 18 (9%)

Sports 16 (8%)

Other 13 (6%)

*The 172 cases for the main analysis were obtained from Strong
Memorial Hospital. †The values are given as the number of cases,
with the percentage in parentheses. ‡The 36 cases for
reconstructive surgery were obtained from another hospital
affiliated with Strong Memorial Hospital and were used for
external validation of the prediction models.
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Fig. 1

Heat maps for the distribution of keywords among cases and controls. The heat map pattern for controls demonstrates presence of the keyword “pain”

(highlighted with the red box) and its grammatical variants, and the absence of other keyword patterns noted in cases. E. coli = Escherichia coli, mrsa =

methicillin-resistant Staphylococcus aureus, and ssi = surgical site infection.
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7. Notably, during external validation, Model 4 (which included
the 5-grams) had a sensitivity of 94%.

Discussion

The objective of our study was to compare the predictive
capabilities of rule-based NLP models to predict surgical

site infections with those of manual abstraction of surgical site
infections from clinical records, and with models using varia-
bles from administrative data only. We demonstrated that the
NLP models achieved high F1 scores and C-statistics that were
comparable with the manual abstraction process and far su-
perior to administrative data models. The addition of the ad-
ministrative variables to these models only marginally increased
the predictive abilities.

The manual process of surveillance for surgical site
infection prevention can be time-consuming and labor-intensive
and may produce variable results31-33. With the increasing
availability of electronic medical record data, the use of elec-
tronic surveillance systems for the identification of hospital-
acquired infections is on the rise. However, these automated
systems, either commercial or institution-specific, have mostly
used the discrete fields in the medical record, such as micro-
biology results or antimicrobial drug administration records,
to reliably identify surgical site infections32,34-37. These studies
have shown sensitivities in the range of 60% to 97% and
positive predictive values in the range of 33% to 97%, dem-
onstrating considerable variation in the predictive accuracies
of these models32,33.

TABLE IV Model Performance Parameters for the Logistic Regression Models

Positive Predictive
Value* Sensitivity† F1 Score‡ C-Statistic§

Model 1 (variables from administrative data) 70% 68% 66% 78% ± 7%

Model 2 (NLP keywords only) 93% 93% 93% 95% ± 4%

Model 3 (stemmed and lemmatized versions of NLP keywords only) 95% 95% 95% 97% ± 4%

Model 4 (5-grams only) 97% 97% 97% 96% ± 3%

Model 5 (Model 1 and Model 2) 92% 92% 92% 97% ± 2%

Model 6 (Model 1 and Model 3) 96% 96% 96% 98% ± 2%

Model 7 (Model 1 and Model 4) 97% 97% 97% 96% ± 3%

*This is the number of true positives divided by the sum of the number of true and false positives.†This is the number of true positives divided by
the sum of the number of true positives and false negatives. ‡This is the harmonic mean of the positive predictive value and sensitivity and is
calculated as 2 · Positive Predictive Value · Sensitivity

ðPositive Predictive Value 1 SensitivityÞ . §This is the ability of the model to discriminate between cases (patients with surgical site
infection) and controls (patients without surgical site infection) and is represented using the ROC curve.

Fig. 2

Receiver operating characteristic (ROC) curves for key analyticmodels.ROCcurves forModel 1 include variables from theadministrative data only, andROC

curves forModel 7 includea combination of administrative data and5-gramsof NLP-based features and variables. These curves compare the ability of the 2

models to discriminatebetweencasesand controls (patientswhodid anddid not developsurgical site infections). AUC=areaunder the curve, andstd dev=

standard deviation.
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The use of NLP for surgical site infection identification is
highly relevant, yet under-investigated, given the clinical
guidelines that are used to identify surgical site infections.
Many of the mentions of surgical site infection signs and
symptoms are captured in the free text documented by the
surgeons and other members of the clinical team. Moreover,
97% of surgical site infections occur after a patient’s discharge
from the hospital10. The starts of many of these post-discharge
events are telephone encounters or other communications
between the patient and the caregiving team that are not cap-
tured as discrete fields in the clinical records, thereby high-
lighting the importance of the use of NLP for identifying
surgical site infections. Our study demonstrates that the use of
NLP for identifying surgical site infections is feasible and
produces results that are comparable with those from the
manual abstraction process. The high sensitivity and positive
predictive value of these models demonstrate that there were
few false negatives and that patients flagged as cases by the NLP
algorithms had a high likelihood of having surgical site infec-
tions. Furthermore, the high C-statistics of the NLP-based
models represent their excellent ability to differentiate between
cases and controls. The relatively unimportant changes in the
performance parameters of the NLP models with the addition
of the administrative variables provide evidence that the use of
an elaborate lexicon of keywords and their variants that codifies
clinical conversations may suffice for predicting surgical site
infections. A key strength of our approach is that because the
NHSN criteria for identifying surgical site infections remain
fairly consistent across surgical specialties, our lexicon of key-
words could be used for non-orthopaedic surgical procedures.

Few other studies have used varying NLP approaches for
the surveillance of postoperative infections. FitzHenry et al.
used U.S. Veterans Affairs Surgical Quality Improvement Pro-
gram data from 1999 to 2006 and demonstrated that models
using a combination of structured data, codified SNOMED CT
(Systematized Nomenclature of Medicine Clinical Terms) con-
cepts, and word phrases achieved sensitivities of about 77% for
the prediction of wound infections20. Murff et al. used a similar
approach to compare the predictive accuracy of NLP-based
models with administrative data-based Patient Safety Indicators
for identifying postoperative complications (excluding surgical
site infections). They found model sensitivities ranging from
59% for pulmonary embolism or deep vein thrombosis to 91%
for myocardial infarction17. Chapman et al. used rule-based NLP
with radiographic reports to identify intra-abdominal surgical
site infections among patients who underwent a gastrointestinal
surgical procedure and achieved a positive predictive value of
91% and sensitivity of 89%21. Although these studies examined
large populations without accounting for the clinical heteroge-
neity between surgical specialties20 or they focused on specific
clinical reports such as radiology reports21 or discharge sum-
maries38, they highlighted the benefits of using NLP over other
traditional methods for the identification of postoperative
complications.

The successful use of NLP for surgical site infection
identification has several practice and policy implications. The

identification of most true positive cases by NLP-based models
can serve as a valuable complement to manual surveillance,
thereby reducing the time and effort that infection prevention
personnel devote to surveillance activities31-33. This is especially
valuable with the onset of payment reforms that have intro-
duced rewards and penalties for avoiding or failing to avoid
surgical site infections and related readmissions in orthopae-
dics. Furthermore, by integrating validated NLP algorithms
with the electronic health record system, the advantages of
these models can be extended to other complications such as
sepsis, to other clinical specialties, and to other settings such as
the outpatient setting. The use of valid NLP models may limit
the need to hire and train dedicated manpower for manually
abstracting records to generate research databases whose
analysis informs the design of preventive interventions.

Our study had limitations. First, the analytic models used
data from a single academic medical center. Hence, the gener-
alizability of the findings is limited. Nevertheless, our findings
provide proof of concept and support an innovative approach to
identify surgical site infections, which other medical centers
could adopt for achieving efficiencies and supporting the
ongoing surgical site infection surveillance process. Second, the
common practice of copying and pasting clinical text in progress
notes is an important concern. Although our analysis used the
free text of medical records, the findings demonstrate that the
predictive accuracy of the NLP models was comparable with the
manual abstraction models, which should allay this concern39.
Third, the analytic models were designed to identify whether or
not a surgical site infection occurred. In this study, we did not
design algorithms that would differentiate between the types of
surgical site infections (superficial, deep, or organ or space).
Future work that focuses on the use of NLP for differentiating
the types of surgical site infections will be valuable.

In conclusion, our study demonstrated the feasibility and
validity of using rule-based NLP models with the free text of
medical records to retrospectively identify surgical site infec-
tions among patients who underwent an orthopaedic surgical
procedure. The use of an NLP-based automated system to
support ongoing manual efforts can improve the efficiency,
effectiveness, timeliness, and scalability of surgical site infec-
tion surveillance programs in hospitals.
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