
Encoding Plans in Propositional Logic

Henry Kautz, David McAllester, and Bart Selman
AT&T Labs

600 Mountain Avenue
Murray Hill, NJ 07974

kautz, dmac, selman @research.att.com

Abstract

In recent work we showed that planning prob-
lems can be efficiently solved by general propo-
sitional satisfiability algorithms (Kautz and Sel-
man 1996). A key issue in this approach is the
development of practical reductions of planning
to SAT. We introduce a series of different SAT
encodings for STRIPS-style planning, which are
sound and complete representations of the origi-
nal STRIPS specification, and relate our encod-
ings to the Graphplan system of Blum and Furst
(1995). We analyze the size complexity of the
various encodings, both in terms of number of
variables and total length of the resulting for-
mulas. This paper complements the empirical
evaluation of several of the encodings reported
in Kautz and Selman (1996). We also introduce
a novel encoding based on the theory of causal
planning, that exploits the notionof “lifting” from
the theorem-proving community. This new en-
coding strictly dominates the others in terms of
asymptotic complexity. Finally, we consider fur-
ther reductions in the number of variables used
by our encodings, by compiling away either state-
variables or action-variables.

1 INTRODUCTION

In recent work we have shown that planning problems can
be efficiently solved by general propositional satisfiabil-
ity algorithms (Kautz and Selman 1996). On instances
drawn from logistics and blocks-world planning problems,
both systematic and local-search SAT algorithms often dra-
matically outperform earlier domain-independent planning
systems. A key issue in this approach is the development
of practical reductions of planning to SAT. Because both
SAT and bounded-length STRIPS-style planning are NP-
complete, it is evident that polynomial reductions between
the problems exist. However, there are both relative and
absolute practical limits on the size complexity of an ac-
ceptable reduction. For example, an 3 increase in the

size of problem may be acceptable, while a reduction with
an 4 may yield SAT instances that are too large to be
solved by current algorithms. Of course, not all SAT prob-
lems of a given size are equally difficult, and the known
results that quantify the hardness of randomly-generated
SAT problems based on its size and clause-ratio (Mitchell,
Selman, and Levesque 1992) cannot be directly applied
to structured problems. However, experiments reported in
Kautz and Selman (1996) using the SATPLAN system on
problems derived from planningprovide some rough guide-
lines. Formulas containing around 2,000 variables could be
solved by both systematic and stochastic search in a few
seconds. The limits of the systematic algorithm (“tableau”,
Crawford and Auton (1993)) were reached at 2,800 vari-
ables and 6 hours of running time. For the stochastic al-
gorithm (“Walksat”, Selman et al. (1994; 1996)), problems
containing 6,700 variables were solved in 15 minutes; in-
formal experiments show that the stochastic methods are
currently feasible up to around 10,000 or so variables.

This paper appears in the Proceedings of the Fifth
International Conference on Principles of Knowledge
Representation and Reasoning (KR-96), Boston, MA,

1996.

Kautz and Selman (1992) described one possible reduction
of blocks-world planning to SAT, and some associated en-
coding techniques for reducing the number of variables in
the SAT encoding. Kautz and Selman (1996) also showed
that the “planning graphs” used byBlum and Furst’sGraph-
plan system could be interpreted as propositional CNF for-
mulas, and informally described an alternative reduction of
planning to SAT called “state-based encodings”. Both of
these papers, however, concentrated on experiments in ac-
tually solving the resulting SAT formulas. In this paper, we
focus on the reductions themselves. We present a analysis
of the size of the encoded problems, noting the degree to
which various properties of the original STRIPS problem
(e.g., the number of operators, the size of the domain, the
length of the minimal solution, etc.) affect the size of the
encoding under different reductions. This kind of analysis
and comparison allows the gross statistical properties of the
statement of a given planning problem to be used to select
an efficient encoding.

The first reduction, “linear encodings”, is most reminiscent
of classical situation calculus representations of planning.
Second, we show how the use of (the SAT equivalent of)
“explanatory” frame axioms (Haas 1987; Schubert 1989)

can both reduce the problem size and allow parallel actions
to be efficiently encoded, in a manner very similar to the
planning graphs of Blum and Furst. Two related encoding
techniques, “operator splitting”and “lifting”, are described,
that reduce the number of variables required in the SAT re-
duction. Third, we present a new encoding of planning into
SAT based on the lifted version of “causal plans” introduced
byMcAllester andRosenblitt (1991). Lifted casual plan en-
codes have the best size complexity in the limit (although
possibly with a larger constant factor).

Finally, we consider ways to reduce the size of an encoded
problem by “compiling away” certain classes of variables.
Because resolution can be used to eliminate any set of vari-
ables from a SAT problem, our encodings can be further
transformed so that either they contain no variables refer-
ring to actions, or no variables referring to states. The
first transformation gives an automated procedure for cre-
ating the “state-based encodings” that were created man-
ually for the experiments reported in Kautz and Selman
(1996). For the Graphplan system, we show that the worst-
case size of the transformed formula is strictly better when
state-variables are eliminated, rather than action-variables.
However, these worst-case results should be tempered by
the fact that we have, by hand, created state-based encod-
ings of particular domains (e.g. logistics planning) that are
much more compact than those given by general reduc-
tions. The results in this paper are dealt with in more detail
in Kautz et al. (1996).

While this paper concentrates on reductions of planning
to Boolean satisfiability, it is important to note that there
is related work that views planning as general constraint
satisfaction (e.g., Joslin and Pollack 1995). We believe that
the various techniques introduced in our reductions, such as
operator splitting, lifting, and compilation, will also prove
to be applicable in the more general CSP setting. The
operation of our SATPLAN system can also be viewed as
a form of refinement planning, as shown by Kambhampati
and Yang (1996).

2 DEFINITIONS AND GENERAL
FRAMEWORK

Planning problems are specified using standard STRIPS
notation (Fikes and Nilsson 1971). A planning problem Π
is a tuple Ops Dom 0 1 , where Ops is a set of operator
definitions, Dom is a domain of individuals, and 0 and 1
are the initial and goal states, respectively. Operators are
defined by schemas using precondition, add, and delete
lists; for example:

MOVE(, ,)
PRE: CLEAR(), ON(,), CLEAR()
ADD: CLEAR(), ON(,)
DEL: CLEAR(), ON(,)

All of the variables that appear in the definition of an

operator must appear in its head. (In particular, note
that no negated atoms appear anywhere in this formal-
ism.) The instantiation of an operator over the do-
main is called an action (e.g., MOVE(A,B,C)), and
the instantiation of a predicate is called a fluent (e.g.,
ON(A,B)).1 Given an operator definition, it is straight-
forward to define functions Pre(), Add(), and Del() that
map an operator or an action to the corresponding lists
of predicates or fluents; e.g., Add(MOVE(A,B,C))
ON(A,C), CLEAR(B) . States are sets of fluents.

An action applied to a state adds or deletes the specified
fluents from the state. A sequence of actions is a solution
to a planning problem if it transforms the initial state into
a superset of the goal state (the goal need only be par-
tially specified), the precondition of each action appears in
the state to which it applies, and no action both adds and
deletes the same fluent. In a bounded planning problem,
the solution must be length for some fixed . Given
this notion of a planning problem, we can then define what
it means to reduce a planning problem to SAT.

Definition: A function which takes a planning problem
Π and a length bound and returns a SAT problem is said
to reduce bounded planning to SAT provided that Π
is solvable by a plan with of at most operations if and
only if Π is satisfiable. A SAT embedding is called
constructive if a solution to Π can be efficiently extracted
from any solution to Π —more specifically if there
exists a polynomial time operation such that for any Π,
, and truth assignment satisfying Π , we have that
Π is a solution to Π.

Each of the reductions described below is constructive. All
the reductions are to CNF, which is the form used by most
satisfiability-testing programs. (For clarity in the exposition
we sometimes write down formulas which are not strictly
CNF, but which can obviously put into CNF form with only
a linear increase in size.) Whenever we talk of the “size” of
a formula, we mean the total number of literals it contains.
When we are considering clauses that are of fixed length,
we can also talk about size in terms of the number of clauses
without confusion.

For each reductionwe also analyze the size of the CNF SAT
encoding, as a function of various features of the planning
problem instance. These features include the number of
operators Ops , predicates Pred , domain elements Dom ,
and length bound . The linear and Graphplan based re-
ductions are also critically dependent on maximum number
of arguments (i.e., arity) of the operators and predicates,
noted as Ops and Pred respectively. (The size of the lifted
causal encoding is independent of the arity of the operators
and predicates.) We abbreviate the expression for the num-
ber of actions, namely Ops Dom Ops , as . Similarly,
we abbreviate the number of fluents, Pred Dom Pred, as

1For simplicity we assume a single domain over which all
variables range, but it is easy to extend the definitions to allow
typed domains and variables.

. Finally, we use to denote the maximum combined
length of the precondition, add, and delete lists for any
operator.

3 LINEAR ENCODINGS

Linear encodings, introduced by Kautz and Selman (1992),
are quite similar to a propositionalized version of the sit-
uation calculus (McCarthy and Hayes 1969), but with ad-
ditional axioms included to rule out certain “unintended
models” that are harmless for deductive formalizations, but
problematic for the model-finding (SAT) approach. The in-
tuition behind the encoding is that an additional time-index
parameter is added to each action or fluent, to indicate the
state at which the action begins or the fluent holds; for a
problem boundedby , the actions are indexed by 0 through

1, and the fluents by 0 through . Variables correspond-
ing to dummy “null” action are also included: these handle
the case where the solution to the planning problem is ac-
tually shorter than . In brief, the reduction yields the
following kinds of clauses:

1. The initial state is completely specified: if fluent
0, then 0.2 The goal state may be either fully or
partially specified.

2. If an action holds at time , its preconditions hold at ,
its added fluents hold at 1, and the negation of each
of its deleted fluents holds at 1.

3. Classical frame conditions hold for all actions (i.e., if
an action does not add or delete a fluent, then the fluent
remains true or remains false when the action occurs).

4. Exactly one action occurs at each time instant (exclu-
siveness).

The correctness of the embedding can be shown by induc-
tion on : propositions indexed by 0 exactly correspond to
the given initial state, and those indexed by 1 describe
a legal state that can be reached from one described by
propositions indexed by . The function simply extracts
the sequence of action instances that are true in a satisfying
truth assignment.

The number of variables used is . The size
of the CNF formula (number of literal occurrences) is dom-
inated by the clauses corresponding to the exclusiveness
and frame axioms, and is thus 2 . The
most critical factor in determining whether this reduction
is practical is clearly the arity of the operators and pred-
icates. For many planning domains the predicate arity is
2 (e.g., ON, IN, and NEXT-TO). Operators that take 3 or

2Note that this encoding makes an explicit closed-world as-
sumption about the initial state. The STRIPS formalism itself
does not necessarily require this assumption: STRIPS can be con-
sistently interpreted so that the absence of a fluent from a state
means that it is unknown, rather than false. However, this subtle
difference does not actually change the set of solutions to a given
problem, due to the restricted form of the operator definitions.

more arguments (e.g. move) generally make this reduction
infeasible. We therefore consider two modifications to this
reduction that shrink the number of variables and clauses.

3.1 Operator Splitting

The first modification, operator splitting, is based on the
observation that since only a single action occurs at a given
time step, an -place action can be represented as the con-
junction of 1-place actions. For example, instead of
encoding “the action MOVE(A,B,C) occurs at time 3” as
a single proposition “MOVE(A,B,C,3)”, one could use
an expression like “SOURCE(A,3) OBJECT(B,3)
DESTINATION(C,3)”. This technique can also be
viewed as a special case of a “lifted” representation, that
is, the use of propositions to represent bindings of the
arguments of an operator or predicate. Lifting is used
more extensively in the causal encodings described be-
low. Operator splitting reduces the number of variables to

Ops Ops Dom . The exclusiveness axioms
become small, requiring only Ops

2 Ops 2 Dom 2 bi-
nary clauses, because one can separately assert that each of
the 1-place actions has a unique argument. Furthermore, in
many cases operator splitting reduces the number of clauses
corresponding to frame axioms, because not all arguments
to an action may need appear in a frame axiom. Using
this modification to the basic linear encodings, Kautz and
Selman (1996) were able to solve blocks-world problems
requiring 20 blocks and 20 moves, without using any kind
of domain-specific search control knowledge.

3.2 Explanatory Frame Axioms

Haas (1987) and Schubert (1989) proposed an alternative
to McCarthy and Hayes’ style frame axioms, in the con-
text of first-order deductive formalizations of planning. An
“explanatory” frame axiom says that if the truth value of a
fluent changes, then one of the actions that adds or deletes
it must have occured. If none of those actions occurs, then
by modus tolens the truth value of the fluent must persist
through whatever other action does occur. These kind of
frame axioms can be incorporated directly into the linear
encoding framework. The basic schemas (which can be
expanded into a set of clauses) are:

1 Del()

1 Add()

While classical frame axioms require clauses,
this modification uses only clauses. Unfortu-
nately, each clause may be longer, and in the worst case, the
total size of the formula is the same. However, in practice
it appears that this formulation leads to smaller encodings,
because the number of actions that could explain a given
change is usually small, and so the clauses are of moder-
ate length. Thus, if at most actions could account for
a change in the truth of a fluent, then the total size of the
frame axioms is .

When both operator splittingand explanatory frame axioms
are employed, the size of the entire reduction is then dom-
inated by the size of the frame axioms. We will discuss
this issue in the expanded version of this paper (Kautz et al.
1996).

When explanatory frame axioms are used, one may option-
ally weaken the exclusiveness axioms, so that they assert
that atmostone action occurs at each time instance. Further-
more, it is no longer necessary to introduce “null” actions to
account for solutions that are shorter than . This is because
the explanatory axioms imply that an action occurs when-
ever the (encodings of) two adjacent states differ. Thus, if
two adjacent states are identical, then no action occurs at
that instant.

4 PARALLELIZED ENCODINGS

So far, we have considered encodings in which only one
action can occur at each time step. The number of time steps
occurs as a factor in both the number of variables and the

total length of the encodings. An obvious way therefore
to reduce the size of our encodings is by allowing several
actions to occur at each time step, i.e., parallel actions.
The encodings below are such that if several actions occur
at the same time, it means that they can be serialized in
any order. Therefore the solution extraction function for
these encodings would identify the partially-ordered set of
actions in a satisfying model and then arrange the actions
in an arbitrary total order.

4.1 Graphplan-based Encodings

The Graphplan system of Blum and Furst (1995) works
by converting a STRIPS-style specification into a planning
graph. This is an ordered graph, where alternating layers
of nodes correspond to grounds facts (indexed by the time
step for that layer) and fully-instantiated operators (again
indexed by the time step). Arcs lead from each fact to the
operators that contain it as a precondition in the next layer,
and similarly from each operator to its effects in the next
layer. For every operator layer and every fact there is also a
no-op “maintain” operator that simply has that fact as both
a precondition and “add” effect.

A solution is a subgraph of the planning graph that contains
all the facts in the initial and goal layers, and contains no two
operators in the same layer that conflict (i.e., one operator
deletes a precondition or an effect of the other). Thus,
a solution corresponds to a partially-ordered plan, which
may contain several operators occuring at the same time
step, with the semantics that those operators may occur in
any order (or even in parallel). For planning problems that
can take advantage of this kind of parallelism, the planning
graph can have many fewer layers than the number of steps
in a linear solution— and therefore be much smaller.

A planninggraph is quite similar to a propositionalformula,
and in fact, we can automatically convert planning graphs

into CNF notation. The translation begins at goal-layer of
the graph, andworks backward. Using the “rocket” problem
in Blum and Furst (1995, Fig. 2) as an example (where
“LOAD(A,R,L,i)” means “load A into R at location L at
time i”, and “MOVE(R,L,P,i)” means “move R from L
to P at time i”), the translation is:

1. The initial state holds at layer 1 (fully specified), and
the goals hold at the highest layer.

2. Operators imply their preconditions; e.g.,
LOAD(A,R,L,2)

AT(A,L,1) AT(R,L,1)
3. Each fact at level implies the disjunction of all the
operators at level 1 that have it as an add-effect
(backward-chaining); e.g.,
IN(A,R,3) LOAD(A,R,L,2)

LOAD(A,R,P,2)
MAINTAIN(IN(A,R),2)

4. Conflicting actions are mutually exclusive; e.g.,
LOAD(A,R,L,2) MOVE(R,L,P,2)

The axioms of type (2) above assert that actions imply their
preconditions, but not that actions imply their effects. This
can admit solutions that contain spurious actions. The ex-
traction function can simply delete actions from the solu-
tion whose effects do not hold. The axioms for conflicting
actions (4) prevent the solution from actually depending
upon the co-occurance of actions whose effects would con-
flict.

The resulting CNF formula has variables.
The size of the formula is given by 2

. Note that is the same as the expression for the size
of our linear encoding with explanatory frame axioms, but
without operator splitting. This is consistent with the em-
pirical results reported in Kautz and Selman (1996), where
we observed that on the larger benchmark instances, the
Graphplan-based encodings became too large for our sat-
isfiability procedures. It should also be noted that these
are worst-case bounds. In the worst-case, all operators
are mutually exclusive, and therefore, we do not see an
advantage in allowing parallel actions. In many practical
domains, however, parallel actions lead to fewer “exclu-
siveness” axioms, fewer time steps (smaller), and thus
shorter encodings.

A very similar encoding for plans with parallelized actions
can be generated by using the axioms for linear encodings
with explanatory frame axioms (Section 3.2), but where the
exclusiveness axioms only assert that conflicting actions are
mutually exclusive, as in the Graphplan-based encoding.
In fact, explanatory frame axioms can be generating by
resolving together the backward-chaining axioms (3) above
with the action/precondition axioms (2) for the “maintain”
actions. For example, resolving the backward-chaining
axiom:

IN(A,R,3) LOAD(A,R,L,2)
LOAD(A,R,P,2)
MAINTAIN(IN(A,R),2)

with the action/precondition axiom:
MAINTAIN(IN(A,R),2) IN(A,R,1)

yields the the frame axiom:
IN(A,R,1) IN(A,R,3)

LOAD(A,R,L,2) LOAD(A,R,P,2)

4.2 Compiling Away Actions or Fluents

Our linear and Graphplan encoding have a special structure
in terms of the dependencies among variables. More specif-
ically, we have alternating layers of variables representing
operators and variables representing states (fluents). Since
we are interested in reducing the number of variables as
much as possible, we now consider whether we can “com-
pile away” the action layers or the state layers. Given two
consecutive states, it’s generally straightforward to deter-
mine what action(s) led to the changes between the states.
The action variables can thus be viewed as logically depen-
dent variables. Similarly, the state variables can be taken
as the dependent ones, since a set of actions applied at a
certain state directly defines the changes in that state. So,
we can compile away the dependent variables: either the
state variables or the action variables.

First, note that for any propositional theory, any variable
can be eliminated by performing all possible resolutions on
that variable, and then removing all clauses containing the
variable. Thus, any subset of propositions, whether they
represent actions or fluents, can in principle be eliminated.
The key question is what happens to the total number of
clauses and the size of the clauses in the encodings. In gen-
eral the resolution procedure gives an exponential blowup
in size. For Graphplan, however, we know the following:

Observation: For Graphplan-based encodings,
compiling away actions can lead to exponential
blowup in the size of the encoding, but compiling
away states gives only a polynomial (in Dom)
increase in size.

Consider the result of resolving clauses between action-
and state- layers. When resolving away action variables,
we find that a given fluent, say, s2, can have been added by
a number of different actions, e.g., a11, a21, or a31. Each
of these actions may have a different pair of pre-conditions,
e.g., a11 may require s11 and s21, while a21 requires s31 and s41,
etc. We get s2 a11 a21 a31 . This gives us s2
s11 s21 s31 s41 s51 s61 . Going back to CNF,
we get clauses of the form s2 s11 s31 s51 , s2
s21 s31 s51 , etc. In general, we get exponentially many,
i.e., a worst-case blowupof . More precisely, the
blowup is , where is maxium number of actions
that could account for a change in the truth of a fluent.

However, to compile away states, e.g., s12, s22, you simply
go from a12 s12, a12 s22, a22 s12, a22 s22, and s12
a11 a21 to a12 a11 a21 , a22 a11 a21 , which
gives a total worst case increase of .

An intuitive explanation for the fact that Graphplan-based
representations do not blow-up when explicit variables are
eliminated is that the dummy “maintain” actions implicitly
encode state information.

Encodings with the actions compiled away were called
state-based encodings in Kautz and Selman (1996). For
a further discussion of state-based encodings see Bendrax-
Weiss et al. (1996). Encodings resulting from compiling
away states, leaving “action-based ” encodings, are simi-
lar to the causal encodings considered in McAllester and
Rosenblitt (1991), Penberthy and Weld (1992), and Barrett
and Weld (1994). Our analysis shows that the worst-case
size of the action-based encoding is strictly better than that
of the the state-based encodings. It should be noted how-
ever that in Kautz and Selman (1996), we still obtained
good experimental results with state-based encodings. This
is because in the domains considered, the number of actions
that could account for a change in the truth of a fluent was
small. It therefore appears that in this case our worst-case
results may be overly pessimistic for many domains.

One cannot show in general that state-based encodings are
constructive, because it may be difficult to reconstruct the
set of actions that admit the sequence of states represented
by models of the axioms. The general problem of finding
unordered plans of length 1 is NP-complete. However, in
domains we have examined so far, including the logistics
and blocks world domains, there is a linear-time algorithm
for finding such plans – again, because there are few ways
of changing the truth-value of a single fluent.

5 LIFTED CAUSAL ENCODINGS

We now give a reduction inspired by the lifted version of
the SNLP causal link planner of McAllester and Rosenblitt
(1991). This encoding gives our best asymptotic results.
Unlike our other reductions, which are exponential in Ops
and Pred, this reduction is polynomial in all parameters.
The analysis can be simplified by considering a fixed but ar-
bitrary set of operators. Furthermore, we consider the case
where 0 Dom . This is reasonable in
the blocks world where the size of the initial and final state,
the number of blocks, and the plan length are all roughly
linearly related. Under these conditions (with an arbitrary
operator set) this encoding gives a SAT formulawith 2

Boolean variables and 3 literal occurrences.

We will describe a lifted causal solution to the Sussman
anamoly in three steps. First we review ground nonlinear
causal planning and discuss a reduction to SAT based on
the ground case. We then introduce the notion of a lifted
SAT problem, an NP-complete problem somewhat “more
general” than SAT. Every SAT problem is a lifted SAT
problem but not vice-versa. We then give a reduction from
planning to lifted SAT. Finally we give a general reduction
from lifted SAT to SAT.

We will use the Sussman anomaly as an explanatory exam-
ple. Suppose that we have one operator definition for the

MOVE operation as follows.

MOVE(, ,)
PRE: CLEAR(), ON(,), CLEAR()
ADD: CLEAR(), ON(,)
DEL: CLEAR(), ON(,)

Suppose that we have block C on block A, block A on
PLACE1; block B on PLACE2, with C, B, and PLACE3
clear. Suppose we want A on B on C. The shortest plan is
to move C from A to PLACE3; move B from PLACE2 to
C; and finally move A from PLACE1 to B.

In this formulation of the Sussman anomaly we have six
objects (three blocks and three places). This yields 63, or
216 possible actions of the form MOVE . In this
formulation of the blocks world we have Dom 3 possible
move actions. Each move action has three prerequisites,
two deletions and two additions. A ground planner works
with the individial ground actions and ignores the general
operator definition.

We can think of the initial state as an operation which adds
the initial assertions and thefinal state as an operationwhich
requires, as prerequisites, the final assertions. The basic
principle of causal link planning is that every prerequisite,
including the assertions in thefinal state, must have a causal
source, which may be the initial state. In the Sussman
anomaly there are two assertions required by the final state
and three required by each of the three actions. So we have
11 total prerequisites. A ground causal link is an assertion
of the form Φ where and are plan steps (possibly
the initial or final step), and Φ is a ground fluent that is a
prerequisite of . The causal link assertion is true if
adds Φ, needs Φ as a prerequisite and no step between
and either adds or deletes Φ.

A nonlinear ground causal planner works with a set of step
names where two different step names might be assigned
the same action (some plans require the same action to be
performed twice at different times). We let 1, , be
the step names. There is no apriori temporal order on the
step names, and assertions of the form are used to
state that step occurs before step .

A complete causal plan is an assignment of ground actions
to step names, a set of casual links, and a set of step ordering
assertions satisfying the following conditions.

1. Every prerequisite has a cause. If Φ is a prerequisite
of the action assigned to step then the plan includes
a causal link of the form Φ .

2. Every causal link is true. If the plan contains Φ

then the action assigned to addsΦ, the plan contains
the ordering assertion , and for every step name
other than and such that the action assigned

to deletes Φ, the plan contains either or
.

3. The ordering constraints are consistent. If the ordering
constraints contain and then they
contain and no step precedes itself, i.e., the
ordering constraints do not contain for any
step .

Theorem: In any topological sort of a complete nonlinear
clausal plan, i.e., in any total order consistent with the or-
dering constraints, all prerequisites are true when executed.

Recall that the initial and final states can be modeled as
initial and final steps in the plan. For the Sussman anomaly
the three most significant causal links are the following:

MOVE(B,PLACE2,C) ON(B, C) FINAL

MOVE(A,PLACE1,B) ON(A, B) FINAL

MOVE(C,A,PLACE3) CLEAR(A)

MOVE(A,PLACE1,B)

Since there are a total of 11 prerequisites, there are 8 other
casual links with the initial state as the source. Also note
that moving B onto C deletes CLEAR(C), a prerequisite of
MOVE(C,A,PLACE3). The definition of a complete plan
forces the step moving B to C to occur after the step moving
C toA. Hence, once the actions and causal links are selected
in the Sussman anomaly, the ordering of the steps is forced.

Condition 2 above does not ensure systematicity, i.e., that
every solution corresponds to a unique complete causal
plan. To ensure systematicity we must require that actions
that add the fluent in a causal link are also ordered to oc-
cur outside the link. We assume that systematicity is not
important in local search.

We can reduce ground causal nonlinear planning directly
to SAT, although this turns out not to be nearly as concise
as the lifted encoding. We let and be initial and final
actions. Let be the set of actions not including actions
representing the final or initial state. We let be the set of
step names not including initial and final steps. We let be
the set of all ground fluents. The ground clauses consist of
the clauses in the conjunctive normal form of the Boolean
formulas in Table 1.

We give a complexity analysis based on the assumption
that the ground planning problem is derived from a fixed
set of lifted operator definitions. This implies that each
action has a bounded number of preconditions, additions,
and deletions. For a fixed set of operation definitions we
have that is Dom Ops and is Dom Pred

0 . The number ofBooleanvariables is dominated
by the causal links, which is 2 , and the number of
variables of the form ACTION , which is .
Thenumber of literal occurances is dominated by schema10
which involves 3 clauses (and literal occurances).
For the blocks world with the three place move operation,
and with Dom 0 (where is the number

1 ACTION 1 ACTION
2 ACTION ACTION
3 ADDS Φ Φ
4 NEEDS Φ Φ
5 ADDS Φ ACTION 1 ACTION Φ Add()
6 DELS Φ ACTION 1 ACTION Φ Del()
7 NEEDS Φ ACTION 1 ACTION Φ Pre()
8 NEEDS Φ 1

Φ Φ Φ
9 Φ ADDS Φ Φ
10 Φ DELS Φ Φ
11
12
13
14

Table 1: Reduction of ground causal nonlinear planning (non-lifted).

of plan steps) we get 4 Boolean variables and 5

literal occurrences.

The causal encoding eliminates the need for frame axioms.
The frame axioms are implicit in schema 10. The lifted
version of schema 10 involves 3 clauses instead of

5 .

Now we define the notion of a lifted SAT problem. A lifted
clause is just a first order clause — a disjunction of first
order literals possibly containing free variables. A lifted
SAT problem is just a set of lifted clauses. A lifted SAT
problem is satisfiable if there exists a ground substitution
(mapping from variables to ground terms) such that the
resulting ground SAT problem is satisfiable, subject to the
constraint that a ground atomic equality of the form
is true if and only if and are the same term. As an
example, consider the following simple clause set.

This lifted SAT problem is not satisfiable. must be either
or , and in either case one of the first two clauses must

be violated. However, if we remove the second clause
which intuitively defines the range of , then the clause set
becomes satisfiable because we can now interpret as some
new constant, say , and set , , and all to
true. Note that the clause , which intuitivelyconstrains
the value of , has no effect on the satisfiability of the
problem. This existential interpretation of the variables in
the clauses is very different from the universal interpretation
assigned to clauses in resolution theorem proving.

Theorem: A lifted SAT problem is satisfiable if and only if
there exists an equivalence relation on the atomic formulas
and a truth assignment to the atomic formulas respecting
that relation (equivalent literals are assigned the same truth
value), such that the truth assignment satisfies all clauses
and the unification problem defined by the equivalence re-
lation is solvable.

Proof: If there exists such a truth assignment and equiva-
lence relation then the most general unifier of the equiva-
lences in the equivalence relation yields a substitutionsatis-
fying the problem. On the other hand, any substitution and
truth assignment satisfying the problem defines an equiva-
lence relation and truth assignment satisfying the required
conditions.

Clearly liftedSAT includes SAT as a special case, and hence
is NP-hard. The above theorem shows that the problem
is in NP because we can nondeterministically guess the
equivalence relation and truth assighment.

We will now reduce planning to lifted SAT, and then reduce
lifted SAT to SAT. The composition of these two reductions
will yield the desired concise reduction from planning to
SAT. In the reduction from planning to lifted SAT we create
a “fresh copy” of each operator definition at each step. For
each step name we let consist of a fresh copy of each
operator definition. Fresh copies are built by renaming
the formal parameters. The variables appearing in are
disjoint from the variables appearing in for distinct
and . In the blocks world we have that contains only a
single element of the form MOVE(, ,) where ,
and are fresh variables for the step . For any fixed

operator set we have that is 1 . We let be the
union of all . Note that is . This should be
contrasted to the ground case where is Dom Ops .
This reduction in is the main benefit of lifting. For any
set of actions we let Pre() be the set of all prerequisites of

operations in and similarly for Add() and Del(). Note
that Pre() is 1 , as are Add() and Del() . Also
note that Pre(), Add(), and Del() all have size .
For convenience we also define and to be singleton
sets of operators where adds the initial assertions and

requires the final assertions. We will also use Vars()
to denote the set of all variables appearing in . Note that
Vars() is . The reduction from planning to lifted
SAT can now be defined as in Table 2.

Selecting a way of satisfying schemas 1 and 2 selects the
set of actions withoutmaking any commitment to the order
of those actions. In our fomulation of the blocks world we
have that is a singleton set containing an action of the
form MOVE . Assuming that we are looking for a
three step plan we have that contains three step names
and the first schema generates the following unit clauses.

ACTION 1 MOVE 1 1 1

ACTION 2 MOVE 2 2 2

ACTION 3 MOVE 3 3 3

We now have nine variables. For an step blocks world
plan we will have 3 variables (independent of domain
size). For any fixed set of operator definitions the total size
of the instances of schemas 1 and 2 is .

Selecting a way of satisfying schema 3 selects a value for
each variable. For each of the nine variables in the Sussman
anomaly we have an instance of this schema. For example
we have the following.

1 A 1 B 1 C
1 PLACE1 1 PLACE2 1 PLACE3

For any fixed set of operator definitions the total size of
instances of schema 3 is Dom .

We can think of the schemas as “running” nondeterministi-
cally from the top to the bottom. Schemas 1 and 2 select the
actions and schema 3 selects the argument values. Schemas
4 and 5 assert the preconditions of each action. This is
straightforward and the total size of the instances of these
schemas is . Schema 6 selects a causal source
for every precondition, i.e., it selects the set of causal links
in the plan. Every causal link atomic formula of the form

Φ has the property that Φ Pre(). Since Pre()
is 1 for and for , we have that the
total number of causal link formulas is 2 . The
total size of the instances of schema 6 is 2 .

Schema 7 states that the source of each link must precede
its destination. The total size of this schema has the same
order as schema 6. Schema 8 places a “nonlocal addition
demand” on the source of each causal link. Since there
is one such demand for each causal link, the total size
of this schema is again 2 . Note that the
number “nonlocal” formulas of the form ADDS Φ is
quadratic (2). This should be contrasted with
the linear number of “local” atomic formulas of the form

NEEDS Φ . In the Sussman anomaly we get formulas
such as ADDS 1 CLEAR 3 .

After schema 8 forces certain addition formulas to be true,
schemas 9, 10, and 11 select equations between the things
to be added and the approriate elements of the add lists. The
truth of these equations is “checked” by the semantics of
lifted SAT. For example, in the Sussman anomaly we have
(essentially) the following.

ADDS 1 CLEAR 3 CLEAR 3 CLEAR 1

The equation CLEAR 3 CLEAR 1 is equivalent to
3 1 and this equivalence is handled by the semantics
of lifted SAT. The total size of the instances of schemas 9,
10, and 11 is 2

0 .

Schema 12 forces nonlocal delete statements to be true. In
the Sussman anomaly we have, essentially, the following.

CLEAR 3 CLEAR 2 DELS 3 CLEAR 2

Note that there is a quadratic number of “nonlocal” delete-
tion atomic formulas of the form DELS Φ . Again this
should contrasted with the linear number of “local” prereq-
uisite assertions of the form NEEDS Φ . The total size
of the instances of schema 12 is 2 .

Schema 13 handles the frame axioms by ensuring that dele-
tions do not interfere with causal links. Schema 13 in the
lifted encoding is analogous to schema 10 in the ground
encoding. Schema 10 in the ground encoding generates
Ω 3 Dom Pred clauses. However, schema 13 in the
lifted version generates only 3 2 clauses. The
key observation is that in the lifted encoding there are only

2 causal link formulas.

Schemas 14 and 15 check that the order conditions selected
in schema 13 are consistent, i.e., that comes first, comes
last, and that the transitive closure does not contain loops.
The instances of these schemas involve 2 atomic for-
mulas and order 3 clauses.

Overall we have a quadratic number of atomic formulas
and a cubic number of literal occurrences. The number
of atomic formulas is dominated by formulas of the form

, Φ Ψ, and causal links of the form Φ . All
schemas have linear or quadratic size except for schemas
13 and 14 which are cubic.

To complete the reduction to SAT we give a reduction from
general lifted SAT to SAT. Let be a lifted SAT problem.
In our reductionwe simply add clauses to . The additional
clauses ensure that equations occuring in have the proper
truth value and that two atomic formulas which are equal
have the same truth value. We let be the set of terms
in and we let be the set of all atomic formulas in
other than equations. If is the lifted SAT encoding of

a planning problem then (for a fixed set of operator defini-
tions) is Dom 0 . In other words,

1 ACTION 1 ACTION
2 ACTION ACTION
3 1 Vars() Dom
4 ACTION NEEDS Φ Φ Pre()
5 NEEDS Φ Φ Pre()
6 NEEDS Φ 1

Φ Φ Φ Pre()
7 Ψ Ψ Pre()
8 Φ ADDS Φ Φ Pre()
9 ACTION ADDS Ψ Ψ Pre() Φ Add()

Ψ Φ1 Ψ Φ
10 ADDS Ψ Ψ Φ1 Ψ Φ Ψ Pre() Φ Add()
11 ADDS Ψ Ψ Pre() Add()
12 ACTION Ψ Φ DELS Ψ Ψ Pre() Φ Del()
13 Ψ DELS Ψ Ψ Pre()
14
15

Table 2: Lifted reduction of ground causal nonlinear planning.

we have only a linear number of terms. Furthermore, most
atomic formulas in the lifted SAT encoding of a planning
problem involve step name constants. This observation can
be used to show that for planning problems there are only
a quadratic number of unifiable pairs of formulas in .
For any lifted SAT problem we define the augmented
clause set to be plus the clauses in Table 3.

Schemas 1 through 5 ensure that the true equations define
an equivalence relation on terms consistent with the inter-
pretation of each function as a Herbrand constructor. Two
terms “clash” if they are either distinct constants, one is a
constant and one is a function application, or they are ap-
plications of different function symbols. Schema 5 states
that clashing terms must not be equal.

Schemas 1 through 5 introduce 2 new atomic formu-
las — the equations of the form . The number of
instances of schema 4 can be no larger than 2. If we
bound the arity (number of arguments) of functions then
the total size of literal occurances in instances of schema 4
is 2 . For bounded arity, the the number of literal
occurances in instances of schemas 1 through 5 is domi-
nated by the transitivity schema, schema 3. The number of
instances of schema 3 is 3.

Schemas 6, 7, and 8 handle the occurs-check condition.
Without these schemas and appear
consistent. But these equations (interpreted over the Her-
brand universe of first order terms) imply that is a sub-
term of itself. Since the Herbrand universe does not include
infinite terms, this is impossible. These equations are in-
consistent with schemas 6,7, and 8 because we can now
infer OCCURS-IN . Assuming a bounded arity for
function symbols we have that schemas 6, 7, and 8 involve

2 atomic formulas and 3 clauses (and
literal occurances).

Schema 7 enforces the condition that equivalent atomic
literals have the same truth value. The number of instances
of schema 7 equals the number of unifiable pairs of atomic
formulas. We now have the following theorem.

Theorem: If is a lifted SAT problem then as defined
by the above augmentation is a satisfiable as a SAT problem
if and only if is satisfiable as a lifted problem. Further-
more, the number of additional atomic formulas in is

2 where is the number of unifi-
able pairs of atomic formulas. For bounded arity functions
and predicates the number of additional literal occurances
is 3 .

It is interesting to note that the above schemas can be con-
verted to Horn clauses in linear time. When combined
with a linear time algorithm for Boolean Horn clauses, the
schemas define a cubic timeunification algorithm. The clas-
sical Robinsonunification algorithm is exponential time but
a linear time algorithm is known (Patterson78).

It is also worth noting that in the lifted SAT problems that
result from encodings of planning problems we need only
schemas 1 through 5. In these lifted problems variables can
only be bound to constants so no occurs-check reasoning
is needed. Furthermore, all atomic formulas other than
equations are forced to have appropriate truth values even
in the absense of schema 7.

The total reduction from planning to SAT yields a quadratic
number of atomic formulas and a cubic number of literal
occurances.

6 CONCLUSIONS

Kautz and Selman (1996) challenged the widespread belief
in the AI community that planning is not amenable to gen-

1
2
3
4 1 1 1

1 1 1
5 clash
6 OCCURS-IN 1 1
7 OCCURS-IN OCCURS-IN

OCCURS-IN
8 OCCURS-IN
9 1 1 1 1

1 1
unifiable

Table 3: Additional clauses for reduction from lifted SAT to ordinary SAT.

eral theorem-proving techniques, by showing that general
propositional satisfiability algorithms can outperform spe-
cialized planning systems on a range of benchmark prob-
lems. Critical to the success of this approach is the use
of concise SAT encodings of the planning problems. This
paper described general, polynomial-time reductions from
STRIPS-style planning to CNF formulas. We compared the
various encodings, both in terms of the number of variables
used and the total size of the formulas. This kind of analy-
sis will allow one to use the gross statistical properties of a
given planning problem to select a practical encoding.

This paper also introduced lifted causal encodings, a new
kind of reduction. We showed that this encoding strictly
dominates others in asymptotic terms. In future work, we
will empirically evaluate this new class of encodings, both
to determine whether the constant factors in the size of the
encoding are reasonable for practical problems, and to de-
termine whether our satisfiability procedures also perform
well on this class of formulas.

References

Bacchus, F. and Kabanza, F. (1995). Using temporal logic
to control search in a forward chaining planner. Proc.
EWSP-95, 157–169.

Backstrom, C. (1992). Computational complexity of rea-
soning about plans, Ph.D. thesis, Linkoping Univer-
sity, Linkoping, Sweden.

Barrett, A. and Weld, D. (1994). Partial-order planning:
evaluating possible efficiency gains. Artificial Intel-
ligence, 67:71-112, 1994.

Bedrax-Weiss, T., Jonsson, A.K., and Ginsberg, M.L.
(1996). Partial-order planning: evaluating possible
efficiency gains. Unpublished manuscript.

Blum, A. and Furst, M.L. (1995). Fast planning through
planning graph analysis. Proc. IJCAI-95, Montreal,
Canada.

Bylander, T. (1991). Complexity results for planning.
Proc. IJCAI-91, Sidney, Australia, 274-279.

Crawford, J.M. and Auton, L.D. (1993) Experimental Re-

sults on the Cross-Over Point in Satisfiability Prob-
lems. Proc. AAAI-93, Washington, DC, 21–27.

Davis, M., Logemann, G., and Loveland, D. (1962). A
machine program for theorem proving. Comm. ACM,
5, 1962, 394–397.

Erol, K., Nau, D.S., and Subrahmanian, V.S. (1992). On
the complexity of domain-independent planning.
Proc. AAAI-92, 381–386.

Fikes, R.E. and Nilsson, N.J. (1971). STRIPS: A new ap-
proach to the application of theorem proving to prob-
lem solving. Artificial Intelligence, 2(3/4), 189–208.

Gupta and Nau (1992). On the complexity of blocks-world
planning. Artificial Intelligence, 56, 139–403.

Haas, A. (1987). The case for domain-specific frame ax-
ioms. The Frame Problem in Artificial Intelligence,
Proceedings of the 1987 Workshop, F.M. Brown, ed.,
Lawrence, KS, 1987. Morgan Kaufmann Publishers,
Los Altos, CA.

Joslin, D. and Pollack, M. (1995). Passive and Active De-
cision Postponement in Plan Generation. European
Workshop on Planning (EWSP), Assisi, Italy, Sept.
1995.

Kambhampati, S. and Yang, X. (1996). On the role of Dis-
junctive Representations and Constraint Propagation
in Refinement Planning. Proc. KR-96.

Kautz, H. , McAllester, D., and Selman, B. (1996). Plan-
ning in Propositional Logic. In preparation.

Kautz, H. and Selman, B. (1992) Planning as Satisfiability.
Proc. ECAI-92, Vienna, Austria, 1992, 359–363.

Kautz, H., and Selman, B. (1996). Pushing the envelope:
planning, propositional logic, and stochastic search.
Proc. AAAI-96, Portland, OR, 1996.

McCarthy, J. and Hayes, P. (1969). Some philosophical
problems from the standpoint of artificial intelligence.
Machine Intelligence 4,D.Michie, ed., Ellis Horwood,
Chichester, England, 1969, page 463ff.

McAllester, D. and Rosenblitt, D. (1991). Systematic non-
linear planning. Proc. AAAI-91, Anaheim, CA.

Mitchell, D., Selman, B., and Levesque, H.J. (1992). Hard
and Easy Distributions of SAT Problems. Proc. AAAI-

92, San Jose, CA, 459–465.
Patterson, M.S. and Wegman, M.N. (1978). Linear unifi-

cation. JCSS, 16 1978, 158–167.
Penberthy, J. andWeld, D. (1992). UCPOP:Asound, com-

plete, partial order planner for ADL. In the Proc. KR-
92, Boston, MA, 103–114.

Schubert, L. (1989). Monotonic Solution of the Frame
Problem in theSituationCalculus: anEfficientMethod
for Worlds with Fully Specified Actions. Knowledge
Representation and Defeasible Reasoning, H. Kyburg,
R. Loui, and G. Carlson, eds.

Selman, B. (1994). Near-Optimal Plans, Tractability, and
Reactivity. Proc. KR-94, Bonn, Germany, 1994, 521–
529.

Selman, B., Kautz, H., and Cohen, B. (1996) Local Search
Strategies for Satisfiability Testing. Dimacs Series
in Discrete Mathematics and Theoretical Computer
Science. (to appear)

Selman, B., Levesque, H., and Mitchell, D. (1992). A
NewMethod For SolvingHardSatisfiability Problems.
Proc. AAAI-92, San Jose, CA, 1992, 440-446.

Slaney, J. and Thiebaux, S. (1996). Linear Time Near-
Optimal Planning in the Blocks World. Proc. AAAI-
96.

Stone, P., Veloso, V., and Blythe, J. (1994). The need for
different domain-independent heuristics. In AIPS94,
pages 164-169, Chicago, 1994.

Veloso, M. (1992). Learning by analogical reasoning in
general problem solving. Ph.D. Thesis, CMU, CS
Techn. Report CMU-CS-92-174.

