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The online population creates a vast organic sensor net-
work composed of individuals reporting on their activities,
their social interactions, and the events around them. This
firehose of data streams in real time, and is often annotated
with context including GPS location, relationships, and im-
ages.

There is much activity in data mining social media for
marketing campaigns (Richardson and Domingos 2002;
Chen et al. 2010; Kirkpatrick 2012), financial prediction
(Asur and Huberman 2010; Bollen and Mao 2011), and
similar purposes. Recently, however, a smaller group of re-
searchers have begun to leverage this sensor network for a
singular public good: modeling public health at a population
scale. Researchers have shown, for example, that Twitter
postings can be used to track and predict influenza (Krieck et
al. 2011; Signorini et al. 2011; Sadilek et al. 2012a; 2012b;
Sadilek and Kautz 2013) and detect affective disorders such
as depression (Zhang et al. 2010; Choudhury et al. 2013a;
2013b). Such work provides strong evidence that there is a
strong health “signal” in social media.

Krieck et al. (2011) explored augmenting the traditional
notification channels about a disease outbreak with data ex-
tracted from Twitter. By manually examining a large num-
ber of tweets, they showed that self-reported symptoms are
the most reliable signal in detecting if a tweet is relevant
to an outbreak or not. Researchers have also tried captur-
ing the overall trend of a particular disease outbreak, typi-
cally influenza, by monitoring social media (Culotta 2010;
Lampos et al. 2010; Chunara et al. 2012). Other researchers
focus on more detailed modeling of the language of tweets
and their relevance to public health in general (Paul and
Dredze 2011) and to influenza surveillance in particular
(Collier et al. 2011). Paul and Dredze developed a variant of
topic models that captures the symptoms and possible treat-
ments for ailments, such traumatic injuries and allergies, that
people discuss on Twitter.

In our own project, FluTracker, we first automatically de-
tected Twitter messages that suggest the author has the flu
Sadilek et al. (2012a). We then constructed a probabilistic
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model that can predict if and when an individual will fall
ill with high precision and recall on the basis of his so-
cial ties and co-locations with other people, as revealed by
their Twitter posts (Sadilek et al. 2012b). Finally, we quan-
tified the impact of social status, exposure to pollution, in-
terpersonal interactions, travel patterns, and other important
lifestyle factors on health using a unified statistical model
(Sadilek and Kautz 2013).

Techniques similar to those developed for modeling in-
fectious disease can be applied to study mental health dis-
orders, such as depression, that have strong contagion pat-
terns as well. Twitter has been used to monitor the sea-
sonal variation in affect around the globe (Golder and Macy
2011). Choudhury et al. (2013a) examined patterns of ac-
tivity, emotional, and linguistic correlates for childbirth and
the postnatal course, and showed that mothers at risk for
postpartum depression can be distinguished by linguistic
changes captured by shifts in a relatively small number of
words in their social media posts.

The work briefly described above are just first steps in
data mining social media social media for public health, and
they by and large make use of models and algorithms that
are well developed in the AI community. The size and im-
portance of public health applications, however, will also
drive fundamental research on scalable machine learning
and knowledge representation. Example tasks that require
new algorithms and representations include:

• Learning dynamic relational models of health states,
which generalize classical epidemiological models but
support individual as well as aggregate predictions.

• Generalizing language, behavior, and network models
across a range of physical and emotional health condi-
tions.

• Developing methods for causal analysis in order to dis-
cover and measure global-scale influences on health.

This new approach to collecting and analyzing health in-
formation has the potential to revolutionize public health,
by making detailed data about health, behavior, social struc-
ture, and geographic influences available in real time and at
almost no cost.
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