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ABSTRACT
Research in computational epidemiology to date has concen-
trated on estimating summary statistics of populations and
simulated scenarios of disease outbreaks. Detailed studies
have been limited to small domains, as scaling the meth-
ods involved poses considerable challenges. By contrast, we
model the associations of a large collection of social and envi-
ronmental factors with the health of particular individuals.
Instead of relying on surveys, we apply scalable machine
learning techniques to noisy data mined from online social
media and infer the health state of any given person in an
automated way. We show that the learned patterns can be
subsequently leveraged in descriptive as well as predictive
fine-grained models of human health. Using a unified statis-
tical model, we quantify the impact of social status, exposure
to pollution, interpersonal interactions, and other important
lifestyle factors on one’s health. Our model explains more
than 54% of the variance in people’s health (as estimated
from their online communication), and predicts the future
health status of individuals with 91% accuracy. Our meth-
ods complement traditional studies in life sciences, as they
enable us to perform large-scale and timely measurement,
inference, and prediction of previously elusive factors that
affect our everyday lives.
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General Terms
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Figure 1: Visualization of the health and location of
a sample of Twitter users in New York City. Sick
people are colored red, whereas healthy individuals
are green. Major pollution sources are highlighted
in purple, and ZIP code boundaries are shown with
white outlines. This paper explores to what extent
online social media can be used to quantify and pre-
dict the impact of a large collection of environmental
and lifestyle factors on our health. Our web appli-
cation is available at http://fount.in.

1. INTRODUCTION
How does a new factory affect the health of residents in

the city? How does your social status impact your health?
Do visits to gyms decrease your susceptibility to communi-
cable diseases? How about visits to bars, or riding the sub-
way? Such questions are traditionally difficult and costly
to answer at a population scale. Existing methods resort
to surveys of individuals and medical providers, which re-
quire extensive amount of human effort to complete, cost
large amounts of money, and sample only a small fraction
of people in a population. By contrast, we apply machine
learning techniques to Twitter data and automatically esti-
mate the health state of any individual on the basis of his or
her online communication. Throughout the text, we refer to



the frequency of self-reports of sickness in a user’s Twitter
updates as user’s health estimate or simply user’s health for
brevity.

By leveraging the text of geo-tagged tweets, along with
the social network structure, we quantify the interplay be-
tween a number of important factors and human health. We
consider environmental and socioeconomic factors (such as
pollution, education, and poverty), as well as social aspects
of life (such as encounters and friendships with sick people).
Furthermore, we do this at no cost, and without any active
user participation. This enables us to operate with a signif-
icantly larger number of subjects than previous work in life
sciences.

For instance, every thirtieth resident of New York City
appears in our dataset.1 Since Twitter users do not, in gen-
eral, constitute a representative sample of a population, it
is unknown to what extent our results generalize to people
who do not participate in online social media. Nonetheless,
as we will see, the patterns we find are in agreement with
previous epidemiological work. Even if it turns out that
the mechanisms we explore here operate in a fundamentally
different way within the population at large, our methods
still capture a considerable fraction of people. Globally, the
prevalence of social media usage is significant, and is increas-
ing: 13% of online adults use Twitter, most of them daily
and often via a phone [39].

As a result, this large online population creates a vast “or-
ganic” sensor network composed of individuals reporting on
their activities, social interactions, and events around them.
All of this activity streams in real-time and is often anno-
tated with context including GPS location and images. In
this work, we leverage this sensor network to model public
health. We capture this important domain in a unified sta-
tistical model that measures the impact of various aspects
of people’s behavior on their health, and allows us to control
for a number of confounding factors. Specifically, we show
the following:

• Features mined from social media account for up to
54% variance in health of individual Twitter users.

• Physical proximity to pollution sources negatively im-
pacts public health in a measurable way.

• One’s online social status has a definite positive asso-
ciation with one’s health.

• Encounters and social ties with ill individuals have a
large negative impact on one’s health.

• The quality of one’s neighborhood is associated with
one’s health.

• One’s health state revealed on Twitter can be pre-
dicted across individuals with 91% accuracy on the
basis of geospatial and relationship data inferred from
the Twitter stream.

2. SIGNIFICANCE OF RESULTS
Consider the amount of resources and human effort re-

quired to determine how complex social and environmen-
tal factors affect the health of millions of people in a large
metropolitan area. This paper demonstrates that the ex-
penditure can be, in fact, negligible when we concentrate
on users of online social media. We show that fine-grained

1More than 19 million people live in the NYC metropolitan
area: http://www.census.gov/popest/metro/

Figure 2: This figure shows the health status of peo-
ple within a social network of the user u at the cen-
ter. Each edge represents one of u’s friendships, and
the color denotes the health of the corresponding
friend. Note the patterns in geographical as well as
social distribution of sickness. For instance, friends
on the east side of the Hudson River tend to be
sicker than friends from Manhattan. Is this due to
an outbreak of flu in the New Jersey school district?
Or is it because the sick individuals lead more stress-
ful lives? In this work, we begin to tease these inti-
mately tied factors apart.

signals mined from online social media complement tradi-
tional coarse-grained offline data, such as census statistics.
We view the methods described in this paper as the first
step towards real-time public health analysis that enables
individuals as well as public officials to make more informed
decisions.

3. MOTIVATION
A large body of research in life sciences studied the effect

of a variety of factors on animal and human health. For in-
stance, researchers have established that, among monkeys,
immune function can be directly influenced by social status.
Experimentally controlled manipulations in social rank were
found to lead to widespread changes in gene expression re-
lated to immune function. Social rank and immune function
were found to be directly correlated, i.e., better social status
yields a stronger immune system, as measured by counting
anti-bodies in blood samples [42].

Proximity to“green”places, such as urban parks, has been
linked to improved resistance to allergies [21] and reduc-
tion in stress [40]. Another study showed that even the
short-term improvement of pollution levels during Beijing
Olympics has a measurable impact on people’s health [33].

However, most experiments in this space involved rela-
tively small numbers of individuals—typically less than a



hundred, rarely thousands such as the NHLBI-MESA Study
involving 6,500 subjects [5]. Furthermore, because of the
amount of human effort required in these controlled stud-
ies (physical setup, drawing blood samples, analysis requir-
ing expensive equipment etc.), the results and insights come
with a significant cost and delay. Additionally, ethical con-
straints preclude arbitrary controlled experiments with hu-
man subjects.

As a result, many important mechanisms remain poorly
understood. For example, the link between social status and
increased risk of contracting an infectious disease in humans
still presents an open question [37]. Parts of the puzzle have
been solved. Stress has been found to increase the incidence
of common cold, mononucleosis [10], and to activate latent
viruses [1]. However, the overall picture remains unclear
and incomplete. In this paper, we propose a complementary
approach to the traditional small-scale biological and soci-
ological studies. By applying machine learning techniques
to large-scale data mined from online social networks, we
can quantify the impact of a large collection of social and
environmental factors on human health. Since our models
are fully unsupervised, they can be updated in real-time as
new data and evidence come in.

Let us give a concrete example of how we model the as-
sociation between social status and health. In this work, we
measure a person’s social status by network properties, such
as PageRank, reciprocity of their relationships, and various
centrality measures, as well as by features derived from user
interactions, e.g., how many times a person’s messages get
forwarded or “liked”, how many times people mention the
person’s name. As a proxy for the strength of an immune
system of any given person, we use the number of days the
person indicates an illness in their online communication. In
agreement with [42], we find a strong negative correlation
(R = −0.27, p� 0.0001) between people’s social status and
the frequency with which they get sick (Fig. 4).

Social status is just one of more than sixty factors affect-
ing human health we consider in this paper. These include
diverse features ranging from intensity of contact with ill
individuals to pollution exposure.

The United States has the world’s largest health inequal-
ity across society, where the gap of life expectancy of the
most and the least advantaged segments of the population
is over 20 years [41]. It has been reported that this differ-
ence is partly due to differences in social status, but many
aspects of the phenomenon remain unexplained [37]. The
level of detail and timeliness of the signals we mine from
people’s online social activities enable us to capture a num-
ber of confounding factors that were previously invisible.

For instance, we can explore complex geographical, envi-
ronmental, and social patterns with fine-granularity and at
a large scale as shown in Fig. 2. By fusing this information
with public data on pollution sources within a single view,
we can begin to quantify the emergent patterns (Fig. 1).
This is specific example of our vision of the future of public
and personal health management enabled by an automated
unification of public and personal data sets. As a result, our
work allows governments as well as individuals to model and
understand the interplay between health, location, environ-
ment, and social factors more effectively.

Before we dive into the details of our approach, we will
discuss the limitations that apply to any indirect method of
modeling public health.

4. LIMITATIONS
This paper describes our approach to public health mod-

eling that we view as a complement to existing work in
epidemiology. Any given dataset carries with it a set of
biases and our Twitter dataset is no exception. For exam-
ple, younger people and minorities are disproportionately
present on Twitter as compared to the overall makeup of
the population [39]. The results of this study apply directly
to the health of Twitter users inferred from their online com-
munication. The health state of each user is captured within
a gradient from “sick” to “healthy” with respect to influenza-
like illness, but does not further distinguish between specific
kinds of ailments. Some users may never self-report (sto-
ics) and others may report being sick when they are not
(hypochondriacs). We remove some of this bias by counting
the sick days for each user, but ground truth is required to
control for this effect more explicitly.

Our models are exposed to much noisier data than one
finds in a typical survey in life sciences. One component
of the noise comes from the text classification process, but
evaluation on a held-out set shows that it’s small. Addi-
tional noise is in the location data and its interpretation.
For example, a person tweeting on a sidewalk in front of a
bar may be recorded as“visiting” the bar. In most instances,
it is next to impossible to determine whether he actually did
visit the venue from Twitter data alone. To some extent, we
mitigate the rate of false positives by capturing each factor
in a number of complementary ways. For example, we also
record the distance to the nearest bar and the mean distance
to all bars.

While people do not tweet from every location they visit
and do not declare every friend online, much of the missing
data can be “filled in” by data mining their past behavior
[4, 8, 34]. We note that currently used methods suffer from
similar confounding effects. For example, infected people
who do not visit a doctor, or do not respond to surveys are
virtually invisible to the traditional methods. Similarly, ef-
forts such as Google Flu Trends can only observe individuals
who search the web for certain types of content when sick.
A fully comprehensive coverage of a population will require
a combination of diverse methods, and application of AI
techniques—like the ones presented in this work—capable
of inferring the missing information. An important part of
our future work, as described at the end of this paper, is to
study how estimates based on Twitter users can be adjusted
to reflect properties of the general population.

5. DATA
Our experiments are based on data obtained from Twitter,

a popular micro-blogging service where people post message
updates at most 140 characters long. The forced brevity en-
courages frequent mobile updates, as we show below. Rela-
tionships between users on Twitter are not necessarily sym-
metric. One can follow (subscribe to receive messages from)
a user without being followed back. When users do recipro-
cate following, we say they are friends on Twitter. There is
anecdotal evidence that Twitter friendships have a substan-
tial overlap with offline friendships [20]. Twitter launched
in 2006 and has been experiencing an explosive growth since
then. As of April 2012, over 500 million accounts are regis-
tered on Twitter.



Figure 3: A snapshot of Twitter activity overlaid on
top New York City public transit map. By merging
geo-tagged tweets with the known locations of tran-
sit routes, we can model the impact of public transit
usage on the health of specific individuals.

Using the Twitter Search API2, we collected a sample of
public tweets that originated from the New York City (NYC)
metropolitan area. The collection period was one month
long and started on May 19 2010, shortly after U.S. Cen-
sus 2010 data has been recorded. We periodically queried
Twitter for all recent tweets within 100 kilometers of the
NYC city center in a distributed fashion. Altogether, we
have logged nearly 16 million tweets authored by more than
630 thousand unique users. To put these statistics in con-
text, the entire NYC metropolitan area has an estimated
population of 19 million people. Since this work studies the
effects environment, location, and co-location have on hu-
man health, we concentrate on users that posted more than
100 GPS-tagged tweets during the one-month data collec-
tion period. We refer to them as geo-active users, and our
dataset contains 6,237 such individuals.

5.1 User Privacy
Our research demonstrates that much can be inferred and

predicted about specific individuals. This allows users with
open profiles to consider the implications of such setting
and enables them to make an informed decision about their
online behavior. Our methods are useful at an anonymized
level as well, as they can extract aggregate information from
individuals for the benefit of others. For example, we show
that one’s social status is significantly tied with one’s health.
Government officials as well as public advocacy groups can
use such insights to make a stronger case for a policy change.
Personalized results can be reported directly to the authen-
ticated user.

We recognize that there are substantial privacy questions
ahead. We believe the issues ultimately reduce to a cost-
benefit analysis. Specifically, by quantifying the trade-offs
between the value our automated systems create versus loss
of user privacy. In the future, we envision each person will
be able to set—either explicitly or implicitly via an auction
scheme—a dollar valuation on his or her privacy, and online
services will take that preference into account when collect-
ing, analyzing, and using customer data. In one extreme,
one may decide to risk sharing all data, make money on it,
and get more personalized services. On the other hand, one

2http://search.twitter.com/api/

may set tight privacy filters and pay for online services. This
may lead to a new open marketplace with public data [3].

6. BACKGROUND
Support vector machine (SVM) is an established model

of data in machine learning [12]. We learn an SVM for lin-
ear binary classification to accurately distinguish between
tweets indicating the author is afflicted by an ailment and
all other tweets.

Linear binary SVMs are trained by finding a hyperplane
defined by a normal vector w with the maximal margin sep-
arating it from the positive and negative datapoints. Find-
ing such a hyperplane is inherently a quadratic optimization
problem given by the following objective function

min
w

λ

2
||w||2 + L(w,D), (1)

where λ is a regularization parameter controlling model com-
plexity, and L(w,D) is the hinge-loss over all training data
D given by

L(w,D) =
∑
i

max
(

0, 1− yiwTxi
)
. (2)

The optimization problem in Equation 1 can be solved
efficiently and in a parallel fashion using stochastic gradient
descend methods [38].

Class imbalance, where the number of examples in one
class is dramatically larger than in the other class, compli-
cates virtually all machine learning. For SVMs, prior work
has shown that transforming the optimization problem from
the space of individual datapoints 〈xi, yi〉 in matrix D to
one over pairs of examples

〈
x+i − x

−
j , 1

〉
yields significantly

more robust results [23]. (x+i denotes feature vectors from
the positive class (yi = +1), whereas x−j denotes negatively
labeled data points (yj = −1).) This method is often re-
ferred to as ROC Area SVM because it directly maximizes
the area under the ROC curve of the model.

Measures of centrality mathematically capture the“im-
portance” of a node in a (social) network. Some measures,
such as degree centrality, are local and depend only on the
immediate neighborhood of a node. Other methods, includ-
ing PageRank and betweenness centrality, capture the global
properties of the network as well. For an excellent gen-
eral overview of computational analysis of social networks
at large see [15].

Regression analysis is a statistical technique of quanti-
fying the relationship between one or more independent vari-
ables and a dependent response variable. In this work, we
apply regularized least-squares regression model with elastic
net algorithm [45]. This formalism encourages grouping of
strongly correlated independent variables, and enables vari-
able selection in a principled way.

Decision trees are models of data encoded as rules in-
duced from examples [6]. Intuitively, in our domain, a de-
cision tree represents a series of questions that need to be
asked and answered in order to estimate the health quality
of a person, based on his or her attributes and contextual
features. During decision tree learning, features are evalu-
ated in terms of information gain with respect to the labels
and the best candidates are subsequently selected for each
inner node of the tree. Our implementation uses regression
decision trees, where each leaf contains a continuous label.



As described below, we also employ decision trees for fea-
ture selection, since they intrinsically rank features by their
information content.

7. METHODS
This section presents the methods we use to quantify and

predict people’s health from their location and activities
recorded online. In short, we begin by inferring the health
state of any given Twitter user on the basis of the content
of his or her online communication. We then data mine
a large collection of features for each individual. The fea-
tures jointly describe the context of people’s lives in terms of
location, their environment, and social activities. We sub-
sequently capture the associations between the contextual
features and people’s health via statistical analysis. Finally,
we explore the predictability of health from the induced fac-
tors. The following subsections describe each of these steps
in detail.

7.1 Health State Inference
We build upon previous work on classification of short

text messages [13, 31, 35] and learn a support vector ma-
chine classifier C that accurately identifies tweets that indi-
cate their author is ill. C is trained by directly optimizing
the area under the ROC curve, as is therefore robust even
in the presence of strong class imbalance, where for every
health-related message there are more than 1,000 irrelevant
ones. We use C to distinguish between tweets indicating the
author is afflicted by an ailment (we call such tweets “sick”),
and all other tweets (called “other” or “normal”).

As SVM features, we use all unigram, bigram, and trigram
word tokens that appear in the training data. For example,
a tweet “I feel sick.” is represented by the following feature
vector: (

i, feel, sick, i feel, feel sick, i feel sick
)
.

Overall, our SVM operates in more than 1.7 million dimen-
sions, where each dimension represents a word or a phrase
extracted from training data. Before tokenization, we con-
vert all text to lower case, strip punctuation and special
characters, and remove mentions of user names (the“@”tag)
and re-tweets (analogous to email forwarding). However, we
do keep hashtags (such as “#sick”), as those are often rele-
vant to the author’s health state, and are particularly useful
for disambiguation of short or ill-formed messages. Table 1
lists examples of significant features found in the process of
learning C.

We use the SVM cascade learning procedure described in
[35]. Evaluation of C on a held-out set shows 0.98 precision
and 0.97 recall with respect to labels agreed upon by human
annotators. Ground truth for each tweet was obtained by
asking five Amazon Mechanical Turk workers to label the
tweet as either “sick” or “other” and subsequently extracting
the majority vote.

7.2 Modeling Associations:
Environment, Lifestyle, and Health

From the online activities of each geo-active user, we mine
a number of features that describe the context of his or her
life in terms of location, environment, and social interac-
tion. We describe the health of individuals using two ran-
dom variables: the expected number of sick days, and the

Positive Features Negative Features
Feature Weight Feature Weight

sick 0.9579 sick of −0.4005
headache 0.5249 you −0.3662
flu 0.5051 lol −0.3017
fever 0.3879 love −0.1753
feel 0.3451 i feel your −0.1416
coughing 0.2917 so sick of −0.0887
being sick 0.1919 bieber fever −0.1026
better 0.1988 smoking −0.0980
being 0.1943 i’m sick of −0.0894
stomach 0.1703 pressure −0.0837
and my 0.1687 massage −0.0726
infection 0.1686 i love −0.0719
morning 0.1647 pregnant −0.0639

Table 1: Examples of positively and negatively
weighted significant features of our SVM model C.

normalized cumulative probability mass of sickness given by

PS =
1

|M |
∑
t∈M

Pr
[
t is sick

]
,

where M is the set of tweets of a given user. A sick day
is defined as a calendar day during which the user wrote at
least one “sick” tweet. Throughout the paper, we will use
the term health quality to denote −PS .

We quantify one’s social status with PageRank, reci-
procity of following, the number of times other people men-
tion the user, and a collection of centrality measures (de-
gree, communicability, eigenvector, betweenness, load, flow,
and closeness). The reciprocity of friendships between high
school students has been shown to be a strong predictor of
social status of individuals [30]. Namely, low-rank individu-
als frequently (and wishfully) list highly ranked students as
their friends, but the relationship is not reciprocated. Most
stable and mutual friendships occur between people of the
same rank. We find that all measures of social rank are
highly cross-correlated (R > 0.73, p � 0.0001) and have al-
most identical predictive power, explaining over 24% of the
variance in health.

Leveraging the estimated health state of all individuals
in our dataset along with their GPS location, we extract
the number of physical encounters with sick people. The
noise in GPS signal in areas with tall buildings throughout
New York City can be up to hundred meters. Therefore,
we consider two individuals co-located if they appear within
hundred meters of each other within a time window (slack)
of length T . While this method is likely to overestimate
the number of actual encounters with other Twitter users,
we find that it serves as a good proxy for the actual level
of exposure to infected individuals. In this work, we con-
sider time windows of lengths 1, 4, and 24 hours. Based on
declared Twitter friendships (i.e., mutual following of geo-
active users), we count the number of sick friends each
user has.

Using Google Places API,3 we download GPS coordinates
of all bars, night clubs, transit stations, public parks, and
gyms in the greater New York City area. Transit stations
include major bus stops, subway stations, and train, ferry

3https://developers.google.com/places/documentation/



and airport terminals. We consider a total of 25 thousand
venues in these categories (see Fig. 3). Using the geo-tags of
individual tweets, we calculate the mean shortest distance
to each venue type and the number of visits to each venue.
A visit is measured as tweeting within 100 meters of a venue.
These metrics capture aspects of the behavior and lifestyle
of each person. For instance: How often do they frequent
bars versus gyms? How much time they spend in crowded
public transportation?

Another type of “venue” we consider are major pollution
sources obtained from the U.S. Environmental Protection
Agency.4 These include factories, power plants, transporta-
tion hubs, and other sites emitting significant amounts of
volatile chemical compounds, particulate matter, CO, NOx,
SO2, and other harmful chemicals. We model over 1,700
pollution sites within NYC (see Fig. 1).

We would like to tie in datasets that do not have GPS
annotations. For instance the U.S. census contains rich so-
cioeconomic characteristics of the entire nation. We tie
our geo-tagged tweets with census data by inferring each
person’s home ZIP code, which then serves as a key into the
census dataset. The GPS coordinates of person x home is
estimated by fitting a two-dimensional Gaussian to all x’s
locations between 1am and 6am. The mean of this Gaussian
is taken as the most likely home location. We then look up
the corresponding ZIP code in the GeoNames.org database.

The average New York City ZIP code zone has an area
of 3.6 km2 and can be walked across in less than 20 min-
utes. The ZIP code areas are shown in Fig. 1. We can
now associate each person with the context derived from the
2010 census—the most recent census available.5 We focus
on three broad characteristics of a person’s neighborhood:
poverty, education, and race. Poverty is measured in terms
of fraction families and individuals below poverty line, the
number of abandoned housing units, and the prevalence of
social security dependence. Education captures proportion
of people over 25 with various levels of education (from el-
ementary school to a doctorate). The race factor includes
proportion of different races and ethnic groups.

For each person, we induce 62 features based on the factors
described in this section. In Section 8, we will see how these
features correlate and associate with people’s health, but let
us first describe how we use them for health prediction.

7.3 Health Prediction
We are interested in how do the features we discuss above

generalize across individuals. We explore this by learning
a regression decision tree on a training set of subjects and
evaluate on the remaining test set. The decision tree ad-
ditionally reveals the relative importance of the individual
features—with the most informative feature at the root and
increasingly insignificant features towards the leaves. We
prevent overfitting by pruning the tree on the basis of 10-
fold cross-validation.

8. EXPERIMENTS AND RESULTS
This section reports the experimental results we obtained

and closely follows the structure of the Methods section
above. Unless otherwise noted, all results reported are sta-
tistically significant at the 0.001 level (p < 0.001).

4http://www.epa.gov/air/emissions/
5http://www.census.gov/main/www/access.html

Figure 4: This figure shows the interplay between
people’s social status and their health. Each pane
shows a different measure of social status (plotted
on the horizontal axes). The vertical axes show the
expected amount of time a person is healthy. A
column x in each figure shows the log-probability
distribution log (Pr [health|centrality = x]). We see
that the people who often get sick (bottom rows
in each pane) are more likely of low social status,
whereas people with high social rank enjoy better
health. The correlation coefficient R for each mea-
sure of social status is shown on top. The positive
association between rank and health is consistent
across all measures of centrality considered.

Fig. 4 shows the interplay between six different measures
of social rank and people’s health. We see a common pattern
independent of the particular centrality measure: the higher
the social status, the better the health. While low-rank
individuals are concentrated on the “frequently sick” side of
the spectrum (on the bottom of each pane), highly ranked
subjects (on the right side of each pane) are more uniformly
distributed and often attain high health scores.

Applying regression analysis, we quantify the associations
between our factors and health (Fig. 5). All measures of so-
cial rank are mutually strongly correlated and positively as-
sociated with health quality. Proximity to pollution sources
is the single most correlated feature with Ps (closer proxim-
ity⇔ worse health). Visit to polluted sites are also strongly
associated with health (more visits ⇔ worse health).

In agreement with prior work [21], we found a small but
significant positive correlation between visits of public parks
and health quality.

Fig. 6 shows the fraction of variance in cumulative prob-
ability of sickness (PS) explained by various subsets of our
factors (across all subjects).

We see that census data exhibits small correlation scores
and explains little variance in health. While the individual
contributions of poverty, education, and race are small, they
jointly account for 8.7% of variance that is unexplained by
other factors. The actual effect of these factors is likely to
be even higher, however. In New York City, the ZIP code
areas are relatively large compared to the diversity and den-



−0.4 −0.2 0 0.2 0.4 0.6

PageRank
Degree Centrality

Closeness Centrality
Betweeness Centrality

Flow Centrality
Load Centrality

Eigenvector Centrality
Communication Centrality

Follows Reciprocity
# Times Mentioned

Mean Distance to Pollution
Visits Near Pollution

Visits of Parks
Mean Distance to Bars

Visits to Bars
Mean Distance to Gyms

Visits to Gyms
Mentions of "gym"

Mean Distance to Transit Stations
Visits to Transit Stations

Encounters within 1 h
Unique Encounters within 1 h

Encounters within 4 h
Unique Encounters within 4 h

Encounters within 12 h
Unique Encounters within 12 h

Encounters within 24 h
Unique Encounters within 24 h

Total # of Unique Encounters
Number of Sick Friends

Poverty
Low Education
High Education

Correlation with Health Quality

Figure 5: Results of regularized regression analy-
sis with the negative cumulative probability of sick-
ness (−PS) as the dependent variable. Proximity to
polluted sites and encounters with sick individuals
are negatively correlated with people’s health qual-
ity, whereas high centrality corresponds with good
health. Note the positive association between social
rank and health quality, irrespective of the measure
of social status. Features derived from census data
(education and poverty) have small but significant
effect.

sity of the city population. As a result, a single ZIP code
often contains people on both extremes of any given factor
considered in this study. This suggests that the fine-grained
data available in online social media does open novel op-
portunities for increasingly comprehensive models of public
health.

From Figures 5 and 6, we see that subjects’ activities re-
garding bars, gyms, and public transit all appear to have a
common association with health: avoiding those venues is
connected to better health. For gyms, the effect is mildly
stronger (in a statistically significant way) as compared to
bars and public transit. Interestingly, mentioning the word
“gym” in online communication is also associated with worse
health. Future work will explore possible confounders and
shed more light on the interplay between these important
lifestyle factors.

For health prediction, we use 80% randomly selected sub-
jects to induce a regression decision tree D1 that predicts the
expected number of sick days (Fig. 7), and D2 that predicts
the cumulative probability of sickness PS . Evaluation on the
remaining 20% of the subjects shows that D1 achieves 91%
accuracy, and D2 is within 8% of the actual PS value more
than 95% of the time. We see that the decision tree induced
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Figure 6: Fraction of variance in health (−PS) ex-
plained by various subsets of our factors. All fea-
tures jointly account for more than 54% of the total
variance. The first three factors (Poverty, Educa-
tion, and Race) are derived from census data for
user’s home ZIP code. See Section 7.2 for explana-
tion of the composition of the factors.

meaningful sequences of features, and it will be interesting
to see if such insights can guide the design of a controlled
epidemiological study that explores the effects further.

We consider two baselines: random and most-frequent.
The former draws the predicted number of sick days from
a Gaussian distribution learned from training data, whereas
the most-frequent baseline always outputs the mode of the
labels in training data. They achieve 15% and 64% accuracy,
respectively, when predicting the number of individuals’ sick
days.

9. RELATED WORK
Since the famous cholera study by John Snow (1855),

much work has been done in capturing the mechanisms of
epidemics. There is ample previous work in computational
epidemiology on building relatively coarse-grained models
of disease spread via differential equations and graph the-
ory [2, 29], by harnessing simulated populations [16], and by
analysis of official statistics [19]. Such models are typically
developed for the purposes of assessing the impact a partic-
ular combination of an outbreak and a containment strategy
would have on humanity or ecology [7]. However, the above
works focus on simulated populations and hypothetical sce-
narios. By contrast, we address the problem of predicting
the health of real-world populations composed of individuals
embedded in a fine social structure. As a result, our work
makes a step towards understanding the impact of complex
intertwined factors affecting our health.

Traditionally, public health is monitored via surveys and
by aggregating statistics obtained from healthcare providers.
Such methods are costly, slow, and may be biased. Recently,
digital media has been successfully used to significantly re-
duce the latency and improve the overall effectiveness of
public health monitoring. Perhaps most notably, Google
Flu Trends models the prevalence of flu via analysis of geo-
located search queries[18].
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Figure 7: Decision tree predicting the expected
number of sick days. The tree has been pruned to
an optimal level using 10-fold cross-validation. To
estimate the number of sick days for a new individ-
ual, we start at the root of the tree and evaluate
the inequality in the root. If it evaluates to true, we
traverse the left subtree, otherwise we recurse on
the right subtree. We see, for example, that highly
ranked subjects who avoid pollution sources tend
to be healthier than people who frequent bars, en-
counter too many sick individuals, and have unre-
ciprocated relationships.

Eubank et al. began to leverage more fine-grained infor-
mation, including people’s activities [16]. They developed a
simulation tool (EpiSims) that leverages synthetic—but sta-
tistically realistic—human mobility to study the spread of
infectious diseases over a metropolitan area. We see an im-
portant continuity from such simulations to real-time track-
ing of human behavior. For example, as we have seen, our
NYC dataset contains 1/30 of the residents. We can sim-
ulate the remainder of the population, while “seeding” the
system with realistic parameters learned from live data. For
example, people’s home locations or social encounters are no
longer drawn from coarse distributions, but rather inferred
from online activities.

In the context of social media, [25] explore augmenting the
traditional notification channels about a disease outbreak
with data extracted from Twitter. By manually examining
a large number of tweets, they show that self-reported symp-
toms are the most reliable signal in detecting if a tweet is
relevant to an outbreak or not. This is because people often
do not know what their true problem is until diagnosed by
an expert, but they can readily write about how they feel.
Researchers have also concentrated on capturing the overall
trend of a particular disease outbreak, typically influenza,
by monitoring social media [13, 26, 9]. [17] use information
actively submitted by cell phone users to model aggregate

public health. However, scaling such systems poses consid-
erable challenges.

Other researchers focus on a more detailed modeling of
the language of the tweets and its relevance to public health
in general [31], and to influenza surveillance in particular
[11]. Paul et al. develop a variant of topic models that
captures the symptoms and possible treatments for ailments,
such traumatic injuries and allergies, that people discuss
on Twitter. In a follow-up work [32] begin to consider the
geographical patterns in the prevalence of such ailments, and
show a good agreement of their models with official statistics
and Google Flu Trends.

Our previous work has shown that people’s interactions
recorded in online social networks can be used to learn very
specific and fine-grained models of the spread of contagious
disease [35, 36]. However, prior work considered only rudi-
mentary features based on immediate user co-location and
social ties. In this paper, we include more than forty addi-
tional factors based not only on interpersonal interactions,
but also on the environment, quality of one’s neighborhood,
socioeconomic status, and lifestyle. Furthermore, we show
that the factors we induce generalize across individuals and
have a strong predictive power within our population of
Twitter users.

In life sciences, the positive correlation between social
rank and strength of an immune system has been found
in rhesus monkeys by performing controlled experiments on
a small number of subjects [42]. In human studies, social
status has been estimated indirectly. Socioeconomic status
(SES) has been widely used as a proxy for people’s social
rank [44]. A strong correlation between SES and health has
been documented in a large number of contexts, in countries
with egalitarian and socialized medical care, and even for
diseases whose outcomes are largely unaffected by the qual-
ity of health care. Interestingly, even when controlling for
risk factors often associated with low SES, such as smoking
and unhealthy diet, SES is still the dominant factor. Sub-
sequent studies have shown that subjective SES is a better
predictor of a person’s health than a global measure SES.

For example, in the US, the higher the income inequal-
ity in a given region, the worse the health of the population
there [24] (and also the higher the prevalence of firearm own-
ership [22]). Position in a civil servant hierarchy is another
potential proxy for social status. A pioneering study of [28]
has found that the risk of heart disease grows as one’s occu-
pational rank decreases. In this paper, we use the declared
social network of Twitter users and their online interactions
to determine the social rank of any given individual.

While we do not yet have a comprehensive understand-
ing of the biological and psychological mechanisms that link
social status to disease susceptibility, partial explanations
have been proposed. Low social rank often leads to less
control over one’s life, imbalance between work effort and
reward, lack of autonomy, less respect from the general so-
ciety, fewer means and options available to resolve difficult
situations, etc. [27]. This renders low-rank individuals more
vulnerable to stress, in the developed world mostly psycho-
logical stress. The negative impact of stress on health is
well documented. Stress induces metabolic and endocrine
changes that in turn lead to increased risk of disease [37].

However no studies to date have resolved the impact of
people’s social status on the prevalence of diseases, or the
spread of infectious diseases, throughout a large-scale pop-



ulation over extended periods of time. In this paper, we
demonstrate that large-scale data mining enables us to fill
some of these gaps without any active user participation. As
a result, we can improve our understanding of human behav-
ior and begin to quantify—in a scalable fashion—important
phenomena affecting our everyday lives. At the same time,
our approach complements, but does not replace, controlled
longitudinal studies (e.g., [28, 14, 37]) that uncover the de-
tailed biological mechanism behind diseases and capture sig-
nal that is, at present, too weak to be detectable online.

10. CONCLUSIONS AND FUTURE WORK
This paper focuses on data mining diverse, noisy, and in-

complete sensory data over large numbers of individuals. We
show that the induced patterns can be subsequently lever-
aged in descriptive as well as predictive models of the health
of a population of Twitter users at scale. We find that the
raw sensory data linked with the content of users’ online
communication, explicit as well as implicit online social in-
teractions, and relationships are extremely rich information
sources. The fine granularity and pervasiveness of the data
allows us to model phenomena that have been previously
out of reach. We consider environmental factors (such as
pollution and poverty) as well as social aspects of life (such
as encounters and friendships with sick and healthy people).
Furthermore, we do this at no cost, and without any active
user participation.

Our methods enable us to shed additional light on im-
portant questions in public health that have been either too
expensive or outright impossible to answer. In the process,
we have drawn parallels to work done in other scientific
fields, including epidemiology, immunology, and sociology,
and shown how our methods complement previous results
and bring new insights.

Our current work concentrates on two areas: effective
ways of validating disease models with ground truth about
people’s health, and expanding the set of environmental fac-
tors our models capture. The first area builds on research
in traditional epidemiology and active learning, and will en-
able us to learn more specific health models that capture the
“offline” part of the population as well.

Consider the following pyramid model of public health.
On the base of the pyramid, we have the entire population.
In the middle of the pyramid are users of online social media
who we can access. At the top of the pyramid is a small—
but strategically selected—sample of individuals from the
general population (which includes some of the social me-
dia users) for whom we have detailed records about their
health. These include subjects who respond to online med-
ical surveys, take at-home rapid tests, or even get tested at
a nearby medical lab and share the results.

Traditionally, epidemiological studies are based on data
collected from the top of the pyramid. This paper addresses
the middle of the pyramid. We believe a hybrid approach
will enable knowledge gained at any level in the pyramid
to “trickle down”. For example, by applying automated ma-
chine learning techniques described in this paper to the large
mass of people in online social media, we can bootstrap the
top of the pyramid to make well-founded predictions about
the general population at the bottom of the pyramid. This
will infuse epidemiological models with additional structure
and parameters learned from detailed timely data, so that
fewer factors need to be modeled via simulation. However,

information could also “trickle up”, where the latent behav-
ior of the hidden population influences predictions even for
individuals on top.

The second area focuses on modeling the interplay be-
tween a wider range of personal, social, environmental and
health factors. For example: What exact impact eating
habits have on one’s health, and the health of related peo-
ple? Animal studies have shown that personality plays a
significant role in the perception of one’s social rank, which
in turn modulates the impact of the social status on one’s
health [43]. Similar processes are likely to occur in human
societies as well. For instance, a phlegmatic person may be
less affected by his or her low rank. However, these mech-
anisms prove difficult to capture using current techniques.
By contrast, our work builds a foundation that makes such
studies possible. For example, the language model used here
to infer the health state of an individual can be augmented to
estimate the personality type of a person. Finally, our mod-
els enable mobile applications that inform the user about
health risks around him in real-time, opening opportunities
for complex social studies of human behavior at scale.
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